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a b s t r a c t 

Recently, thanks to the successful application of the attention-based encoder-decoder framework, hand- 

written mathematical expression recognition (HMER) has achieved significant improvement. However, 

HMER is still a challenging task in the handwriting recognition area, which suffers from the ambigu- 

ity of handwritten symbols, the two-dimensional structure of mathematical expressions, and the lack 

of labeled data. In this paper, we attempt to improve the recognition performance and generalization 

ability of the existing state-of-the-art method from two perspectives: data augmentation and model de- 

sign. We first propose a tree-based multi-level (including symbol level, sub-expression level, and image 

level) data augmentation strategy, which can generate many synthetic images. Then, we present a novel 

encoder-decoder hybrid model via tree-based mutual learning to fully utilize the complementarity be- 

tween tree decoder and string decoder. Benefitting from our data augmentation strategy, we achieve 

58.47%/57.82%/62.67% and 74.45% expression recognition accuracy respectively on the CROHME14/16/19 

competition datasets and the OffRaSHME20 competition dataset. Moreover, tree-based data augmentation 

is a key technology to our champion system for the OffRaSHME20 competition. Our tree-based mutual 

learning method further improves the recognition accuracy to 61.63%/59.81%/64.38% and 75.68% on these 

datasets. Further quantitative and qualitative analyses also demonstrate the effectiveness and robustness 

of our proposed methods. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Handwritten mathematical expressions (HMEs) are widely used 

n education, science, and engineering disciplines. Unlike English 

r other languages which are flat linear strings, mathematical 

xpression (ME) is a more complex two-dimensional language 

ith an internal tree structure. Therefore, handwritten mathemat- 

cal expression recognition (HMER) not only needs to recognize 

athematical semantic symbols but also needs to analyze spatial 

tructure relationships. Besides, HMEs contain ambiguous symbols, 

omplicated spatial structures, and handwritten styles, which fur- 

her increases the challenge of recognizing mathematical formulas. 

Recently, inspired by the success of sequence-to-sequence 

earning in many applications such as speech recognition, machine 

ranslation, and image caption [1–3] , the attention-based encoder- 

ecoder framework has been extensively adopted for HMER both 

n offline and online cases. Given an ME image or a tracepoint se- 
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uence, these approaches [4,5] are to generate the target markup 

epresentation in an end-to-end manner directly. Most of the 

orks [5–7] are aimed at generating the string markup of a math- 

matical formula, i.e., LaTeX string, which is convenient to be 

mplemented under the encoder-decoder framework. Compared 

ith traditional methods [8–10] , the encoder-decoder based LaTeX 

tring decoders have substantially improved the expression recog- 

ition performance as they are end-to-end trainable and can be 

ree of symbol segmentation. However, the paradigm based on the 

tring decoder easily makes the model ignore the learning of the 

nternal tree structure of mathematical expressions, which affects 

he generalization ability. To fully learn the tree structure infor- 

ation of mathematical expressions, Zhang et al. [11,12] proposed 

ree-structured decoders that can generate sub-tree structures step 

y step. The tree decoder improves the overall generalization abil- 

ty of the recognition model and achieves state-of-the-art results 

ince it can understand the sub-structures of an ME image rather 

han remember an entire LaTeX string. 

Although string-markup based methods and tree-markup based 

ethods have greatly improved the performance of HMER, they 

till suffer from recognition challenges caused by ambiguous sym- 

https://doi.org/10.1016/j.patcog.2022.108910
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108910&domain=pdf
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Fig. 1. The overall framework of our tree-based data augmentation and mutual learning method. 
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ols, complicated spatial structures, and handwritten styles. These 

roblems can usually be alleviated to some extent by increasing 

he size of the training data. However, manual labeling costs are 

ery expensive due to the complexity of mathematical expressions. 

n this study, we address the issues mentioned above in terms of 

oth data augmentation and model design. The overall framework 

f our method is presented in Fig. 1 . 

To alleviate the problems of insufficient training data, we pro- 

ose a tree-based multi-level data augmentation strategy that in- 

ludes symbol level, sub-expression level, and image level gener- 

tion. In general, image data augmentation usually creates artifi- 

ial images through basic image manipulations, such as geomet- 

ic transformations, color transformations, and noise injection, etc. 

nfortunately, most of them are not suitable for HMER. On the 

ne hand, typical image augmentation methods generally perform 

ransformations globally (e.g., rotation, cropping) rather than lo- 

ally in the images. On the other hand, most image augmenta- 

ion methods focus on changing visual attributes while ignoring 

emantic consistency. Thus, our approach is concerned with gen- 

rating semantically reasonable mathematical formulas. Assuming 

hat the bounding box information of each symbol in the ME im- 

ge is available, we perform various operations (e.g., replacement, 

eletion, and decomposition) on the image from different seman- 

ic levels, including symbol level, sub-expression level, and image 

evel. Intuitively, the symbol level generation strategy strengthens 

he learning between different handwriting and ambiguous sym- 

ols by swapping symbols in different images. The sub-expression 

evel generation strategy allows for a better understanding of local 

patial relationships by replacing and decomposing subtrees. The 

mage-level generation strategy aims to improve the accuracy of 

mbiguous spatial structures and to have better robustness to ex- 

ressions under poor image quality. Ultimately, the mixture of the 

bove three data types will provide a better source of training data. 

In addition to generating more ME images, we also propose 

 simple yet effective method that can naturally incorporate the 

tring decoder and the tree decoder during both the training and 

nference stage. In previous HMER competitions [13–16] , training 

ultiple models with different initialization parameters for the en- 

emble was an important way to improve recognition performance. 

o our best knowledge, this is the first study that takes advantage 

f the complementarity between the string decoder and the tree 

ecoder. String decoder is data-driven; it does not explicitly em- 

loy math grammar, therefore in some bad situations, the string 

ecoder will output the sequences that disobey the math grammar. 

owever, the string decoder can learn an implicit string language 

odel. In contrast, the tree decoder ensures that the output will 

lways follow the tree-based structures, which helps alleviate bad 

ituations. And tree decoder is more conducive to learning inherent 

ub-structures. Inspired by the above insights, we propose a tree- 

ased mutual learning strategy based on the concept in [17] that 

llows the string decoder and the tree decoder to be trained and 

nferred collaboratively. 
t

2 
The main contributions of this paper are as follows: 

• We propose a tree-based multi-level data augmentation strat- 

egy to effectively alleviate the problem of insufficient original 

annotation data, which is one of the critical technology to our 

champion system for the OffRaSHME20 competition. 
• We introduce a novel tree-based mutual learning method to 

deeply integrate the string decoder and the tree decoder in 

both the training and inference stages, which fully complement 

the advantages of these two types of decoders. 
• Our system significantly outperforms the other state-of-the- 

art results on both the OffRaSHME 20 dataset and the 

CROHME14/16/19 datasets. 

. Related work 

In this section, we describe the related encoder-decoder based 

ethods and data augmentation works for offline HMER. 

.1. Encoder-Decoder methods for offline HMER 

According to the forms of the generated sequence, we can di- 

ide the encoder-decoder based methods for HMER into two cat- 

gories: string decoder based methods and tree decoder based 

ethods. The former outputs a sequential LaTeX sequence, while 

he latter need to output a sequence of subtree structures. 

