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Abstract—In this paper, we introduce Track, Attend and Parse
(TAP), an end-to-end approach based on neural networks for on-
line handwritten mathematical expression recognition (OHMER).
The architecture of TAP consists of a tracker and a parser.
The tracker employs a stack of bidirectional recurrent neural
networks with gated recurrent units (GRU) to model the input
handwritten traces, which can fully utilize the dynamic trajectory
information in OHMER. Followed by the tracker, the parser
adopts a GRU equipped with guided hybrid attention (GHA)
to generate ISIEX notations. The proposed GHA is composed
of a coverage based spatial attention, a temporal attention and
an attention guider. Moreover, we demonstrate the strong com-
plementarity between offline information with static-image input
and online information with ink-trajectory input by blending a
fully convolutional networks based watcher into TAP. Inherently
unlike traditional methods, this end-to-end framework does
not require the explicit symbol segmentation and a predefined
expression grammar for parsing. Validated on a benchmark
published by the CROHME competition, the proposed approach
outperforms the state-of-the-art methods and achieves the best
reported results with an expression recognition accuracy of
61.16% on CROHME 2014 and 57.02% on CROHME 2016,
using only official training dataset.

Index Terms—Online handwritten mathematical expression
recognition, end-to-end framework, gated recurrent unit, guided
hybrid attention, ensemble.

I. INTRODUCTION

ATHEMATICAL expressions play an important role

in scientific documents. They are indispensable for
describing problems and theories in maths, physics and many
other fields. Meanwhile, people have begun to use handwritten
mathematical expressions (HMEs) as one natural input mode.
However, how to successfully recognize them remains a dif-
ficult problem as online handwritten mathematical expression
recognition (OHMER) exhibits three distinct challenges [1],
[2], i.e., the complicated two-dimensional structures, enormous
ambiguities in handwriting input and strong dependency on
contextual information.

Technically, OHMER consists of two major problems [3],
namely symbol recognition and structural analysis, which can
be solved sequentially or globally. Sequential solutions [4],
[5] first segment input expression into math symbols and
recognize them separately. The analysis of two-dimensional
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structures is then carried out based on the best symbol
segmentation and symbol recognition results. In sequential
solutions, symbol recognition does not make use of contextual
information which could be helpful to reduce the ambiguities
of handwritten symbols. Besides, the symbol segmentation and
recognition errors will be subsequently inherited by structural
analysis. Conversely, global solutions [6], [7] seem to be
more appropriate as symbol recognition and structural analysis
are optimized using the global information of expression
simultaneously. However, global solutions are computationally
more expensive because the probabilities for segmentation
composed of strokes (a sequence of points between a pen-
down and a pen-up operation) are exponentially expanded.
Therefore effective search strategies must be executed [8].
Specific to structural analysis, many approaches [9], [10], [11],
[12] have been investigated. Among them, the grammar-based
approaches are widely used [13], [14]. Structural analysis with
a grammar is often termed as syntactic pattern recognition but
these grammars are constructed using extensive prior knowl-
edge. Also, [15], [16] proposed more general and simpler
methods for structural analysis without using a math grammar,
termed as structural pattern recognition. They use spanning
trees to select parse tree directly from hypothesis graphs.
Inspired by recent work in neural networks [17], [18], [19],
we introduce a framework totally based on neural networks
for OHMER. The proposed approach is named as Track,
Attend and Parse (TAP), consisting of a tracker and a parser
equipped with guided hybrid attention (GHA). The proposed
TAP possesses three distinctive properties: 1) It is end-to-end
trainable; 2) It is data-driven, which means it does not require
a predefined math grammar; 3) Symbol segmentation can be
automatically performed through attention mechanism. Unlike
conventional methods, which recognize HMEs as expression
trees, TAP learns to track the traces of HMEs and parse them
as I&TEX [20] notations. We employ a stack of bidirectional
recurrent neural networks with gated recurrent units (GRU)
[21] as the tracker which takes the two-dimensional hand-
written traces as input and maps the trajectory information
to high-level representations. The parser is implemented by a
unidirectional GRU with GHA which converts these high-level
representations into output IATEX strings, one symbol at a time.
Here, GHA is composed of a coverage based spatial attention,
a temporal attention and an attention guider. More specifically,
for each predicted symbol, the spatial attention scans the entire
input (traces of HME) and teaches the parser where to attend
for describing a math symbol or an implicit spatial operator.
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Meanwhile, the temporal attention tells the parser when to
rely on the product of spatial attention and when to just
rely on the language model built in the parser. Because in
XX notations, some symbols can often be predicted reliably
just from the language model, e.g., the symbol “{” in string
“x A {2} + 17 (I8TgX notation of 22 + 1). During the
training procedure, the learning of spatial attention can also be
guided by an attention guider performing as a regularization
term. Inherently different from traditional approaches, our
model optimizes symbol segmentation automatically through
the attention mechanism, and structural analysis does not rely
on a predefined grammar as a data-driven language model
is built in the parser. Based on this end-to-end framework,
the two typical problems, namely symbol recognition and
structural analysis, are jointly optimized. Moreover, we in-
vestigate on two modalities to express the HMEs: the static
images (offline information) or the dynamic traces (online
information). The strong complementarity between offline and
online information is demonstrated by blending TAP with a
fully convolutional networks (FCN) [22], [23] based watcher
to handle the static HME images. Finally, we incorporate a
stronger GRU based language model trained on an additional
text dataset provided by CROHME competition to further
improve the recognition performance.

The main contributions of this study can be summarized as:

o A novel TAP framework is proposed for OHMER, which
is an end-to-end trainable model to alleviate the problems
caused by symbol segmentation and computational de-
mands of employing a math grammar in the conventional
approaches.

o A hybrid attention with an attention guider is incorporated
with TAP to show where and when to attend.

o TAP is blended with a FCN-based watcher and a stronger
GRU based language model to fully utilize the offline
information of OHME and the contextual information.

o We experimentally demonstrate how TAP completes the
automatic symbol segmentation and structural analysis
through visualization of hybrid attention.

II. RELATED WORKS

In this section, we describe the previous work on OHMER,
including both traditional grammar based approaches and
recent neural network based approaches.

