
A Model Ensemble Approach for Sound Event Localization and Detection

Qing Wang1, Huaxin Wu2, Zijun Jing2, Feng Ma2, Yi Fang2,
Yuxuan Wang1, Tairan Chen1, Jia Pan2, Jun Du∗1, Chin-Hui Lee3

1 University of Science and Technology of China, Hefei, China
2 iFLYTEK, Hefei, China

3 Georgia Institute of Technology, Atlanta, USA
{qingwang2,Bjundu}@ustc.edu.cn, {yxwang1,vea,panjia}@mail.ustc.edu.cn

{hxwu2,zjjing2,fengma,yifang2}@iflytek.com, {chl}@ece.gatech.edu

Abstract
In this paper, we propose a model ensemble approach for sound
event localization and detection (SELD). We adopt several
deep neural network (DNN) architectures to perform sound
event detection (SED) and direction-of-arrival (DOA) estima-
tion simultaneously. Generally, the DNN architecture consists
of three modules stacked together, i.e, a High-level Feature
Representation module, a Temporal Context Representation
module, and a Fully-connected module in the end. The High-
level Feature Representation module usually contains a series
of convolutional neural network (CNN) layers to extract useful
local features. The Temporal Context Representation module
aims to model longer temporal context dependency in the
extracted features. There are two parallel branches in the
Fully-connected module with one for SED estimation and
the other for DOA estimation. With different combinations
of implementation in the High-level Feature Representation
module and Temporal Context Representation module, several
network architectures are used for the SELD task. At last, a
more robust prediction of SED and DOA is obtained by model
ensemble and post-processing. Tested on the development and
evaluation datasets, the proposed approach achieves promising
results and ranks the first place in DCASE 2020 task3 challenge.
Index Terms: sound event localization and detection, deep
neural network, model ensemble

1. Introduction
Sound event localization and detection (SELD) aims to recog-
nize individual sound events, identify their temporal activities,
and estimate their spatial location when active. An effective
SELD approach is able to describe the temporal and spatial
characterization of acoustic scenes that can be applied in many
areas. Environmental noise types like “footsteps” or “keyboard”
can be recognized, tracked, and then suppressed to improve
speech quality for video conferences or for robust automatic
speech recognition (ASR) [1, 2]. In smart homes and smart
cities, the SELD approach can be used for audio surveillance
[3].

The SELD task consists of two subtasks, which are sound
event detection (SED) and direction-of-arrival (DOA) esti-
mation. Traditional statistical modelling methods for SED
include Gaussian mixture model (GMM) - hidden Markov
model (HMM) [4], non-negative matrix factorization (NMF)
[5], and support vector machines (SVM) [6]. In recent years,
neural network architectures have been successfully employed
for SED task, including feed-forward neural network (FNN)
[7], convolutional neural network (CNN) [8, 9], and recurrent
neural network (RNN) [10, 11]. Capsule neural network

(CapsNet) were adopted in [12, 13] for Polyphonic SED task
to separate individual sound events from their mixture. A
recently published model which combined CNN, RNN, and
FNN together, referred as the convolutional recurrent neural
network (CRNN) [14, 15], achieved state-of-the-art results for
SED task.

As for DOA estimation, approaches can be categorized into
two kinds: parametric-based and deep neural network (DNN)-
based. Parametric-based approaches include multiple signal
classification (MUSIC) [16], estimation of signal parameters
via rotational invariance technique (ESPRIT) [17], steered-
response-power phase transform (SRP-PATH) [18], and so on.
Because of the high regression capability of DNNs, they have
been employed to estimate sound event direction [19, 20, 21].
In [22], a DOA estimation method was proposed by parametric-
based and DNN-based approach.

The SELD task, which was held for the first time in DCASE
2019 challenge, is focused on a combined task of SED and DOA
estimation, instead of treating them as two separate tasks. To
solve SELD problem, the author used CNN to jointly estimate
both spatial location and audio content type [23]. Adavanne et
al. adopted CRNN model for SELD of multiple overlapping
sound events in three-dimensional (3-D) space [24]. In [25],
the authors proposed a two-stage strategy for SELD task and
achieved great improvements. The top solution in DCASE 2019
Challenge used four CRNN single output models to predict
the number of active sources, DOA of single source, DOA of
two sources, and the types of sound events, respectively [26].
However, this approach is highly dependent on the accuracy for
predicting the number of active sources which is not reliable in
noisy acoustic scenes.