In string decoder based methods, Deng et al. [5] proposed a 

odel named WYGIWYS with coarse-to-fine attention for math- 

matical expression recognition and proved that the string de- 

oder could be applied to other two-dimensional markup lan- 

uages. Zhang et al. [6] introduced a model named WAP for offline 

MER and achieved significant improvements in both recogni- 

ion rate and efficiency compared with traditional methods. Then, 

n enhanced version of WAP was proposed [18] , which used a 

enseNet encoder and multi-scale attention mechanism. Besides, 

ruong et al. [19] employed a symbol classifier to improve the 

ocalization and classification of the high-level features on the 

ncoder-decoder recognition model. 

In tree decoder based methods, Zhang et al. [20] employed the 

ree-lstm to improve the encoding of online handwriting mathe- 

atical expression since the mathematical expression is a specific 

ree-structured language. Zhang et al. [11] proposed a novel tree- 

tructured decoder with a parent decoder part and a child decoder 

art, which can generate sub-trees at each decoding step. 

.2. Data augmentation for offline HMER 

Data augmentation is a potent method to boost the perfor- 

ance of the deep network. Typical image data augmentation 

ethods are based on basic image manipulations, such as geomet- 

ic transformations, color transformations, and noise injection. The 

ffectiveness of these simple transformations has usually limited 

he context of handwritten mathematical expression recognition. 
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Fig. 2. (a) An example of handwritten mathematical expression; (b) LaTeX format representation of the expression; (c) SRT format representation of the expression; (d) STL 

format representation of the expression. 
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ecent data augmentation works for HMER have used the proper- 

ies of formulas or additional information related to formulas. Le 

nd Nakagawa [21] proposed a local and global distortion method 

o generate shape variations for both symbols and HMEs. And they 

urther employed a novel decomposition method to generate dif- 

erent images with complicated structures from original HMEs in 

22] , which is based on a set of heuristic rules that conform to 

he LaTeX syntax. Recently, Truong et al. [23] used syntactic parse 

rees to represent the syntactic structure of expressions to improve 

he decomposition method proposed by Le et al. [22] , which can 

rovide semantic information and generate more sub-expressions. 

esides, they also interchanged the decomposed sub-expressions to 

enerate new syntactically valid HMEs. Li et al. [24] proposed a dy- 

amic scale augmentation approach instead of normalizing MEs to 

he same scale. In addition, some works [25–27] adopt the idea of 

dversarial learning to use additional adversarial samples in train- 

ng. Wu et al. [25] proposed a paired adversarial learning (PAL) to 

earn semantic invariant features between handwritten and printed 

Es in the feature space. Then, “PAL” method is further improved 

y designing better encoder part and decoder part in [26] . Similar 

o Wu et al. [25] , Le [27] proposed a dual loss attention model

o learn the semantic invariant features and latex grammar by 

apping context vectors between handwritten and printed MEs. 

ompared with previous data augmentation methods for formula 

ecognition, our augmentation method can generate more diverse 

ata while considering the semantic consistency of formula con- 

ext for the first time during augmentation. 

. Tree-based data augmentation 

In this section, we first introduce the different representations 

f mathematical expressions. Then, we introduce the data prepro- 

essing method to extract the required annotation information for 

ubsequent image generation. Finally, we describe the proposed 

ree-based multi-level data augmentation strategy in detail. We di- 

ide the mathematical expression into three levels: symbol, sub- 

xpression, and image, according to the granularity of the struc- 

ure. Benefitting from the combination of coarse-grained and fine- 

rained data augmentation, we improve the richness and balance 

f original training data, allowing for better recognition accuracies 

nd robustness. 

.1. Mathematical expression representation 

Regardless of whether the recognition model is based on the 

raditional methods or the encoder-decoder methods, the repre- 

entation of mathematical expression plays an important role, and 

t involves the detailed design of the model. 
3 
LaTeX string is the most commonly used mathematical markup 

anguage by researchers. It is widely used in encoder-decoder mod- 

ls since string generation is easier to be implemented. Neverthe- 

ess, the mathematical formula has an internal tree structure. Sym- 

ol Relation Tree (SRT) [9] is a tree markup language that describes 

ormulas at the symbol level. In SRT, nodes represent symbols, 

hile labels on the edges indicate the relationships between sym- 

ols. For example, in Fig. 2 , the spatial relationship between the 

ymbol “y” and the symbol “= ” is “right ”. “< s > ” and “< /s > ” denote

he root node of the expression tree and the last leaf node of the 

xpression tree, respectively, which are virtual symbols that do not 

ppear in the ME image. The common relation symbol classes are 

right, above, below, inside, superscript, subscript ”. In order to handle 

he symbols “< s > ” and “< /s > ”, the relationship “start ” and “end ”

re newly defined. Compared with LaTeX string generation, gener- 

ting tree markup like SRT is more challenging. 

To allow tree generation and easy implementation under the 

ncoder-decoder framework, we convert the SRT into a list of 

riplets named Sub-tree Triplet List (STL). 

Each triplet corresponds to a sub-tree structure, consisting of 

 child symbol node, a parent symbol node, and a relation node. 

nd we denote it as (y c , y p , y re ) . The child symbol node and the

arent symbol node describe the absolute spatial positions of the 

hild math symbol and parent math symbol, respectively, and the 

elation node represents the spatial relationship between the two 

ath symbols. Compared with LaTeX string, STL format represen- 

ation has two distinctive advantages: (i) it facilitates us to de- 

ign neural modules separately to output structured predictions at 

ach decoding step; (ii) the length of it is the same as the LaTeX 

equence without mute symbols (e.g., “{ ” and “∧ ”), which means 

hat it is a more compact representation that shortens the decod- 

ng length. Some work has been done on this triplet representa- 

ion. Zhang et al. [11,12] used triplet representation for mathemat- 

cal expressions recognition while Wang and Liu [28] used triplet 

epresentation for layout analysis of mathematical expressions. Our 

roposed data augmentation strategy will be based on the STL rep- 

esentation, which motivates us to implement more heuristic rules 

nd bind the bounding box information of symbols to mathemati- 

al symbols. 

.2. Data preprocessing 

Here we introduce the method to generate the candidate STL 

equence set and bounding boxes sequence set from the original 

ffline train data. Given an original ME image I, we denote its cor- 

esponding STL sequences S and bounding box sequence B as: 

 = 

{
S i = 

(
y c i , y 

p 
i 
, y re 

i 

)}N 
(1) 
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Table 1 

Symbol classes. 

Classes Symbols Classes Symbols 

Digit 0,1,...,9 Named operator sin, cos, tan 

Lowercase letter a,b,...,z Binary operator ×, ÷, +, -, ... 

Upercase letter A,B,...,Z Relation operator < , > , ≤, ≥, ... 

Greek alphabet α, β, γ , ... Others ∃ , ′ , lim , { , ... 
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Algorithm 1: Extract symbol/sub-expression information. 

Input : An ME image I with its STL sequence S and bounding 

bboxes 

sequence B . 

Output : symbol/sub-expression STL and bounding boxes C. 