A. Grammar based approaches for OHMER

Symbol recognition and structural analysis are two basic
components for OHMER. In the data acquisition of on-
line handwriting, the pen-tip movements (xy-coordinates) and
pen states (pen-down or pen-up) are automatically stored
as variable-length sequential data. Meanwhile, the sequential
data can also be transformed into image-like representation-
s as shown in Fig. 1. Inspired by recent work in neural
networks, convolutional neural networks (CNN) [24] and
recurrent neural networks (RNN) [25] have been widely
used as powerful classifiers for offline or online symbol
recognition. However, regarding to structural analysis, many
researchers prefer approaches based on predefined grammars

<320,142>,<319,139>,<319,138>,<319,137>,...... <416,154> xy-coordlnates

traces

8’ il -o jﬁh image

Fig. 1. An example of online handwritten mathematical expression, including
the sequential data, visualization of traces and its transformed 2D static image.

as a natural way to solve the problem. Different types of
math grammars have been investigated. For example, Chan and
Yeung [26] used definite clause grammars. Alvaro et al [51, [7]
showed the effectiveness of stochastic context-free grammars
on several systems as they consistently performed best in the
CROHME competitions. Yamamoto et al. [27] also presented
an OHMER system using probabilistic context-free grammars,
and MacLean [28] developed an approach using relational
grammars and fuzzy sets.

B. Encoder-decoder framework

This study pays a special attention to neural network based
structural analysis. In [18], a novel neural network framework,
namely encoder-decoder, was exploited to address sequence
to sequence learning. Typically, both the encoder and the
decoder are implemented with RNNs, which are proved to
be good processor and generator for sequential signals. The
encoder RNN first learns to encode the sequential variable-
length input into high-level representations. A fixed-length
context vector is then generated via summing the variable-
length representations or just choosing the last representation.
Finally, the decoder RNN uses this context vector to generate
variable-length output sequence, one word at a time. Due to the
intermediate fixed-length vector, the encoder-decoder model
can well perform a mapping between variable-length input and
output. This framework has been extensively applied to many
applications including machine translation [29], [30], speech
recognition [31], [32], character recognition [33], [34], image
captioning [35], [36] and video processing [37], [38].

C. Attention

In [39], [40], [41], attention was shown to be one of the most
distinct aspects in human visual system. This mechanism could
be incorporated into encoder-decoder framework for calculat-
ing the fixed-length context vector, i.e., the variable-length
representations could be summed using the attention as the
weighting coefficients. After adopting an attention mechanism
into encoder-decoder, salient regions in the static represen-
tation can dynamically rise to the forefront. The attention
mechanism plays an indispensable role in image captioning
for obtaining a state-of-the-art performance. For example, [42]
proposed the “hard” attention for image captioning system to
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know where to attend and its effectiveness was shown through
attention visualization. [43] proposed the concept of “attention
correctness” to strength the alignment for image captioning.
In [44], an adaptive attention was implemented via a visual
sentinel so that the captioning system could also know when
to attend, and with a similar motivation, [45] also proposed
a global-local attention so that model could selectively pay
attention to spatial objects and context information.

D. Neural network based approaches for OHMER

The generality of the attention based encoder-decoder
framework suggests that OHMER may also be one proper
application. Recently, [46], [47] used the attention based
encoder-decoder model for OHMER and significantly out-
performed the best system on CROHME 2014. In [46] the
proposed model consisted of a FCN encoder and a GRU
decoder equipped with a coverage-based attention model while
[47] employed a CRNN as the encoder and the decoder is
equipped with a coarse-to-fine attention model. However, both
[46] and [47] treated the HMEs input as static images which
ignores the handwriting dynamics (namely the temporal order
and trajectory). As we can see in Fig. 1, besides the symbol
shape information, the writing order is also preserved in the
online sequential data, which is important information and can
not be recovered from the static image. Therefore, to capture
the dynamic information to reduce handwritten ambiguities,
[48] proposed to employ a GRU encoder that directly takes
the raw sequential data as input. Validated on CROHME 2014,
[48] showed a significant improvement of recognition accuracy
over [46], [47].

This study is an extension of the previous work in [48] with
the following new contributions. 1) We propose to employ a
temporal attention to teach the parser when to rely on the
representations extracted by tracker and when to just rely
on the built-in language model. 2) To compute the temporal
attention, the spatial attention is slightly adjusted. Meanwhile,
we newly introduce an attention guider to help improve the
learning of spatial attention. 3) We blend a FCN watcher
into TAP by considering the strong complementarity between
static-image based input and dynamic-trace based input. By
processing HMEs from two different modalities, the strengths
of [46] and [48] can be fully utilized simultaneously. 4) We use
an extra official text dataset containing only IXIEX notations to
train an additional language model for enhancing our parser.
5) More experiments and analyses are included.

III. NETWORK ARCHITECTURE OF TAP

In this section, we elaborate the proposed TAP architecture
which parses a mathematical expression structure into a ISIEX
string by tracking a sequence of online handwritten points.
As illustrated in Fig. 2, the raw data is a sequence of points
containing xy-coordinates which can be visualized as the
bottom-right image by drawing the trajectory. A preprocessing
is first applied to extract trajectory information from raw
sequential data. The tracker is a stack of bidirectional GRU
while the parser combines a GRU based language model and
a hybrid attention mechanism. As for the hybrid attention

Parser with
hybrid attention

r
1
D e e e e e

Tracker

Fig. 2. Overall architecture of Track, Attend and Parse. X denotes the input
sequence in Section III-A, A denotes the annotation sequence in Section III-C,
Y denotes the output sequence in Section III-C.

mechanism, spatial attention can potentially well learn the
alignment between input traces and output string while tem-
poral attention can well know when to rely on the product
of spatial attention and when to just rely on the language
model. For example, in Fig. 2, the purple, blue and green
rectangles denote three symbols with the red color representing
the spatial attention probabilities of each handwritten symbol
(lighter color denotes higher probability) and the probabilities
linking to rectangles represent their reliability produced by
temporal attention. When predicting the math symbol “\sum”,
the spatial attention model aligns well to the stroke of )~
(in the purple spatial attention map) which corresponds to the
human intuition and the temporal attention probability linking
to the purple rectangle is extremely high as the spatial attention
map is accurate. Conversely, when predicting the math symbol
“{”, there is no object for spatial attention model to attend
to, leading to an inaccurate spatial attention map. Therefore
the temporal attention probability linking to the green spatial
attention map is small which tells the parser should rely on
the built-in language model at this time.

A. Preprocessing
Suppose the input traces contain raw sequential data with a

variable-length V:

{[xhylvsl]v [95'2,y2,52], ey [xNny,SN]} (1)
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where x; and y; are xy-coordinates of the pen-tip movements,
s; is the stroke index of the ™ point, and the sequence is
stored in the writing process.