In this paper, we present a model ensemble approach for
the SELD task in DCASE 2020 challenge [27]. The main
difference from DCASE 2019 challenge is that joint metrics
[28], namely location-dependent detection and class-dependent
localization, are adopted for SED and DOA evaluation. Since
the performance of SED and DOA estimation affects each other,
we think it is appropriate to jointly perform SED and DOA
estimation. Data augmentation methods are used to expand the
official dataset, which will be discussed in detail in another
paper. The SELD models we adopt consist of a High-level
Feature Representation module, a Temporal Context Represen-
tation module, and a Fully-connected module. Residual neural
network (ResNet) [29] and Xception model [30] achieve great
performance in image recognition, and are used to learn useful
local features. Bidirectional gated recurrent unit (GRU) and
factorized time delay neural network (TDNN-F) [31] used in
ASR are adopted to model longer temporal context dependency
in the audio signal. Two parallel branches of fully-connected
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Figure 1: An overview of the DNN architecture for SELD, where
N denotes sound event classes. M is equal to N if sigmoid
activation is used in the output layer of SED branch, whereas
M is equal to N + 1 if softmax activation function is used.

layers are employed for SED and DOA respectively. Model
ensemble and post-processing strategies are finally used to
generate a more accurate SED and DOA estimation.

The rest of the paper is organized as follows. In Section 2,
the proposed approach is described in detail, including feature
extraction, network architecture, model ensemble and post-
processing. Evaluation results on development dataset is shown
in Section 3. Conclusions are summarized in Section 4.

2. Proposed Approach
An overview of the DNN architecture for SELD task is shown
in Figure 1. The input is multichannel audio signal. Before fed
into the DNN, feature extraction is performed to obtain acoustic
features. Similar to the official baseline SELDnet [24], the
DNN takes a sequence of features which will be described in
detail in the following subsection 2.1 and predicts active sound
event classes along with their respective spatial locations. The
DNN architecture consists of three modules stacked together,
i.e, a High-level Feature Representation module marked in
grey, a Temporal Context Representation module marked in
green, and a Fully-connected module marked in yellow in the
end. We employ different models for the High-level Feature
Representation and Temporal Context Representation modules,
which will be discussed in detail in the following subsection 2.2.
The Fully-connected module contains two parallel branches for
SED which is obtained as a multiclass-multilabel classification
task and DOA estimation which is performed as a multioutput
regression task. The SED output is thresholded to get the active
sound events, whereas the corresponding DOA estimations are
referred to as their spatial locations.

2.1. Feature extraction

A new dataset TAU-NIGENS Spatial Sound Events 2020 [32]
is released for the SELD task in DCASE 2020 challenge.

Two different 4-channel spatial sound formats, namely first-
order Ambisonics (FOA) and tetrahedral microphone array
(MIC), are opted from the synthesized sound recordings. We
extract two features for each of the two datasets, FOA and
MIC. The multichannel audio signal is sampled at 24 kHz.
Using a short-time Fourier transform (STFT) with a hamming
window of length 1024 samples and a 50% overlap, linear
spectrogram for each channel is extracted. Then 64 log mel-
band feature is extracted for both datasets. The second feature is
format-specific. For FOA dataset acoustic intensity vector (IV)
computed at each of the 64 mel-bands is extracted and for MIC
dataset generalized cross-correlation with phase transformation
(GCC-PATH) computed in each of the 64 mel-bands is extracted
similar to [25]. Finally, there are 4 channels of log mel features
and 3 channels of IV features, hence up to 7 feature maps for
FOA signals. For MIC signals, there are 4 channels of log mel
features and 6 channels of GCC-PATH features, hence up to 10
feature maps. We use both FOA and MIC datasets, 17 input
feature maps are used to train the DNN architecture.

2.2. Network architecture

The output of feature extraction is fed into the DNN ar-
chitecture as shown in Figure 1. Usually the High-level
Feature Representation module consists of a series of CNN
blocks, each CNN block usually having a 2D convolution layer
followed by a batch normalization process, a rectified linear
unit (ReLU), and a max-pooling operation. As ResNet [29] and
Xception [30] show great advantages in image processing, we
adopt the modified versions of them in the High-level Feature
Representation module to learn local shift-invariant features
in the SELD task. The detailed parameters of ResNet and
Xception are shown in Figure 2(a) and Figure 2(b), respectively.