Initialize : S sub , B sub , p used , C are empty list. R = { above , below , 

inside , superscript , subscript} . 
// extract symbol level information 

1 for i ← 1 to N do 

2 clear S sub and B sub ; 

3 y c 
i 
, y 

p 
i 
, y re 

i 
= S I 

i 
; bbox i , y 

c 
i 
, y class 

i 
= B i ; 

4 S sub = S i ; B sub = B i ; 

5 extract the local image I sub by (a tl 
i 
, b tl 

i 
, a br 

i 
, b br 

i 
) ; 

6 append (S sub , I sub ) to C; 

7 end 

// extract sub-expression level information 
8 for i ← 1 to N do 

9 y c 
i 
, y 

p 
i 
, y re 

i 
= S i ; bbox i , y 

c 
i 
, y class 

i 
= B i 

10 if y re 
i 

∈ R then 

11 clear S sub , B sub and p used ; 

12 append y 
p 
i 

to p used ; 

13 for j ← i to T do 

14 if y 
p 
j 

∈ p used and y re 
j 

is not “End” then 

15 append S j , B j , y 
p 
j 

to S sub , B sub , p used , respectively; 

16 end 

17 end 

18 compute the bounding box coordinates of 

sub-expression (a tl 
sub 

, b tl 
sub 

, a br 
sub 

, b br 
sub 

) by B sub ; 

19 extract the local image I sub by (a tl 
sub 

, b tl 
sub 

, a br 
sub 

, b br 
sub 

) ; 

20 append (S sub , I sub ) to C; 

21 end 

22 end 

b

s

w

a

s

m

h

o

s

s

s

a

p

i

t

(

w

c

t

s

t

i

 = 

{
B i = 

(
bbox i , y 

c 
i , y 

class 
i 

)}N 

i =1 
(2) 

here N is the total number of symbols in the STL sequences of 

, bbox i is the 4-dimensional vector (a tl 
i 
, b tl 

i 
, a br 

i 
, b br 

i 
) of the top-left

nd the bottom-right coordinates of bounding box. We present the 

lasses of different symbols in Table 1 . Specially, bbox N and y class 
N 

orresponding to the last leaf node (“< /s > ”) are set to “None” as

t is a mute symbol. Besides, we denote the STL sequences and 

ounding box sequences corresponding to a single symbol or sub- 

xpression as S sub and B sub , respectively. 

Given the STL sequence S and the bounding box sequence B , the 

ymbol-level information can be extracted directly in order, while 

he extraction of sub-expression level information can be done dif- 

erently. A sub-expression is a part of an expression containing one 

r more subtree structures and is a correct expression. There are 

wo main ways to decompose an expression into sub-expressions, 

ased on binary operators or spatial relations. 

For example, in “x + y = z”, we can obtain the sub-expression 

x + y ” and “y = z” by splitting at the operator of “ = ” and “ + ”

espectively. In the fraction “ h 
b n +1 ”, the sub-expression “b n +1 ” and 

he sub-expression “n + 1 ” are extracted based on the relationship 

f “above ” and “superscript ”, respectively. We can also see that sub- 

xpressions can be split recursively because of the nested struc- 

ure. 

To avoid generating too short sub-expressions, we extract the 

ub-expression information by Algorithm 1 to ensure that sub- 

xpressions containing nested structures are not split multiple 

imes. The core idea is to use a list p used to store the parent nodes

f nested structures in sub-expressions when traversing an STL se- 

uence of sub-expressions. As long as the parent node of a sub- 

ree is in p used , the nested structure is not treated as a new sub-

xpression. The detailed procedure is shown in Algorithm 1 . By us- 

ng Algorithm 1 to process all the images in the training set, we 

an get the final candidate set C all . We can select suitable candi- 

ate expressions from C all according to different data augmentation 

trategies. 

.3. Symbol level augmentation 

Symbol level generation strategy consists of Symbol Replace- 

ent and Symbol Deletion . The former enables adequate training of 

athematical symbols with different handwriting styles. The latter 

s expected to solve the problem of bias caused by different symbol 

pacings in attention learning. Note that randomly selecting candi- 

ate symbols for replacement or deletion often produces ungram- 

atical mathematical expressions. At the same time, ungrammati- 

al mathematical expressions will introduce noise into the original 

ata and then affect the ability of the model to fit the data. There-

ore, we design multiple rules to ensure that the generated math- 

matical expressions have semantic consistency and rationality. 

.3.1. Symbol replacement 

Correctly identifying each individual mathematical symbol in an 

mage is the basis of HMER. However, recognizing a single mathe- 

atical symbol is not easy due to ambiguous symbols and hand- 

riting styles [29] . For example, the Arabic letter “z” and the num- 
4 
er “2” are difficult to distinguish for the model since they look 

imilar. To address the issues about ambiguity symbols and hand- 

riting styles, we attempt to replace math symbols in the ME im- 

ge by using other symbols in C all . This strategy allows the same 

ymbols to be fully trained in different formula contexts, thereby 

aking the model better learn the intrinsic visual features of the 

andwritten style symbols. To guarantee the semantic consistency 

f the generated images, Symbol Replacement will follow two rules: 

1 Ensure that the symbols before and after replacement belong to 

the same symbol class. 

2 If the same symbol appears multiple times in the expression, 

the symbols selected from C all are used for substitution in all 

occurrence positions. 

As shown in Fig. 3 , we select the symbol “m” to replace the 

ymbol “n” in the original expression. It is worth noting that all 

ymbols belonging to the class “Others” in Table 1 are not con- 

idered as candidates. Besides, in practice, the replacement oper- 

tion will not only replace the original STL sequence, but also re- 

lace the corresponding bounding box region image in the orig- 

nal image. To avoid generating visually unreasonable images af- 

er replacement, we set a selection range according to the width 

“w”) and height (“h”) of the replaced symbol, and only symbols 

hose width and height belong to this range can be used as valid 

andidates. At the same time, we will calculate the IoU (Intersec- 

ion over Union) scores between the replaced symbol and the other 

ymbols in the original ME image. If an IoU score greater than 0.15, 

he replacement operation will not proceed. The selection range 

s set to [w-min(w, h)/10, w+min(w, h)/10] and [h-min(w, h)/10, 
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Fig. 3. Process of tree-based symbol level image generation. 

h

s

p

s  

m

3

t

h

c

D

t

c

3

m

D

m

C

e

o

p

t

p

c

s

r

3

c

f

e

C

p

r

s

a

c

t

e

c

c

p

n

l

t

w  

t

e

s

s

o

n

d

r

d

s

i

r

3

o

l

s

b

1

+min(w, h)/10] in our implementation, where “min(w, h)” repre- 

ents the minimum value between the width and height of the re- 

laced symbol. Two generated example of Symbol Replacement are 

hown in Fig. 5 ig , from which we can see that after the replace-

ent it is still semantically equivalent to the original formula. 

.3.2. Symbol deletion 

The delete operation mimics the phenomenon of spacing be- 

ween symbols, which is caused by writing speed and writing 

abits. Unlike replacement operation, improper deletion operations 

an lead to more unreasonable formulas. Therefore, for the Symbol 

eletion strategy, we design more rules for restriction: 

1. Do not delete mathematical symmetry symbols, such as “(, [,), 

]”. 