To address the issue of non-uniform sampling by different
writing speed and the size variations of the coordinates on
different potable devices, the interpolation and normalization
to the original sequential points are first operated according
to [49]. Then we extract an 8-dimensional feature vector for
each point:

[xi, Yis A.]?i, Ayi, A/J)i, A/yi, (5(81' = 81‘4_1), 6(81 75 Si+1)]

2)
where Axl = Tit+1 — Ly, Ay1 =Yi+1 — Yi» A’ZL’i = Ti4+2 — Ly,
A'y; = yiyo — y; and §(-) = 1 when the condition is true
or otherwise zero. The last two terms are flags indicating the
status of the pen, i.e., [1, 0] means pen-down while [0, 1]
means pen-up. Note that, an HME can also be considered as a
sequence of several strokes. So fully utilizing the stroke status
information plays an important role in increasing recognition
accuracy. For convenience, in the following sections, we use
X = (x1, X2, ..., Xxn) to denote the input sequence of
tracker, but note that each item x; here is actually the 8-
dimensional vector shown in Eq. (2).

B. Tracker

Given input sequence (x1, X2, ..., Xy), a simple RNN
can be adopted as the tracker to compute a sequence of hidden
states (hy, hy, ..., hy):

h; = tanh (W, ,x; + Upphy 1) 3)

where W, is the connection weight matrix of the network
between input layer and hidden layer, and Uy, is the weight
matrix of recurrent connections in the same hidden layer. In
principle, the recurrent connections let RNN map from the
entire history of previous inputs to each output. However, in
practice, a simple RNN is difficult to train properly due to the
problems of the vanishing gradient and the exploding gradient
as described in [50], [51].

Therefore, in this study, we employ GRU as an improved
version of simple RNN which can alleviate the vanishing and
exploding gradient problems. The GRU hidden state h; in
tracker is computed by:

ht = GRU (Xt, htfl) (4)

as illustrated in Fig. 3 the GRU function can be expanded as
follows:

z; = 0(Wa.x; + Uphy_q) )]
r; = o(Wax¢ + Uphy_q) (6)
hy = tanh(W,,x; + U, (r; @ hy_1)) (7)
h; = (1_Zt)®ht—1+zt®}~1t (3

where o is the sigmoid function and ® is an element-wise
multiplication operator. z;, r; and h; are the update gate, reset
gate and candidate activation, respectively. W, W ,., W,
denote related forward weight matrices and Uy,, Uy, and
U,.,, denote related recurrent weight matrices.

out

3 —|=

Fig. 3. TIllustration of GRU function, z denotes update gate, r denotes reset
gate, h denotes candidate activation and h denotes the output activation.

Nevertheless, unidirectional GRU cannot utilize the future
context. Accordingly, we pass the input vectors through two
GRU layers running in opposite directions and concatenate
their hidden state vectors. This bidirectional GRU can use
both past and future information. To obtain a high-level
representation, the tracker stacks multiple layers of GRUs on
top of each other. However, with the increased depth, the
high-level representation is overly precise for the parser and
contains much redundant information (difference of feature
vectors between adjacent points is slight). This leads us to
add pooling over points in high-level GRU layers as shown in
Fig. 2. The pooling is a subsampling operation. We drop the
even outputs of lower layer and only send the odd outputs to
upper layer, therefore the upper layers run twice faster than
the lower ones. Besides accelerating the tracking process, the
pooling operation also improves the recognition performance
as it is easier for the parser to implement spatial attention with
a fewer number of outputs of tracker.

C. Parser

In Fig. 2, the parser generates a corresponding I£TEX nota-
tion of the input traces. The output string Y is represented by
a sequence of one-hot encoded symbols.

Y ={yi,....,yc} . yi € R¥ 9)

where K is the number of total symbols in the vocabulary and
C is the length of IXTEX string.

Meanwhile, assuming that the tracker extracts high-level
representations denoted by an annotation sequence A with
length L. If there is no pooling in the stacked GRU, L = N
(N is the length of input sequential data); otherwise N will be
several multiples of L and each of these annotations represents
a D-dimensional vector corresponding to a local region of
original traces:

A ={ay,...,a;} , a; € RP (10

Note that, both the length of annotation sequence L and the
length of IATEX string C' are not fixed. To address the learning
problem of variable-length annotation sequences and associate
them with variable-length output sequences, we attempt to
compute an intermediate fixed-size vector c; by employing
guided hybrid attention which will be described in more
details in Section III-D. Given the context vector c;, we
utilize unidirectional GRU to produce IKIEX strings symbol by
symbol. The probability of each predicted symbol is computed
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Fig. 4. Schematic representation of hybrid attention, consisting of a coverage
based spatial attention and a temporal attention.

by the context vector c;, current GRU hidden state s; and
previous target symbol y;_; using the following equation:

p(¥e|yi—1,X) = g Woh(Ey;—1 + Wss; + Weey)) (11)

where g denotes a softmax activation function over all the
symbols in the vocabulary, h denotes a maxout activation
function, W, € REX% W, € R™*" W, € R™*P and
E denotes the embedding matrix, m and n are the dimensions
of embedding and GRU parser.

The parser adopts two unidirectional GRU layers to calcu-
late the hidden state s;:

§; = GRU (y¢—1,8¢-1) (12)
¢t = fhae (Ye—1,8t—1,8¢, A) (13)
St = GRU (Ct, ét) (14)

where s;_1 denotes the previous hidden state, fu, denotes
the hybrid attention model, and §; is the prediction of current
GRU hidden state. The initial hidden state sy of the first GRU
is predicted by an average of annotation vectors a; fed through
a fully-connection layer :

_ 1 L
a=- Zi:l a; (15)
S = tanh (Winité) (16)

where Wi, € R™*P_ By initializing GRU hidden state in
this way, the parser is easier to train properly compared with
initializing GRU hidden state as a zero-vector.

D. Guided hybrid attention

The proposed hybrid attention aims to teach the parser
where to attend and when to attend. It consists of a coverage
based spatial attention and a temporal attention. Fig. 4 shows
the schematic representation of spatial and temporal attention.
An attention guider that guides the learning of hybrid attention
is embedded during the learning procedure.