The output of the High-level Feature Representation mod-
ule is then fed into the Temporal Context Representation mod-
ule in order to learn the temporal structures within sound events.
We use two bidirectional RNN layers with each containing
128 GRU cells to exploit the full context information of an
input audio. Besides RNN, TDNN-F, which is a factored
form of TDNN, is also an efficient architecture for temporal
context modelling and performs well in ASR [31]. The TDNN-
F architecture used in SELD task consists of several CNN
layers with dilated convolution, which allows it to learn longer
receptive field in temporal context. The detailed parameters of
TDNN-F is shown in Figure 3.

Conv 64, 3x3, dilation=3x1

Conv 64, 3x3,
dilation=1x1

Conv 64, 3x3,
dilation=2x1

Conv 64, 3x3,
dilation=4x1

Conv 64, 3x3,
dilation=8x1

Concatenate, ReLU, BN

x 0.66

Repeat 11 times

Figure 3: TDNN-F architecture used in the Temporal Context
Representation module.

The Temporal Context Representation module is followed
by two parallel branches of fully-connected (FC) layers, where
the first FC layer in both branches contains 512 neurons with
linear activation. We adopt two ways to perform SED. One
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Figure 2: a) ResNet and b) Xception architectures used in the High-level Feature Representation module.

way is similar to the official baseline where the last FC layer
in the SED branch contains N neurons with sigmoid activation,
and N is equal to the sound event classes. Another way is to
predict N + 1 classes in the last FC layer with an additional
silence class, and use softmax activation. Since the number
of overlapping sound events is up to two, if overlapping sound
events are active, the probabilities of corresponding labels of
SED branch are both set to 0.5. For DOA branch, the last FC
layer contains 3N neurons with tanh activation for multioutput
regression, corresponding to the Cartesian coordinates (x, y, z)
of all sound event classes as shown in Figure 1.

2.3. Loss function

As for the loss function, we solve the SED task as a multilabel
classification with a binary cross-entropy (BCE) loss. Suggest-
ed by the second-best team [25] in DCASE 2019 challenge, a
masked mean square error (MSE) loss is adopted for the DOA
estimation performed as a multioutput regression. The masked
MSE loss is computed based on the ground truth activations of
each sound event class, hence not contributing to the training
when the sound event is not active. The SED classification loss
and DOA regression loss are combined for joint optimization
during training with a weight [1, 10].

2.4. Model ensemble

It is well known that fusing the outputs of several models trained
with different model architectures usually help to improve
system performance over individual models. Here we perform
model ensemble by using the weighted mean of the outputs
predicted by different DNN architectures as the final result.
Both the outputs of SED and DOA branches are averaged with
weights. Different DNN models are assigned with different
weights.

2.5. Post-processing

Instead of using a global threshold for all sound events, we
adopt a dynamic threshold for the ensemble result. An optimal
threshold is chosen for each sound event on the validation set.

3. Development Results
3.1. Experimental setup

The proposed approach is evaluated on TAU-NIGENS Spatial
Sound Events 2020 [32] which contains 600 60-second audio
recordings with a 24 kHz sampling rate. These recordings are
split into six folds with 4 folds for training, 1 fold for validation
and 1 fold for testing. We use several data augmentation
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methods to expand the official dataset which will be discussed
in detail in another paper later. Totally, there are 14 sound
classes of the spatialized events: Alarm, Crying baby, Crash,
Barking dog, Running engine, Female scream, Female speech,
Burning fire, Footsteps, Knocking on door, Male scream, Male
speech, Ringing phone, Piano.

Performance of SELD task is evaluated using a newly pro-
posed joint detection and localization metrics [28]. Two metrics
are used for both SED and DOA estimation. For location-
dependent detection, error rate (ER20o ) and F-score (F20o ) are
computed, considering that a true positive is predicted only
when the spatial error for the detected event is within the given
threshold of 20o from the reference. The two metrics for class-
dependent localization are localization error (LECD) expressing
the average angular distance between predictions and references
of the same class and localization recall (LRCD) expressing the
true positive rate of how many of these localization estimates
are detected in a class out of the total class instances. All four
metrics are computed based on one-second segments.