2. Do not delete when the left and right sides of the symbol are 

operators. 

3. Do not delete the “Above”, “Below”, and “Inside” structures. 

The generated examples are also shown in Fig. 5 . We can see 

hat the overall structure and semantics of the formula have not 

hanged, only some symbols have been removed. 

.4. Sub-expression level augmentation 

Sub-expression level generation strategy also includes two 

ethods, namely Sub-expression Replacement and Sub-expression 

ecomposition . Under the grammar rules, an expression can be 

erged by combining symbols and/or sub-expressions [30,31] . 

ompared to the symbol level generation strategy, the sub- 

xpression level generation strategy further enhances the richness 

f the training data because it can change the structural com- 

lexity of the original expressions. Sub-expression Replacement aims 

o generate mathematical expressions with higher structural com- 

lexity, while Sub-expression Decomposition can decompose local 

ontext in complex expressions. Both of them are expected to 

trengthen the model’s learning of local patterns and improve the 

obustness of recognizing complex expressions. 

.4.1. Sub-expression replacement 

In contrast to Symbol Replacement where rules can be effectively 

ontrolled, it is more challenging to maintain semantic consistency 
5 
or Sub-expression Replacement as it will be replaced with a sub- 

xpression that contains multiple symbols at the selected position. 

onsidering that sub-expression level generation is mainly for im- 

roving the learning of the structure, we appropriately relax the 

estrictions of the generation rules. First of all, we split the STL 

equence of the original image according to spatial relationships 

s extracting sub-expression information in Section 3.2 . Then, we 

an obtain the sub-expression positions that can be replaced. Af- 

er finding the replaceable position, we then find a suitable sub- 

xpression from C all to replace. Although we discard the semantic 

onsistency on the symbols, we require that the parent node of the 

andidate sub-expression is the same as the parent node of the re- 

laced sub-expression. For example, when we want to replace the 

umerator and denominator of the fraction in Fig. 4 , we will se- 

ect the sub-expression whose parent node is “\ frac” from C all as 

he candidate. In this example, we replace the denominator “b n ”

ith “a 3 ”, and replace the numerator “h ” with “x 2 ”. It can be seen

hat “a 3 ” and “x 2 ” both come from other fractions. The rule of Sub- 

xpression Replacement is below: 

1. The parent node of the candidate sub-expression is the same as 

the parent node of the replaced sub-expression. 

Similar to symbol replacement, we also calculate the IoU (Inter- 

ection over Union) scores between the bounding box of replaced 

ub-expression and the bounding boxes of other symbols one by 

ne, which is used to detect the size of the overlapping area. If 

one of the IoU scores exceeds 0.15, then we will select the can- 

idate sub-expressions from C all that match the width and height 

ange as same as the symbol replacement. Finally, the selected can- 

idate sub-expression is scaled to the same size as the replaced 

ub-expression, and then replaces the corresponding area on the 

mage. Fig. 5 illustrates a generation sample after sub-expression 

eplacement. 

.4.2. Sub-expression decomposition 

As mentioned above, a mathematical expression is composed 

f a sequence of sub-expressions under the grammar rules. A 

ong expression with a complex structure can generate multiple 

ub-expressions. We split expressions not only by spatial relations 

ut also by binary operators. The following Rule[SubDecompose] 

 and Rule[SubDecompose] 2 split the expressions according to 
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Fig. 4. Process of tree-based sub-expression level image generation. 

Fig. 5. Examples of generated images from OffRaSHME dataset by symbol level, sub-expression level and image level augmentation strategies, respectively. The changed 

symbols are highlighted by the box. 
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he spatial relationship while Rule[SubDecompose] 3 splits the ex- 

ressions according to the binary operators. As shown in Fig. 4 , 

n the first example, “y = 

h 
b 

x ” and “b n ” are generated through 

ule[SubDecompose] 1 and Rule[SubDecompose] 2, respectively. In 

he second example, “ h 
b n 

x n ” is split from the right side of the bi- 

ary operator “= ”. In practice, for the convenience of implementa- 

ion, we define the concept of the main branch of the expression 

ree. To be specific, the path between the root node “< s > ” and the

nd node “< /s > ” is the main branch, where the spatial relation- 

hips of all subtrees are “right ” in this path. We will only choose 

inary operators in the main branch for decomposition operation. 

ur rules mainly refer to the approach in [22] , which are listed as

ollows. 

1. If an expression contains “Subscript”, “Superscript”, the new 

sub-expression is generated by removing all the “Subscript”, 

“Superscript” parts. 

2. Sub-expressions are obtained by splitting the sub-expressions 

contained in “Subscript”, “Superscript”, “Above”, “Below” and 

“Inside” from STL. 
6 
3. For every binary operator in the main branch of the original 

expression, we generate new sub-expressions from the left and 

right parts of the operator. 

It is worth noting that Rule[SubDecompose] 3 is not applied to 

inary operators inside brackets to avoid generating invalid HMEs. 

y the way, we will also remove the generated individual symbols 

e.g., “y ” in this case). A decomposed expression is shown in Fig. 5 .

.5. Image level augmentation 

Image level generation strategy changes the ME images from 

ocal and global perspectives but never modifies the ground-truth 

TL sequences corresponding to the images. 

.5.1. Image shift 

The image shift strategy aims to solve the ambiguity problem 

aused by spatial position relations in mathematical expression 

ecognition. For example, the ground-truth LaTeX of the HME Pa 

an be labeled as “P a” or “P _ { a }” in different situations, which 
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orresponds to “right ” and “subscript ” between “P” and “a” respec- 

ively. This kind of ambiguity in the relationship between parent 

odes and child nodes also often occurs. Based on the above ob- 

ervations, we proposed the local and global shift methods. “Lo- 

al Shift” operation shifts up the symbol or sub-expression located 

t the superscript position and shifts down the symbol or sub- 

xpression located at the subscript position. We hope to prevent 

he model from being deviated by some samples with ambiguous 

patial relationships by adding formula images with more explicit 

patial relationships. Assuming H is the symbol height of the par- 

nt node corresponding to the superscript or subscript part, then 

he distance of shift up or shift down is α ∗ H, and the value of α is

n the range [0.2, 0.3]. “Global Shift” transforms an HME by using 

otation. The angles of the rotation operator are sampled from { 5, 

0, 15, 25, -5, -10, -15, -25 } . We only show two examples of “Local

hift” in Fig. 5 as “Global Shift” is easy to associate with what the 

ugmented image will be. 

.5.2. Cutout-HME 

Symbols are often obscured in mathematical expressions un- 

er real scenarios. Cutout [32] is a regularization technique that 

as been proven effective in many computer vision tasks, and the 

rimary motivation of the Cutout method also comes from the 

roblem of object occlusion. The core idea of Cutout is to mask 

he input image during the training stage randomly. Inspired by 

his, we design a customized masking augmentation method for 

ffline HMEs, named Cutout-HME. We improve the original cutout 

ethod in two aspects. On the one hand, it is inefficient to directly 

dd random square masking regions on top of the mathematical 

xpression images, as the background information is meaningless 

ompared to natural scene images. Accordingly, we propose to use 

ach symbol level bounding box as an optional range of maskable 

egions. On the other hand, considering that square patches often 

bscure important discernible parts of the symbols, we choose ver- 

ical rectangular patches for the mask. 