1) Spatial attention: Intuitively, for each predicted symbol
from the parser, the entire input sequence is not necessary
to provide the useful information. Only a subset of adjacent
trajectory points will mainly contribute to the computation of
context vector c; at each time step ¢. For example, in Fig. 2,

the symbol “>"” in the output sequence corresponds only to
the red part in the purple rectangle: the other parts of the input
expression do not need to be attended. Therefore, the parser
can adopt a spatial attention mechanism to know where is the
suitable place to attend to generate the next predicted symbol
and then assign a higher weight to the corresponding local
annotation vectors a;. Here, we parameterize the attention
model as a multi-layer perceptron (MLP) which is jointly
trained with the tracker and the parser:

e = V;{t tanh(Wanét + Uatta’i)
B exp(es;)
= L
> k1 €xP(eek)

where e;; denotes the energy of annotation vector a; at time
step ¢ conditioned on the current GRU hidden state prediction
8;, ay; denotes the spatial attention coefficient of a; at time
step t. Let n’ denote the attention dimension; then v, € R™,
W € R %" and Uy, € R™ %P, With the weights ay;, we
compute a context vector candidate ¢; as:

a7)

(18)

L
Cy = Zi:

We can understand the summation of all the annotations
using weight coefficients as computing an expected annotation,
which has a fixed-length 1 regardless of the variable-length of
input traces.

2) Coverage model: There is one problem for the classic
spatial attention mechanism in Eq. (17), namely lack of
coverage [46], [52]. Coverage means the overall alignment
information indicating whether a local region of the input
traces has been parsed. The overall alignment information
is especially important when recognizing HMEs because in
principle, each part of input traces should be parsed only once.
Lacking coverage will lead to misalignment resulting in over-
parsing or under-parsing. Over-parsing implies that some parts
of the input traces have been parsed twice or more, while
under-parsing denotes that some parts have never been parsed.
To address this problem, we append a coverage vector to the
computation of attention in Eq. (17). The coverage vector aims
at tracking the past alignment information. Different from [32],
we compute the coverage vector based on the summation of all
past attention probabilities, which can describe the alignment

77227

19)

history:
t—1
F=Qx lel oy (20)
eri = Uy tanh(Wyd; + Uga; + U f) (21)

where «; denotes the attention probability vector at time step [,
Q denotes a 1D convolution filter with g output channels and f;
denotes the i coverage vector of F initialized as a zero vector.
The coverage vector is produced through a convolutional layer
because we believe the coverage vector of annotation a; should
also be associated with its adjacent attention probabilities.
The coverage vector is expected to help adjust the future
attention. More specifically, points in the input traces already
significantly contributed to the generation of target symbols
should be assigned with lower spatial attention probabilities in
the following parsing phases. On the contrary, points with less
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contributions should be assigned with higher spatial attention
probabilities. Consequently, the parsing process is finished
only when the entire input traces have contributed and the
problems of over-parsing or under-parsing can be alleviated.

3) Temporal attention: The coverage based spatial attention
seems to be effective for generating the alignment between
the target symbol and a local region of input traces. However,
regarding to the criterion of generating I4TEX notations, there
is one type of symbols, named as v-symbols (virtual symbols
in TEX syntax for disambiguation without correspondences in
math expressions), e.g., the symbol “{” in KX caption of Fig.
2, which can be predicted reliably just based on the language
model. The spatial attention often produces incorrect align-
ment when encountering these v-symbols. Furthermore, due
to the ambiguities of handwriting input, the high-level repre-
sentations extracted from trajectory information are sometimes
unreliable. Therefore, we present a temporal attention to help
the parser determine when to rely on the trajectory information
and when to only rely on the language model.

By considering that the temporal attention should establish
an adaptive gate to determine whether to attend to traces or
strengthen the language model, we first design a supplemen-
tary vector as:

(22)
(23)

gt = U(Wyg)’tfl + Usgstfl)
m; = g; ® tanh(Wg$§;)

where §; performs like a memory cell which stores both long
and short term linguistic information as described in Eq. (12).
So we reuse the memory cell to generate the supplementary
vector m; to strengthen the language model, m; € RP.
g: denotes an update gate, y;_; denotes the previous target
symbol and s;_; denotes the previous hidden state as in Eq.
(12). W4, U, and Wy are related weight matrices.
Suppose the temporal attention should indicate how much
attention the parser is placing on the language model (as
opposed to the input traces), we compute it as follows:

1 L
G=7) . cu (24)
z; = [s; Vi, tanh(W o8y + U,,my)] (25)

exp(z[1])

Pt = (i) + explall)

(26)

where ey; is defined in Eq. (17), é; is the average energy at
time ¢, vyo € R", U,, € RV*P W, is the same as in
Eq. (17), and the temporal attention [; is a scalar in the range
[0, 1] .

As shown in Fig. 4, the context vector c; is modeled as a
mixture of the spatially attended annotation vector ¢; and the
supplementary vector m,, which is calculated as:

c; = Bimy + (1 — 3¢)& (27)

This formulation encourages the parser to adaptively attend
to the annotations vs. the supplementary vector when generat-
ing the next symbol. The temporal attention scalar is updated
at each time step.

Without attention guider
N2 -2:-3N-5
2N-2-2:-3N-5
IN-2-2-3NV-5
N2 2305

With attention guider
N> 2-3V-5
N2 -2-3N-5
2N-2-2:-3NV-5
2N-2-2:-3N-5

Fig. 5. Examples of attention maps with and without attention guider.

4) Attention guider: Although the attention mechanism
achieves impressive results in machine translation, image
captioning, speech recognition and even in OHMER, how
to train it properly remains a challenging problem. While
most previous studies train the attention model with random
initialization, we believe the spatial attention should be tuned
under a guider, as it plays such an important role in aligning
the output strings with the input traces and controlling the flow
of forward information and backward gradients.

Specific to OHMER, it is possible to extract the oracle
alignment information from training data (e.g., in CROHME).
Take expression “z? — 17 as an example, a writer may write
down five strokes to represent it: the first two strokes for
“z”, the third stroke for “2”, the fourth stroke for “—” and
the last stroke for “1”. So, if we want to generate the minus
symbols “—”, the oracle spatial alignment will attend to the
fourth stroke and the spatial attention probability should be
equally distributed only on the fourth stroke.

Concretely, we first consider the case when the ground
truth spatial attention map ~; = {7 }i=1,.. 1 is provided
for the symbol wy, with v; = 1 for each i. Note that
Zle Vi = ZiL:1 ay; = 1, therefore they can be considered
as two probability distributions of spatial attention and it is
natural to employ the cross entropy function as the guider:

L
Gy = — Zi:l Vii log a;

We add this spatial attention guider as a regularization
term to the final objective function during training in Section
V-A. As for symbols without explicit spatial alignment to
input traces (e.g. “A”, “{”), we simply remove the guider.
Fig. 5 shows the comparison between spatial attention with
and without guider. For each predicted symbol, the traces
highlighted by red color are the alignments introduced by
spatial attention. It is clear that the spatial alignment learning
with a guider is more reasonable.