The audio clips with a length of 60 seconds are used
for training. All DNN architectures are trained with Adam
optimizer. The learning rate is set to 0.001 and is decreased
by 50% if the SELD score does not improve in 80 consecutive
epochs. For single DNN models, if sigmoid activation is used
in the last FC layer of SED branch, we adopt a threshold of 0.5.
Otherwise if softmax activation is used, we adopt a threshold
of 0.33 to make sure overlapping sound events can be detected.
For the ensemble model, we adopt a dynamic threshold.

3.2. Experimental results

By employing different architectures in the High-level Feature
Representation module and Temporal Context Representation
module, we trained several DNN models for the SELD task.
Specifically, ResNet and Xception were used as High-level
Feature Representation modules, whereas bidirectional GRU
and TDNN-F were used as Temporal Context Representation
modules, which resulted in four models with combinations
of these two modules, namely ResNet-GRU, ResNet-TDNNF,
Xception-GRU, and Xcetption-TDNNF when using sigmoid
activation in the last FC layer of SED branch. For a comparison
between activations for performing SED, we also trained a
DNN model using softmax activation in the last FC layer
of SED branch, denoted as ResNet-GRU-softmax. Table 1
shows the experimental results of the proposed approach for the
development dataset.

Table 1: Experimental results of the proposed approach for
development dataset.

ER20o F20o LECD LRCD

Baseline-FOA 0.72 37.4 22.8o 60.7
Baseline-MIC 0.78 31.4 27.3o 59.0
ResNet-GRU 0.29 76.4 9.4o 82.8

ResNet-GRU-Softmax 0.29 76.2 9.1o 81.6
ResNet-TDNNF 0.31 76.1 8.7o 81.3
Xception-GRU 0.33 73.5 10.0o 80.8

Xception-TDNNF 0.36 71.1 10.0o 78.8
Model Ensemble 0.26 79.9 6.8o 84.1
+ Post-processing 0.26 80.9 6.8o 85.1

The first two rows in Table 1 present the official baseline
systems trained with FOA dataset and MIC dataset respectively.
As shown in the table, all of the proposed individual DNN

models outperform the baseline systems by a large margin for
each metric. Among all the DNN models, using ResNet in
the High-level Feature Representation module achieved better
results than using Xception. By comparing the third and fourth
row in the table, we found adopting softmax activation in the
last FC layer of SED branch got similar results with using
sigmoid activation. Although Xception architecture performed
a little worse than ResNet, ensemble of the models was still
effective, which demonstrated the complementarity between
different DNN structures. With post-processing in the end,
F20o and LRCD could still be improved by 1 point. Compared
to the Baseline-FOA system, the proposed approach showed
63.9% relative improvement on ER20o metric, 116.3% relative
improvement on F20o metric, 80.2% relative improvement on
LECD metric, and 38.6% relative improvement on LRCD metric
respectively.

Figure 4 shows an example of SED output of the proposed
approach from test split, where the 14 sound event classes
are listed in subsection 3.1. When using ResNet-GRU alone,
one single sound event is recognized as two sound events
as shown in the red dashed rectangular box in Figure 4(c).
With the proposed approach, namely model ensemble and post-
processing, the detection error has been corrected as shown in
the red rectangular box in Figure 4(d), which demonstrates the
effectiveness of the proposed approach.

(a) Spectrogram (b) SED Reference

(c) SED Output of ResNet-GRU (d) SED Output of Proposed Approach

Figure 4: Visualization of SED output of the proposed approach.

4. Conclusions
In this paper, we proposed a model ensemble approach for
SELD task which achieved the first place in DCASE 2020
challenge. We adopted one single model to solve SED and DOA
estimation simultaneously with multitask learning. To exploit
the complementarity between different model architectures,
several DNN architectures were proposed, namely ResNet-
GRU, ResNet-TDNNF, Xception-GRU, and Xception-TDNNF.
Model ensemble and post-processing strategies were used to
obtain more accurate SELD estimation. The experimental
results evaluated on the development dataset showed that the
proposed approach outperformed the baseline systems by a
significant margin.
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