Given an ME image, we first mark the small symbols based on 

he bounding box information and leave them unmasked. An adap- 

ive vertical patch masking is generated for the remaining sym- 

ols based on the width of the corresponding original symbols. The 

idth of the vertical patch is limited to the range [0.3-0.5] of the 

riginal symbol width. Also, for each symbol, we use a probabil- 

ty of 0.5 to decide whether it will be masked or not. It is worth

oting that even in the absence of symbol level annotation infor- 

ation, the Cutout-HME method can also be implemented by con- 

ected domain analysis. Please see the ME images after performing 

he symbol-level mask in Fig. 5 . 

. Tree-based mutual learning for encoder-decoder HMER 

In this section, we introduce our system framework of tree- 

ased mutual learning. We first describe the model architectures 

or recognizing handwritten mathematical images and then intro- 

uce the method of combining string decoder and tree decoder in 

oth end-to-end training and model inference. As shown in Fig. 6 , 

e use the same convolutional neural network as the encoder to 

xtract image features, regardless of the structure of the decoder. 

or the string decoder in the auxiliary branch, we adopt a GRU 

quipped with an attention model to generate a one-dimensional 

aTeX string. For the tree decoder in the main branch, it includes a 

arent decoder, a child decoder, and a relation prediction module 

o that a subtree can be generated at each time step. 

.1. Dense encoder 

We first employ a dense convolutional network (DenseNet) 

33] as the encoder to extract high-level visual features from im- 
7

ges, which is widely adopted in various computer vision tasks. 

nstead of adding a fully connected layer after the final convolu- 

ional layer, the dense encoder contains only convolution, pooling 

nd activation layers. Therefore, we can obtain a three-dimensional 

ensor. Then, we transform this tensor into a variable-length vector 

equence as the encoder output features. 

.2. String decoder 

Our string decoder is based on the method proposed in [6] . 

t takes the encoder output features as the input and generates 

 corresponding LaTeX sequence as shown in Fig. 6 . The output 

equence is denoted as { s 1 , s 2 , . . . , s T } , T is the seq uence length. 

ote that the number of encoder features and the length of out- 

ut sequences are both variables with different input images; we 

ave to compute an intermediate fixed-size vector. We employ a 

nidirectional GRU [2] with the coverage-based spatial attention 

echanism [6] to compute the fixed-size context vector. It is rep- 

esented by the weighted sum of the visual features. After obtain- 

ng the context vector, another unidirectional GRU layer is adopted 

o produce the LaTeX sequence. More details can be referred to [6] . 

.3. Tree decoder 

Our tree decoder is based on the method proposed in [11] . 

ompared to string decoder directly generating the continuous La- 

eX sequence, which consists of both symbols and spatial relation- 

hips, tree decoder divides symbol recognition and structural anal- 

sis into two parts. Specifically, the tree decoder contains a parent 

ecoder part, a child decoder part, and a relation prediction part to 

roduce a sequence of sub-tree structures. Each sub-tree includes 

 child node y c and a parent node y p . The target symbol sequence

s denoted as 
(
y c 

1 
, y 

p 
1 

)
, 
(
y c 

2 
, y 

p 
2 

)
, . . . , 

(
y c 

T 
, y 

p 
T 

)
; the target relation se- 

uence is denoted as (y re 
1 

, y re 
2 

, . . . , y re 
T 

) , where T is the length of

equence. 

We first employ a parent decoder module to predict the current 

arent node, and it is composed of two GRU layers and a spatial 

ttention model for parent node alignment. After identifying the 

urrent parent node, we employ a child decoder module to predict 

he current child node, and it is again made of two GRU layers and 

 spatial attention model for child node alignment. We propose a 

emory module to address the ambiguity problem caused by the 

epeated symbols in the formula. We employ a memory block to 

tore each child node after they are generated. Then, each sym- 

ol will have its specific position code in the memory, where the 

osition code is the memory index. This position code will help 

istinguish parent nodes. We also use memory attention model to 

enerate an alignment between the current parent node and exist- 

ng child nodes, and choose the child node with the highest atten- 

ion probability to be the parent node. For the relation prediction 

art, as our parent decoder and child decoder both get the context 

ector after using the attention mechanism, which contains both 

he spatial information and the content information of the corre- 

ponding node, we directly concatenate the context vectors that 

ome from the parent decoder and child decoder and then send it 

o a softmax layer for relation prediction. Based on the above neu- 

al network module, we can get the subtree structure sequence at 

very decoding step. More details can be referred to [11] . 

.4. Tree-based mutual learning 

Recognition of handwritten mathematical expressions should 

onsider both visual cues and linguistic rules simultaneously. 

tring decoder and tree decoder have their advantages and disad- 

antages in two aspects. String decoder autoregressively solves the 
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Fig. 6. The tree-based mutual learning framework. The string decoder based model as auxiliary branch (top) and the tree decoder based model as main branch (bottom), 

and they are connected via KL divergence and trained collaboratively. The symbol in the dashed box indicates that it will not be part of the target sequence. 
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ymbol and spatial relationship according to the LaTeX markup or- 

er, leading to more robust language model characteristics. There- 

ore, sometimes string decoder can still recognize symbols based 

n an implicit language model when they encounter insufficient 

isual information (occlusive, incomplete or blurred) or ambiguous 

ymbols. Conversely, the tree decoder pays more attention to cor- 

ectly learning the inner subtree structure of the mathematical for- 

ula. It has a stronger zero-shot learning ability for formulas with 

omplex structures than string decoder [11] . Based on the above 

bservations, we believe that the string decoder does better than 

he tree decoder in symbol recognition. In contrast, the tree de- 

oder has better structure learning capabilities than the string de- 

oder. 

To integrate the complementarity of string decoders and tree 

ecoders, we propose a tree-based mutual learning method in- 

pired by the idea of deep mutual learning [17] . Mutual learning 

f two models is a training strategy where models learn collabora- 

ively. Unfortunately, the string decoder and the tree decoder can- 

ot be jointly trained directly due to the presence of mute sym- 

ols. Therefore, we remove the symbols without explicit spatial 

lignment to input images from the LaTeX markup, and use the 

implified LaTeX markup as the target sequence of the string de- 

oder as shown in the part of “String-markup” in Fig. 6 . Note that 

here is no mute symbol in the predicted output of the string de- 

oder, so it cannot recover a complete and correct LaTeX sequence. 

herefore we regard this branch as an auxiliary module. 