(28)

IV. ILLUSTRATION OF ADDITIONAL MODELS
A. Dynamic traces vs. static images

For OHMER, we observe that there is a strong comple-
mentarity between the dynamic-trace and static-image based
representations. First, dynamic traces can provide additional
rich dynamic information (i.e., the writing order information)
over the static images, which can significantly improve the
recognition accuracy. For example, handwritten math symbol
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/l 3| 14 Output: \frac{15\pi}{8}
Ground truth: - \frac {15 \pi } {8}

Fig. 6. An incorrectly recognized example due to the delayed stroke.

O\_b Output: g~ {-ab}

Ground truth: g _{ab}

1

Fig. 7. An incorrectly recognized example due to the inserted stroke.

pairs “a” and “«”, “b” and “6” are hard to distinguish in the
form of static images due to the ambiguities of handwriting
input and the similar character shape. However, the writing
orders of each pair are totally different, which is one important
discriminative feature.

Second, static-image based representation also possess its
distinct advantage compared with dynamic traces as it can
alleviate the under-parsing and over-parsing problems caused
by delayed and inserted strokes. When using handwriting as
input, the delayed and inserted strokes can be observed quite
frequently. Delayed strokes occur as an extension of a fraction
bar or a square root or transforming a symbol in another one
by adding an additional stroke (e.g., “-” transformed into “+”).
Fig. 6 shows an example of under-parsing problem, where
the first symbol of IZIEX string (namely the minus sign “—
corresponding to the last handwritten stroke) is missing after
OHMER using TAP. Normally we write the minus sign as
the first stroke. Consequently, this delayed stroke leads to the
under-parsing problem. Inserted strokes occur as splitting a
successive stroke into several broken strokes by anomalous
handwriting or extra meaningless strokes. In Fig. 7, the second
stroke, which is actually the end of symbol “g” but split into
another meaningless stroke by the writer, is an inserted stroke
which causes the over-parsing problem. Consequently, our
model over-translates the input expression and recognizes the
second stroke as a minus sign “—”". Meanwhile, as the inserted
stroke is on the up-right direction of basic symbol “g”, the
subscript structure is inaccurately recognized as the superscript
structure. However, since the static images only focus on the
character shape of handwritten symbols, both under-parsing
and over-parsing problems can be well addressed.

B. Watch, Attend and Parse (WAP)

To fully utilize the advantages of dynamic traces and static
images simultaneously, we propose to blend WAP approach in
[46] with TAP. We first draw the trajectory, remove the writing
order information and transform the dynamic traces into static
images as described in Fig. 1. Then, we employ a FCN based
watcher to map HME images to high-level features. Finally,

a GRU based parser converts these high-level features into
output I&TEX strings, symbol by symbol. More implementation
details about WAP can be found in our previous work [46].
The integration of WAP and TAP models in the recognition
stage is elaborated in Section V-B.

C. Language model (LM)

Statistical language models are crucial to many applications,
such as automatic speech recognition and statistical machine
translation. Compared with conventional methods (e.g. the
popular N-grams [53]), language models based on recurrent
neural networks achieve better performance [54]. In this study,
we propose the GRU-based language model for OHMER to
predict the next symbol in textual data given context. By
feeding the officially provided text data containing 173500
KTEX notations of mathematical expressions into a single uni-
directional GRU with cross-entropy as optimization function,
we train a new GRU-based language model, which is supposed
to be stronger than the implicit language model built in the
parser of TAP trained with 8836 HMEs. In Section V-B, the
integration with GRU-based language model in the decoding
process is introduced.

V. TRAINING AND DECODING PROCEDURE

A. Training

The training objective of our model is to maximize the
predicted symbol probability as shown in Eq. (11) and we
use cross-entropy (CE) function as the cost. The objective
function for optimization, which consists of the CE cost and
the attention guider, is shown as follows:

+Az;Gt

where w; represents the ground truth word at time step ¢, C
is the length of output string, G; is the attention guider, and
A is set to 0.1.

The tracker consists of 4 bidirectional GRU layers. Each
layer has 250 forward and 250 backward GRU units. The
pooling is applied to the top 2 GRU layers over time. Ac-
cordingly, the tracker reduces the input sequence length by
the factor of 4. The parser adopts 2 unidirectional GRU layers
and each layer has 256 forward GRU units. The embedding
dimension m and GRU decoder dimension n are set to
256. The attention dimension n’ and annotation dimension
D are set to 500. The kernel size of convolution filter Q
for computing coverage vector is set to (121 x 1) and the
number of output channels ¢ is 256. We utilize the adadelta
algorithm [55] with gradient clipping for optimization. The
adadelta hyperparameters are set as p = 0.95, ¢ = 1076, The
early-stopping of training procedure is determined by word
error rate (WER) of validation set. We use the weight noise
[56] as the regularization. The first-pass training is conducted
without weight noise. Then we anneal the best model in terms
of WER by restarting the training with weight noise.

C
O=-3% logp(wlye1,X) (29)
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B. Decoding

In the decoding stage, we aim to generate a most likely
KTEX string given the input HME traces.

¥ = arg maxlog P (y|x) (30)
y

Different from the training procedure, we do not have the
ground truth of previous predicted symbol. Consequently, a
simple left-to-right beam search algorithm [57] is employed
to implement the decoding procedure. Here, we maintain a set
of 10 partial hypotheses, beginning with the start-of-sentence
token < sos >. At each time step, each partial hypothesis in
the beam is expanded with every generated symbol and only
the hypotheses with 10 minimal scores are retained:

St = S—1 —logp(yelyi—1,%) (31

where S; represents the score at time step ¢, p(y¢|y:—1,X)
represents the probability of all generated symbols in the
dictionary. This procedure is repeated until the output symbol
becomes the end-of-sentence token < eos >.