Specifically, we denote the �sd and �td as the string decoder 

arameter and tree decoder parameter respectively. The training 

oss of string decoder is denoted as L sd while the training loss 

f tree decoder is represented by L td . To improve the generaliza- 

ion performance of �td in testing instances, we use the string de- 

oder �sd to provide training experience in the form of its poste- 

ior probability p sd as shown in Fig. 6 . To measure the match of 

he two networks’ predictions p sd and p td , we adopt the Kullback 

eibler (KL) Divergence. The KL distance from p sd to p td is com- 

uted as: 

 KL ( p td ‖ p sd ) = 

T ∑ 

t=1 

K ∑ 

k =1 

p k td ( y 
c 
t ) log 

p k 
td ( y 

c 
t ) 

p k 
sd ( s t ) 

(3) 

here p sd , p td are the output probabilities by �sd and �td , respec- 

ively. T is the length of targeted label and K is the number of total

ords in the vocabulary. Note that s t and y c t are equivalent when 

e remove the mute symbols from the LaTeX string. 
8 
We add the KL divergence to the original training loss as fol- 

ows: 

 

ml 
sd = D KL ( p td ‖ p sd ) + L sd (4) 

 

ml 
td = D KL ( p sd ‖ p td ) + L td (5) 

hen, the mutual learning strategy is performed in each mini-batch 

ased model update step and throughout the whole training pro- 

ess. At each iteration, we compute the predictions of the two 

odels and update the networks’ parameters according to the pre- 

ictions of the other. The optimization of �sd and �td is conducted 

teratively until convergence. 

Based on our mutual learning approach, we can naturally com- 

ine the prediction probability of the tree decoder with the predic- 

ion probability of the string decoder at each inference step, while 

he previous string decoder based models are unable to fuse with 

he tree decoder based models at each time step. This tree-based 

utual learning method makes full use of the complementarity 

etween the models instead of re-scoring the output sequences 

f the string decoder and the tree decoder. As mentioned above, 

he tree decoder generates three paths in the inference stage, in- 

luding the child node path, the parent node path and the relation 

ode path, while the string decoder generates only one LaTeX se- 

uence path without mute symbols. However, we can notice the 

dentified target sequences corresponding to the child node path 

nd the simplified LaTeX string path. Thus, we average the predic- 

ion probabilities of the child node path and LaTeX paths’ predic- 

ion probabilities at each inference step and use them as the fused 

hild node prediction probabilities to generate the final STL output 

equence. 

. Experiments 

In this section, we will show the effectiveness of the proposed 

ata generation strategies and tree-based mutual learning method 

or offline handwritten mathematical expression recognition. Note 

hat our ablation studies are based on the tree decoder, which has 

roven to be a powerful baseline model in [11] . 

.1. Dataset and metric 

Our experiments are conducted on both the CROHME com- 

etition datasets and OffRaSHME competition dataset [13–16] . 

ROHME competition datasets are the most widely used dataset 
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Table 2 

Ablation study of our data augmentation strategies on CROHME14/16/19 test sets 

and OffRaSHME20 test set. 

Dataset Symbol Sub-expression Image ExpRate StruRate 

CROHME14 ✗ ✗ ✗ 49.10 68.6 √ 

✗ ✗ 55 . 52 74 . 20 √ 

✗ 
√ 

57 . 20 75 . 68 √ √ √ 

58 . 47 77 . 66 

CROHME16 ✗ ✗ ✗ 48.50 65.9 √ 

✗ ✗ 54 . 70 72 . 51 √ 

✗ 
√ 

56 . 38 73 . 54 √ √ √ 

57 . 82 76 . 30 

CROHME19 ✗ ✗ ✗ 51.40 69.8 √ 

✗ ✗ 58 . 74 75 . 27 √ 

✗ 
√ 

60 . 38 76 . 14 √ √ √ 

62 . 67 79 . 27 

OffRaSHME20 ✗ ✗ ✗ 69.50 −√ 

✗ ✗ 72 . 58 −√ 

✗ 
√ 

73 . 65 −√ √ √ 

74 . 45 −
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or HMER. The CROHME14 competition dataset consists of a train- 

ng set of 8836 HMEs and a testing set of 986 HMEs. The 

RHOME16 and CRHOME19 datasets include 1147 and 1199 testing 

amples, respectively. We apply the CROHME14 training set as our 

raining set and evaluate the performance of our models on the 

ROHME14/16/19 testing sets. Considering CROHME datasets con- 

ain the segmentation and label information of each symbol of the 

xpression, we can easily get the corresponding bounding boxes 

or each symbol by using the above symbol level annotations and 

racepoints. 

Offline Recognition and Spotting of Handwritten Mathemati- 

al Expressions (OffRaSHME) competition provided a new HMER 

ataset. Unlike offline images in the CROHME dataset converted 

rom online data, the OffRaSHME dataset was collected by scanning 

apers containing expressions. It contains 19,749 HMEs for training 

nd 20 0 0 HMEs for testing. We choose 1800 HMEs from training 

et for validation. Meanwhile, this offline dataset was annotated 

t the symbol level: the latex transcripts and the corresponding 

ounding boxes of symbols are provided, which can facilitate re- 

earch of offline recognition. 

The primary metric in this study is expression recognition rate 

ExpRate) [34] , i.e., the percentage of predicted mathematical ex- 

ressions matching the ground truth. We also reported the com- 

arison results with ExpRate ≤ 1 , ≤ 2 , and ≤ 3 , which denote the

xpression recognition rates when one, two or three symbol-level 

rrors are tolerable. Besides, we list the structure recognition rate 

StruRate) [34] , which only focuses on whether the structure is cor- 

ectly recognized and ignores symbol recognition errors. 

.2. Implementation details 

The string decoder model (auxiliary branch) is guided by min- 

mizing L sd or L 

ml 
sd 

, depending on whether the tree-based mutual 

earning method is used. Correspondingly, the tree decoder model 

main branch) is guided by minimizing L td when training alone, 

hile the L 

ml 
td 

is used as the supervision to training collaboratively. 

For the dense encoder, we first employ a 77 convolution layer 

ith 48 output channels before entering the first dense block for 

he dense encoder. Each DenseBlock contains 22 1 × 1 convolution 

ayers and 22 3 × 3 convolution layers. Then, we use 1 × 1 convo- 

ution followed by 2 × 2 average pooling as a transition layer to 

educe the feature maps by half between every two DenseBlocks. 

nd the growth rate is 16. 

For the string decoder, we use the same setting employed in 

he WAP model [6] , which contains a single layer with the hid- 

en size 256 and an embedding layer with the size of 256. For the 

ree decoder, both the child and parent decoders adopt two uni- 

irectional GRU layers, and each layer has the hidden size of 256, 

hich is the same as in [11] . The child attention dimension, par- 

nt attention dimension, and memory attention dimension are set 

o 512. The embedding dimensions for both child node and parent 

ode are set to 256. 

For optimization, we adopt the cross entropy loss and the 

daDelta algorithm [35] with the hyperparameters ρ = 0 . 9 and 

 = 10 −6 . The experiments are all implemented with PyTorch and 

ptimized on NVIDIA TeslaV100 GPU. 

.3. Effectiveness of tree-based data augmentation method 

In this section, we first show the performance improve- 

ents from gradually adding symbol-level generation data, sub- 

xpression-level generation data, and image-level generation data. 

or the CROHME dataset, our sample size increases to approxi- 

ately 137,0 0 0, 214,0 0 0, and 286,0 0 0 with the gradual addition

f symbol level, image level, and sub-expression level generation 
9 
ata. For the OffRaSHME dataset, our sample size increases to ap- 

roximately 274,0 0 0, 375,0 0 0, and 448,0 0 0 with the gradual addi-

ion of symbol level, image level, and sub-expression level genera- 

ion data. From the results of Table 2 , we can see that the ExpRates

re increased to 72 . 58% , 73 . 65% and 74 . 45% respectively with the

radual stacking of the different level augmentation strategies on 

he OffRaSHME20 dataset. They also receive a consistent boost on 

he CRHOME14/16/19 test sets. The recognition rate improved from 

9 . 10% to 58 . 47% on the CROHME14, from 48 . 50% to 57 . 82% on the

ROHME16 and from 51 . 40% to 62 . 67% on CROHME19. Consider- 

ng that the baseline performance of CROHME datasets is lower 

han that of the OffRaSHME dataset, the gain of data augmenta- 

ion is more significant, which brings the absolute accuracy im- 

rovements of 9 . 37% , 9 . 32% , 11 . 27% , respectively. After adding the

ub-expression level augmented data, we can observe that the 

mprovement of StruRate is greater than that of ExpRate on all 

ROHME test sets. The gains of StruRate are 2.23%, 3.42% and 4.26% 

n the test set of CROHME14, CROHME16 and CROHME19, respec- 

ively. Since the OffRaSHME competition does not provide a tool 

or testing StruRate, we have omitted this result in the table. 

Furthermore, we analyze the distribution of accuracy for the 

ength of LaTeX sequences. In Fig. 7 , “baseline”, “w/o sub- 

xpression level” and “all levels” represent the cases where the 

ecognition model used only raw training data, used symbol level 

nd image level generation data, and used all levels generation 

ata, respectively. We divide the original test set into two parts 

y the length of expressions, where “1-20” indicates the lengths of 

xpressions are between 1 and 20, and “+20” indicates the lengths 

f expressions are greater than 20. Each bar represents the recog- 

ition performance gain on the test set after using different train- 

ng data. Intuitively, different lengths of expressions bring different 

ecognition difficulties. It is interesting that our model could ob- 

ain more significant gains as the length interval grows, which con- 

rms that our data augmentation strategy can effectively improve 

he recognition performance of complicated mathematical formu- 

as. The problem of symbol recognition is well resolved with the 

elp of symbol-level and image-level generation data, so there is a 

ignificant improvement in both subsets “1-20” and “+20”. Adding 

ub-expression level generation data to the low-level generation 

ata brings further gains in subset “+20”, which illustrates the ef- 

ectiveness of sub-expression generation data in helping the model 

earn structural information. 

Besides, we know that continually increasing the data size does 

ot constantly improve performance proportionally. Therefore, we 

xplored the influence of the scale of data augmentation for recog- 

ition performance on the OffRaSHME20 dataset. We also develop 
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Fig. 7. Performance gain comparison of different ground-truth lengths (in % ) from tree-based data augmentation on CROHME14/16/19 test sets and OffRaSHME20 test set. 

Fig. 8. Performance of different data scales (in % ) on OffRaSHME20 test set. 
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Table 3 

Ablation study of tree-based mutual learning method on 

CROHME14/16/19 test sets and OffRaSHME20 test set. 

Dataset Mutual Learning ExpRate StruRate 

Training Inference 

CROHME14 ✗ ✗ 58.47 77.66 √ 

✗ 60 . 50 77 . 91 √ √ 

61 . 63 79 . 03 

CROHME16 ✗ ✗ 57.82 76.03 √ 

✗ 58 . 74 76 . 30 √ √ 

59 . 81 76 . 52 

CROHME19 ✗ ✗ 62.67 79.27 √ 

✗ 63 . 92 80 . 10 √ √ 

64 . 38 80 . 23 

OffRaSHME20 ✗ ✗ 74.45 −√ 

✗ 75 . 20 −√ √ 

75 . 68 −
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 simple strategy to get different sizes of generated data. For Sub- 

xpression Decomposition , the data that can be generated by this 

trategy depends on the amount of original training data. For the 

utout-HME method, it does not increase the size of the training 

et. While Symbol Replacement, Symbol Deletion, Sub-expression Re- 

lacement and Image Shift , we can apply these strategies multiple 

imes to a sample to get a larger sample size. Therefore, we can set 

ccording to the need to get different scale data. We reach the op- 

imal performance when we scale up the data size to 25 times the 

riginal size. After that, the accuracy with further increased train- 

ng data size tends to saturate, as shown in Fig. 8 . 

.4. Effectiveness of tree-based mutual learning method 

In this section, we first verify the effectiveness of our mutual 

earning strategy on the CROHME datasets and the OffRaSHME 

ataset. Please note that the systems in this section will be built 

n top of the tree-based data augmentation method. As shown 

n Table 3 , after training with our mutual learning strategy, the 

xpRates are increased to 60 . 50% , 58 . 74% , 63 . 92% and 75 . 20% on

ROHME14/16/19 testing sets and OffRaSHME testing set, respec- 

ively. 

Furthermore, we utilize the string decoder and the tree de- 

oder after using mutual learning for inference fusion. We average 

he prediction probability of the string decoder and the prediction 

robability of the child decoder during the beam search process 

o help improve the performance of the main branch. Compared 

o training multiple models with different initialization parameters 

ut the same network structure, our method combines two differ- 

nt structure decoders. Finally, we achieve the ExpRate of 61.63%, 

9.81%, 64.38% and 75.68% on four testing sets, respectively. 
10 
We also show some recognition samples which are corrected 

fter applying mutual learning in Fig. 9 . For the first example, ac- 

ording to the semantic consistency, the symbols in red should be 

onsistent with the symbols of the variables that have already ap- 

eared before. For the second example, since the multiplication 

ymbol can never have superscripts in a normal mathematical for- 

ula context, it should be recognized as “x ”. For the last example, 

he LaTeX ground-truth of this ME image is “z _ { 1 } z _ { 2 }
 _ { 3 } z _ { 4 } z _ { 5 } ”. It is obvious that the subscripts in

he formula are numeric and continuous. Without mutual learning, 

he tree decoder will mistakenly recognize it as “s” where the se- 

antic information mainly comes from the parent node “z” when 

redicting the current node “5”. However, when the string decoder 

redicts the last symbol “5”, its input hidden state still retains the 
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Fig. 9. Examples of recognized results before and after tree-based mutual learning. The red symbols are corrected by tree-based mutual learning. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Performance comparison of our proposed method and the state-of-the-art recogni- 

tion systems on CROHME14 test set (in %). 

System DA ExpRate ≤ 1 ≤ 2 ≤ 3 

PAL [25] yes 39.66 - - - 

PAL ∗5 [25] yes 47.06 - - - 

DenseMSA ∗5 [18] no 52.80 68.10 72.00 72.70 

PGS [22] yes 48.78 66.13 73.94 79.01 

Weakly Supervised WAP [19] no 53.65 - - - 

Weakly Supervised WAP ∗6 [19] no 55.68 - - - 

Dual Loss Attention [27] yes 51.88 - - - 

PAL-v2 [26] yes 48.88 64.50 69.78 73.83 

PAL-v2 ∗5 [26] yes 54.87 70.69 75.76 78.60 

SDG [23] yes 55.68 - - - 

SDG ∗5 [23] yes 57.20 - - - 

Scale-Drop [24] yes 56.59 69.07 75.25 78.60 

Scale-Drop ∗5 [24] yes 60.45 73.43 77.69 80 . 12 

Ours ∗2 yes 61 . 63 76 . 64 79 . 38 79.44 
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Table 5 

Performance comparison of our proposed method and the state-of-the-art recogni- 

tion systems on CROHME16 test set (in %). 