During the beam search procedure, it is intuitive to adopt
the ensemble method [58] for improving the performance. We
first train N; TAP models on the same training set but with
different initialized parameters. Then we can average their
prediction probabilities p’ (y;|y:_1,%) to predict the current
output symbol:

1 <N
S; =81 — log <N1 lell pzl(Ytlyt—laX))

As mentioned in Section IV, we also generate the pre-
diction probability p(y:|y:_1,x) based on WAP model and
the prediction probability p(y;|y;—1,x) based on a stronger
GRU-based language model. We blend TAP with WAP and
the additional GRU-based language model in the beam search
procedure as:

(32)

Ny .
St =Si-1 —log(&x =) Pi(¥ilye-1,%)

N> o,
o X D Pilyen %) G3)

Ns
+E3 N, Zi:l ps(yelyt-1,x))

where &1, & and &3 denote the ratio of contribution, & + & +
&3 =1, N1, Ny and N3 denote the number of their respective
ensemble models, we set N; = Ny = N3 = 3.

VI. EXPERIMENTS

We design a set of experiments to validate the effective-
ness of the proposed method for OHMER by answering the
following questions:

Q1  Is the proposed guided hybrid attention effective?

Q2  How does TAP analyze the 2D structure of HME?

Q3  Can WAP and GRU-LM yield additional gains?

Q4  Does the proposed approach outperform others?
The experiments are all implemented with Theano 0.10.0 [59]
and an NVIDIA Tesla M40 12G GPU. And our source code
is publicly available '.

Ihttps://github.com/JianshuZhang/TAP
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A. Dataset and metric

The experiments are conducted on CROHME competition
dataset [60], [61], [62], which is currently the most widely
used public dataset for OHMER. The CROHME 2014 dataset
has a training set of 8836 HMEs (86K symbols) and a
test set of 986 HMEs (6K symbols). There are 101 math
symbol classes. None of the handwritten expressions or XX
notations in the test set appears in the training set. To be
fairly comparable, we use the CROHME 2013 test set as a
validation set for estimating models during the training, just
like other participants of CROHME 2014 competition. As for
the CROHME 2016 competition, the training set is the same
as CROHME 2014. But the test set is newly collected and
labeled by the organizers at the University of Nantes. There
are totally 1147 expressions and the symbol classes remain
unchanged.

The participating systems in all of the CROHME competi-
tions are ranked by expression recognition rates (ExpRate),
i.e., the percentage of predicted mathematical expressions
matching the ground truth, which is simple to understand and
provides a useful global performance metric. The CROHME
competition compared the competing systems not only by
ExpRate but also those with at most one to three symbol-level
errors. In our experiments, we first transfer the generated ISTEX
strings into MathML representation and then compute these
metrics by using the official tool provided by the organizer
of CROHME. However, it seems inappropriate to evaluate an
expression recognition system only at the expression level.
Here, we also evaluate our system at the symbol-level by using
WER [63] metric, which reveals errors such as substitutions,
deletions and insertions.

B. Evaluation of guided hybrid attention (Q1)

In this section, we show the effectiveness of each component
in guided hybrid attention through several designed systems
in Table L.

TABLE I
COMPARISON AMONG SYSTEMS FROM P1 TO P8. ATTRIBUTES FOR
COMPARISON INCLUDE: 1) EMPLOYING THE CLASSIC SPATIAL ATTENTION
MODEL; 2) APPENDING A COVERAGE VECTOR INTO THE CLASSIC SPATIAL
ATTENTION MODEL; 3) EMPLOYING THE TEMPORAL ATTENTION MODEL;
4) EMPLOYING THE ATTENTION GUIDER; 5) USING ENSEMBLE METHOD
AS DESCRIBED IN EQ. (32).

System  Spatial  Coverage  Guider Temporal Ensemble
P1 v - - - -
P2 v v - - -
P3 v v v - -
P4 v v v v -
Ps v - - - v
P6 v v - - v
P7 v v v - v
P8 v v v v v

The classic spatial attention model is essential for each
system. Meanwhile, the temporal attention only works well
when the attention guider is also implemented, which might
be explained as that the small training set is not adequate for
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the hybrid attention to train the model parameters properly
with random initialization.

TABLE 11

COMPARISON OF RECOGNITION PERFORMANCE (IN %) AND TIME
EFFICIENCY (IN SECOND) AMONG DIFFERENT SYSTEMS IN TABLE I ON
CROHME 2014. TRAIN TIME DENOTES THE TIME COST FOR ONLY ONE

EPOCH, EPOCHS DENOTES THE NUMBER OF NEEDED EPOCHES FOR
TRAINING, TEST SPEED DENOTES THE TIME COST FOR EVALUATION ON

THE WHOLE CROHME 2014 TEST SET (986 HMES). TRAIN TIME OF
ENSEMBLE SYSTEMS P5-P8 1S NOT SHOWN AS THEIR BASE MODELS HAVE
BEEN ALREADY TRAINED.

System  WER  ExpRate  Train Time (Epochs)  Test Speed
P1 19.33 42.49 476 (157) 70
P2 16.56 46.86 710 (166) 118
P3 14.17 49.29 775 (149) 116
P4 13.39 50.41 780 (185) 115
P5 14.86 48.38 - 214
P6 12.64 52.43 - 380
p7 11.91 54.36 - 378
P8 11.53 55.37 - 371

In Table II, we show the recognition performance and time
efficiency of systems P1-P8 on CROHME 2014 test set. First-
ly, by the comparison of ExpRate we show the improvement
via coverage vector, attention guider and temporal attention by
appending each of them to their previous system step by step.
More specifically, the ExpRate is increased from 42.49% to
46.86% after the coverage vector is appended into the classic
spatial attention model (P1 vs. P2). As already illustrated
in Fig. 5, the attention guider drives the attention alignment
more reasonable and we prove that more reasonable attention
can lead to better recognition performance as the ExpRate is
increased from 46.86% to 49.29% after the attention guider
is equipped (P2 vs. P3). By comparing P3 with P4, the
proposed temporal attention could also improve the ExpRate
from 49.29% to 50.41%. To better interpret its superiority,
we show an example of OHMER improved by temporal
attention in Fig. 8. Beta represents the temporal attention gate
in Eq. (27), the higher the parser should not pay attention
to input traces. P4 successfully learns to less attend to the
input traces when generating v-symbols. Furthermore, when
encountering ambiguous symbols such as the symbol in red
rectangle, P4 also assigns a relatively high temporal attention
probability. By more attending to the language model and less
attending to input traces, P4 successfully recognize it as “f”
rather than “8”, since the case of the symbol “e” followed by
the symbol “8” unlikely happens in math language.