System DA ExpRate ≤ 1 ≤ 2 ≤ 3 

DenseMSA ∗5 [18] no 52.8 63.80 67.40 68.50 

PGS [22] yes 45.60 62.25 70.44 75.76 

Weakly Supervised WAP [19] no 51.96 64.34 70.10 72.97 

Weakly Supervised WAP ∗6 [19] no 52.57 61.26 66.33 70.80 

Dual Loss Attention [27] yes 51.53 - - - 

PAL-v2 [26] yes 49.61 64.08 70.27 73.50 

PAL-v2 ∗5 [26] yes 57.89 70.44 76 . 29 79 . 16 

Scale-Drop [24] yes 54.58 69.31 73.76 76.02 

Scale-Drop ∗5 [24] yes 58.06 71.67 75.79 77.59 

SDG [23] yes 57.28 - - - 

SDG ∗5 [23] yes 59.20 - - - 

Ours ∗2 yes 59 . 81 73 . 91 76.09 76.52 

Table 6 

Performance comparison of our proposed method and the state-of-the-art recogni- 

tion systems on CROHME19 test set (in %). 

System DA ExpRate ≤ 1 ≤ 2 ≤ 3 

QD-GGA [36] no 40.65 60.01 64.96 - 

Univ. Linz [15] no 41.49 54.13 58.88 - 

BTTR [37] no 52.96 65.97 69.14 - 

SDG [23] yes 54.30 - - - 

SDG ∗5 [23] yes 56.13 - - - 

WAP + MHA+StackedDecoder [38] yes 61.38 75.15 80 . 23 82 . 65 

PAL-v2 ∗6 [15] yes 62.89 74.98 78.40 - 

Ours ∗2 yes 64 . 38 78 . 01 79.97 80.31 

Table 7 

Performance comparison of our proposed method and other competition 

recognition systems on OffRaSHME20 test set (in %). 

System DA ExpRate ≤ 1 ≤ 2 StruRate 

SYSU [16] no 61.35 77.30 81.55 82.90 

HCMUS-186 [16] no 66.95 79.65 83.60 84.00 

TUAT ∗ [16] no 71.75 82.70 85.80 86.60 

SCUT-DLVCLab [16] yes 72.90 86.05 88.80 89.45 

Ours ∗2 yes 75.68 87.35 90.70 - 

USTC-iFLYTEK ∗ yes 79 . 85 89 . 85 92 . 00 92 . 55 

B

a

“

i

t

t

p

fl

t

emantic information of the previous symbols instead of just the 

arent node information. 

.5. Comparison with the state-of-the-art 

In this section, we compare our method with the current state- 

f-the-art methods on both the CROHME test sets and the Of- 

RaSHME test set. In the experiment tables, ∗n means that an en- 

emble of n different recognition models and “DA” means data 

ugmentation. Table 4 shows the performance comparison of dif- 

erent approaches on CROHME14 test set. “Dense MSA” [18] used 

n enhanced DenseNet with an extra branch to deal with different 

izes of symbols. “PAL” [25] , “PAL-v2” and “Dual Loss Attention” are 

ll trained by adversarial learning. “PGS” [22] and “SDG” [23] used 

ifferent strategies to expand the number of training sets, while 

Scale-Drop” [24] randomly scaled the images in each training it- 

ration. We can see that the performance of our model achieves 

1.63% recognition accuracy on CROHME14 test set, which signif- 

cantly outperforms the other methods. Compared to other ap- 

roaches that use five or six models for ensemble, we achieve bet- 

er performance with only two models ( 1 . 18% ExpRate gain com- 

ared to the “Scale-Drop 

∗5 ” method). Meanwhile, a gap existed be- 

ween the correct and error percentages ( ≤ 1 ), showing that our 

ystem still has a large room for further improvements. 

To further confirm the generalization capability of our methods, 

e evaluate on CROHME16 competition test set in Table 5 . Our sys- 

em yields the best performance. It performs better than the per- 

ormance of “SDG” and “SDG 

∗5 ” by 2 . 53% and 0 . 61% in terms of

xpRate, respectively. Besides, we also compare the performance 

ith current state-of-the-art approaches on CROHME19 compe- 

ition dataset in Table 6 . “QD-GGA” method proposed a novel 

raph attention model and used multi-task learning for HMER. 
11 
oth of the methods “BTTR” and “WAP+MHA+StackedDecoder”

re equipped with multi-head attention in the network structure. 

Univ. Linz” and “PAL-v2 ∗6 ” are the competition systems participat- 

ng in CROHME19. Our method achieves a 3% higher ExpRate over 

he current method of “WAP+MHA+StackedDecoder” and also bet- 

er than the system “PAL-v2 ∗6 ”. 

Finally, we conduct the comparisons on the OffRaSHME20 com- 

etition test set in Table 7 , which is collected from the real of- 

ine scenario and is much more challenging. The system of “SYSU”

ransformed offline recognition to online recognition by applying 
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he stroke extraction algorithm. The team of “HCMUS-186” firstly 

sed DenseNet-161 to extract the visual feature maps from the 

mage and then adopted the Transformer architecture in both the 

ncoder and decoder. TUAT’s system equipped a symbol classifier 

ith the basic encoder-decoder model to improve the localization 

nd classification of the CNN features. And they used the ensemble 

ethod to increase the results. 

Second place team “SCUT-DLVCLab” applied scale augmentation 

nd drop attention [24] in the training stage. We (“USTC-iFLYTEK 

∗”) 

sed the data augmentation method in this paper as the core tech- 

ology and achieved first place. The main differences between our 

ystem and the competition system in this paper are as follows. 

irstly, we used an enhanced DenseNet-135 network with SE-Net 

39] , which can further enhance the visual feature learning abil- 

ty. Secondly, we trained dozens of models for the final ensemble. 

nd our ensemble strategy at that time was to rescore the over- 

ll path of the output LaTeX markup and the STL markup. Thirdly, 

e employed the training set data and our augmented data to 

rain a GRU-based language model further to help the recogni- 

ion model in the inference stage. The performance of “Ours ∗2 ” is 

5.68%, which is quite a competitive result compared with other 

articipating systems. Since ”StruRate” results in the leaderboard 

re officially published and the test scripts are not publicly avail- 

ble, our model does not show the result of this metric. 

. Conclusion and future work 

In this paper, we proposed a novel tree-based data augmenta- 

ion and tree-based mutual learning to build a better handwrit- 

en mathematical expressions recognition system. It gives signifi- 

ant performance improvements on both all CROHME competition 

atasets and the OffRaSHME competition dataset. We also demon- 

trated the rationality and effectiveness of the methods through 

xperiments. In the future, we will further refine data augmenta- 

ion methods to help the recognition model improve the robust- 

ess and generalization. Besides, we try to design a better network 

hat can combine the advantages of the string decoder and the tree 

ecoder. 
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