Secondly, we show the comparison of computational cost
among P1-P4 by investigating their Train Time and Test Speed.
As we can see in Table II, system P1 needs 476 seconds for
one epoch. The overall training procedure takes 21 hours for
P1 to converge as it needs nearly 157 epochs. During testing,
we evaluate 986 HMEs of CROHME 2014 test set one by
one and P1 costs 70 seconds to finish the testing procedure.
Comparing P1 with P2, the coverage based attention model
slows down the training procedure and testing procedure even
if it brings a great improvement on ExpRate. After appending
the attention guider (P2 vs. P3), our model becomes easier
to train properly (need less epochs). Since it performs as

[\mu_{eff}=\mu_{0}\mu_{r} |

Mo pie

\ beta

0.966

Fig. 8. An illustration of using temporal attention, symbol in the red rectangle
is incorrectly recognized as “8” without temporal attention and correctly
recognized as “f” with temporal attention.

a regularization term during training, it does not affect the
Test Speed but it slows down the backward propagation of
gradient during training. The computational cost of temporal
attention can be ignored (P3 vs. P4) but it takes more epochs
to converge. The Test Speed of P4 is even slightly faster than
P3 as the recognition performance of P4 is better, encountering
less insertion error during decoding.

Finally, we compare the ensemble systems P5-P8 with
single systems P1-P4 respectively. It is obvious to see that
combining 3 models in an ensemble way (Eq. (32)) can
yield more than 5% absolute gain but also brings 3 times
computational cost for testing.

C. Attention visualization (Q2)

In this section, we show through attention visualization how
the proposed model is able to analyze the two-dimensional
structure of HME. The proposed TAP approach to perform
symbol segmentation implicitly is also explained. We draw the
trajectory of input HME in a 2D image to visualize attention.
We use the red color to describe the attention probabilities,
namely the higher attention probabilities with the lighter color
and the lower attention probabilities with the darker color.

To analyze the 2D structure of HME, it is essential to
identify the spatial relationships between math symbols, which
are statistically determined and might be horizontal, vertical,
subscript, superscript or inside. As shown in Fig. 9, the
horizontal and vertical relationships are easy to learn by
focusing on the middle operator. To handle the superscripts,
the parser precisely pays attention to the end of base symbols
and the start of superscript symbols, which is reasonable
because traces in the start of superscript symbols are on the
upper-right of traces in the end of base symbols, describing
the upper-right direction. Similarly, for subscripts, the ending
traces of base symbols and the starting traces of subscript
symbols can also describe a bottom-right direction. As for
the inside relationships, the decoder attends to the bounding
symbols.

More specifically, in Fig. 10, we take the expression
e” + 18z + 12 as a correctly recognized example. We show
that how our model learns to translate this handwritten math-
ematical expression from a sequence of trajectory points into
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Fig. 9. Learning of five spatial relationships (horizontal, vertical, subscript,
superscript and inside) through attention visualization.

TP T] ou N M T T e
PRI i K P TV D
e 18w AL ] [T 18 ¢ AL[002] X
RT Y] o R P TSP rre B
TR A cca R P T T e
T A xR P T S e

‘C% ¢ 18 % ¢ AL [0392 | <eos>

Fig. 10. Hybrid attention visualization for an example of an HME with the
IBTEX ground truth “e A { x } + 1 8 x + 1 27, spatial attention is shown
through red color in images and temporal attention is shown in the attached
boxes, on the right of boxes are predicted symbols.

a ISIEX sequence “e A { x } + 1 8 x + 1 2 ” step by
step. When encountering basic math symbols like “e”, “x”,
“47, 17, “2” and “8”, the attention model well generates
the alignment strongly corresponding to the human intuition.
When encountering a spatial relationship in e”, the attention
model correctly distinguishes the upper-right direction and
then produces the symbol “A”. Immediately after detecting
the superscript spatial relationship, the decoder successfully
generates a pair of braces “{}”, which are used to compose
the exponent grammar in I£IEX and the temporal attention
coefficients increase significantly when encountering these v-

symbols (“{}”).

D. Evaluation of model combination (Q3)

In Table III, we show the improvements and additional
computational cost via a WAP model and an additional GRU-
based language model by appending each of them to the
proposed TAP model step by step. Here, Time denotes the total
seconds for each system to finish the evaluation of CROHME
2014 (986 HMEs) and CROHME 2016 test set (1147 HME:s).

S1 denotes a pure WAP model that takes only static ex-
pression images as input. S2 still denotes the WAP model but
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Fig. 11. (a) The curve of ExpRate with respect to &1 (the contribution of
TAP) in the ensemble of TAP and WAP (with {2 = 1 —&1,&3 = 0); (b) The
curve of ExpRate with respect to (1 + &2) in the ensemble of (TAP+WAP)
and GRU-LM (with &1/&2 = 3/2,€3 = 1 — & — £€2). We draw the two
curves on the validation set.

the input contains static expression images and additional 8-
directional pattern images. The 8-directional pattern images
are the intermediate products of the 8-directional raw fea-
tures [64] which contain dynamic trajectory information. The
dynamic trajectory information embedded in 8-directional pat-
tern images helps WAP achieve a 2% gain (S1 vs. S2) and the
computational cost can be ignored. S3 denotes the proposed
TAP model which is same one as P8 in Table II and its
performance shows the great superiority of dynamic trajectory
information for OHMER compared with static images. Then,
we can observe that the ExpRate increases about 5% compared
to TAP after the combination of TAP and WAP (S4), which
demonstrates the strong complementarity between dynamic
traces and static images. The optimal weighting coefficients
&1 and &, for TAP and WAP can be determined by Fig. 11(a)
on the validation set. Note that S2 also utilizes the comple-
mentarity between traces and images, but the gap between S2
and S4 indicates that RNN seems a better way for processing
dynamic trajectory information even if it takes nearly twice
time than CNN for evaluation. Furthermore, after we blend
the GRU-based language model into the ensemble of TAP and
WAP (S5), the ExpRate increases from 60.34% to 61.16% on
CROHME 2014, and from 55.27% to 57.02% on CROHME
2016. As the language model is only a single unidirectional
GRU layer, it does not bring much time consumption. The
optimal weighting coefficients can be determined by Fig.
11(b), namely & = 0.48,&, = 0.32,&3 = 0.2.

TABLE III
COMPARISON OF RECOGNITION PERFORMANCE (IN %) AND TIME
EFFICIENCY (IN SECOND) AMONG FIVE DIFFERENT SYSTEMS ON
CROHME 2014 AND CROHME 2016. S1 DENOTES SYSTEM WAP, S2
DENOTES SYSTEM WAP USING 8-DIRECTIONAL TRAJECTORY FEATURES,
S3 DENOTES SYSTEM TAP, S4 DENOTES SYSTEM TAP COMBINING WAP,
S5 DENOTES SYSTEM TAP COMBINING WAP AND GRU-BASED
LANGUAGE MODEL.

CROHME 2014 CROHME 2016

System
WER  ExpRate Time WER ExpRate Time
S1 19.40 44.42 198 19.73 42.02 233
S2 17.73 46.55 196 16.88 44.55 230
S3 11.53 55.37 377 12.62 50.22 455
S4 9.95 60.34 524 10.59 55.27 712
S5 9.73 61.16 564 10.55 57.02 745
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E. Comparison with state-of-the-arts (Q4)

TABLE IV
COMPARISON OF EXPRATE (IN %) ON CROHME 2014, WE ERASE
SYSTEM III BECAUSE IT USED EXTRA TRAINING DATA.

System  Correct(%) < 1(%) < 2(%) < 3(%)
1 37.22 44.22 47.26 50.20
1T 15.01 22.31 26.57 27.69
v 18.97 28.19 32.35 33.37
v 18.97 26.37 30.83 32.96
VI 25.66 33.16 35.90 37.32
VII 26.06 33.87 38.54 39.96
Ours 61.16 75.46 77.69 78.19

First, we make a comparison of our best system and other
submitted systems on both CROHME 2014, as shown in Table
IV. Details of these systems can refer to [61]. To make a fair
comparison among different systems, we only list the results
using the CROHME training set. Our model represents the
ensemble of three TAP models, three WAP models and three
GRU-based language models. The textual data for training
the language model is also provided by CROHME 2014.
There was a large gap between the top-1 system of CROHME
2014 competition and our proposed system. Although another
system named ‘“MyScript” of CROHME 2014 competition
achieved a slightly higher result (with an ExpRate of 62.68%),
that system used a large private dataset and the technical
details were unrevealed.

TABLE V
COMPARISON OF EXPRATE (IN %) ON CROHME 2016, WE ERASE TEAM
MYSCRIPT BECAUSE IT USED EXTRA TRAINING DATA.

Correct(%) < 1(%) <2%) < 3(%)
Wiris 49.61 60.42 64.69 -
Tokyo 43.94 50.91 53.70 -
Sao Paolo 33.39 43.50 49.17 -
Nantes 13.34 21.02 28.33 -
Ours 57.02 72.28 75.59 76.19

To complement a more recent algorithm comparison and
test the generalization capability of our proposed approach, we
also validate our best system on CROHME 2016 test set as
shown in Table V, with an ExpRate of 57.02% which was quite
a promising result compared with other participating systems.
The team Wiris was awarded the first place on CROHME 2016
competition using only the CROHME training data with an
ExpRate of 49.61%, and it used a Wikipedia formula corpus,
consisting of more than 592000 formulae, to train a strong
language model. The details of other systems refer to [62].

Note that, CROHME participants evaluate their predicted
HME:s based on LG representations which identify the labels
of each stroke. However, in our experiments we evaluate
predicted HMEs based on MathML representations. Compared
with evaluation based on LG representations, the MathML
evaluation is less strict as it does not check the stroke seg-
mentation. We adopt MathML representations rather than LG
representations because our system only aims to directly gen-
erate the predicted ISTEX string, it does not provide accurate
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Output:300000003

Groundtruth:3.00000003

Output: \frac{T_{1}~{\frac{1}{2}}y_{2}~
{2y{T_{2}~r{2}} _{1}v_{1}~{2}

Groundtruth: \frac {T _{H }~{\frac{f}{2}}V_
{2} H{T_{H}r{\rac{f}{2}}V_{1}}=\frac{T
_{cir{\rac{f}{2}}V_{3}H{T_{C}"{\frac
{fi{2}}v_{4}}

Fig. 12. Two examples of HME which are incorrectly recognized, besides the
HME images are their predicted output and ground truth, in the ground truth
green texts are predicted correctly while red texts are predicted incorrectly.
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Fig. 13. Number of strokes vs. ExpRate (in %) on CROHME 2014.

stroke segmentation results. Although such issue might not
change much the recognition performance, we will improve
our system to provide stroke-level evaluation by refining the
alignment produced from attention model in the future so that
our performance are completely comparable with CROHME
participants.

F. Error analysis

Although WAP and GRU-LM can help alleviate some over-
parsing and under-parsing problems coming from TAP, the
combination of TAP, WAP and GRU-LM still reveals some
problems need to be addressed. Fig. 12 shows two examples
of HME that are incorrectly recognized. The blue one is an
under-parsing problem as the decimal point “” is missed
in the predicted ISIEX string. As we can see the decimal
point is very close to math symbol “3” and its scale is
much smaller than its adjacent symbols. After some pooling
operations (subsampling in TAP or max-pooling in WAP) that
will drop the fine-grained details of extracted features, the
visual information of the decimal point is gone, leading to an
under-parsing problem. The purple example in Fig. 12 shows
a disastrous error that most parts of HME are missing in the
predicted ISTEX string, even if the simple horizontal structure
(represented by math symbol “=") has not been parsed. The
diaster happens as the parser performs more like a language
model without considering the HME as a composition of
several sub-expressions, therefore previous predicted errors are
accumulated severely and inherited by next decoding step.

Another interesting analysis concerns the distribution of
ExpRate with respect to the number of strokes. Fig. 13
illustrates this behaviour. In general, when the number of
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strokes is no more than 15, HMEs are inaccurately recognized
due to failure of symbol recognition, mostly resulting from
handwriting ambiguities and similarities among math symbols.
We expect the model to perform poorly on HMEs composed
of large number of strokes due to 1) the number of training
samples composed of many strokes is quite limited; 2) HMEs
that consist of many strokes are usually related with long ISIEX
strings and HMEs with longer IfIEX strings are more likely
to bring about the mentioned disastrous errors.

VII. CONCLUSION

In this study we introduce an end-to-end framework with
guided hybrid attention based model to recognize online hand-
written mathematical expressions. The proposed model is data-
driven and alleviates the problem of explicit segmentation.
We demonstrate through visualization and experiment results
that the novel guide hybrid attention performs better than the
conventional attention model. We also verify that there is a
strong complementarity between static-image based represen-
tation and dynamic-trace based representation for OHMER.
Combining TAP with WAP and an additional language model,
we achieve promising recognition results on both CROHME
2014 and CROHME 2016 competition.
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