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ABSTRACT
The audio-video based emotion recognition aims to classify
a given video into basic emotions. In this paper, we describe
our approaches in EmotiW 2019, which mainly explores emo-
tion features and feature fusion strategies for audio and vi-
sual modality. For emotion features, we explore audio feature
with both speech-spectrogram and LogMel-spectrogram and
evaluate several facial features with different CNN models
and different emotion pretrained strategies. For fusion strate-
gies, we explore intra-modal and cross-modal fusion meth-
ods, such as designing attention mechanisms to highlights
important emotion feature, exploring feature concatenation
and factorized bilinear pooling (FBP) for cross-modal fea-
ture fusion. With careful evaluation, we obtain 65.5% on the
AFEW validation set and 62.48% on the test set and rank
third in the challenge.

CCS CONCEPTS
• Computer systems organization → Embedded sys-
tems; Redundancy; Robotics; • Networks→ Network relia-
bility.
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1 INTRODUCTION
Emotion recognition(ER) has attracted increasing attention
in academia and industry due to its wide range of appli-
cations such as human-computer interaction [7], clinical
diagnosis [19], and cognitive science [14]. Although great
progress in the face and video analysis has been made [4, 23,
26–29], audio-video emotion recognition in the wild remains
a challenging problem due to the expression suffers from the
large pose, illumination variance, occlusion, motion blur, etc.
Audio-Video emotion recognition can be summarized as

a simple pipeline shown in Fig 1, which includes four parts,
namely Video preprocessing, Feature Extraction, Feature Fu-
sion, and Classifier. Specifically, video preprocessing refers to
extract the spectrogram of the audio, the faces or landmarks
of video. Feature extraction and feature fusion respectively
extracts emotion features from the audio or visual signal and
fuses emotion features into compact feature vectors, which
are subsequently fed into a classifier for prediction.

Reviewing the methods of Audio-Video emotion recogni-
tion, we find that somemethods emphasize feature extraction
and other methods emphasize feature fusion. Yao et al [31]
construct Holonet as discriminative feature extraction, which
combines residual structure [12] and CReLU [22] to increase
network depth and maintain efficiency. The EmotiW2017
winner team [13] gets robust feature extraction with Super-
vised Scoring Ensemble (SSE) which adds supervision to
intermediate layers and shallow layers. Since SSE only uses
high-level representations, Fan et al[8] further improve SSE
by utilizing middle feature maps to provide more discrimi-
native features. These methods mainly use average pooling
to obtain video-level representation from frame-level.
Many feature fusion strategies have been used in pre-

vious EmotiW challenges. [9, 18, 25] extract CNN-based
frame features and use LSTM[10] or BLSTM[11] to fuse them.
[1, 15, 17] use Statistical encoding module to aggregate frame
features which compute the mean, variance, minimum, and
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Figure 1: The pipeline of audio-video emotion recognition.

maximum of the frame feature vectors. However, these meth-
ods ignore the importance of frames. Besides, all previous
methods mainly apply score averaging or feature concate-
nation for audio-video fusion, which ignores the correlation
between the features from different modalities.
In this paper, we exploit three types of intra-modal fu-

sion methods, namely self-attention, relation-attention, and
transformer[24]. They are used to learn weights for frame
features to highlight important frames. For cross-modal fu-
sion, we explore feature concatenation and factorized bilinear
pooling (FBP) [32]. Besides, we evaluate different emotion
features, including convolutional neural networks (CNN)
for audio information with both speech-spectrogram and
Log Mel-spectrogram and several facial features with differ-
ent CNN models and different emotion pretrained strategies.
Finally, we obtain 62.48% and rank third in the challenge.

Our contributions and finds can be summarized as follows.
• We experimentally show that better face recognition
CNN models and choosing suitable emotion datasets
to further pretrain the face CNN models is important.
• We design three kinds of attention mechanisms for
visual and audio feature fusion.
• We apply a Factorized Bilinear Pooling (FBP) for cross-
modal feature fusion.

2 THE PROPOSED METHOD
We develop our ER system based on the pipeline of Video
preprocessing-Feature Extraction-Feature Fusion-Classifier.

Video preprocessing
Face detection and alignment. We apply face detection and
alignment by Dlib toolbox1. We extend the face bounding box
with a ratio of 30% and then resize the cropped faces to scale
of 224 × 224. We do not apply face detection and alignment
for AffectNet dataset, due to the face bounding box had been
1http://dlib.net/

provided. For AFEW dataset, If no face is detected in the
picture, the entire frame is passed to the network.

Audio processing and Spectrogram calculation. For each au-
dio, the speech spectrogram and log Mel-spectrogram ex-
traction process is consistent with [32] and [3] respectively.
For speech spectrogram, we use the Hamming window with
40 msec window size and 10 msec shift. Finally, the 200-
dimensional low-frequency part of the spectrogram is used as
the input to the audio modality. As for log Mel-spectrogram,
we calculate its deltas and delta-deltas.

Feature Extraction
Visual Features. We apply three CNN backbones to extract
facial emotion features, namely VGGFace, ResNet18, and
IR50 [4]. The dimensions are 4096, 512, and 512, respectively.

Audio Feature. We extract the feature maps of the audio from
the last Pooling layer of AlexNet. The size of a 3-dimensional
featuremap isH×W ×C , where theH (W ) is the height(width)
of the feature map, and C is the number of the channel
of the feature map. The feature maps are then split into
n vectors(n = H ×W ). Each vector is C-dimensional.

Intra-modal Feature Fusion
We apply the attention-based strategies for intra-modal fea-
ture fusion. It converts a variable number of emotion fea-
tures(from audio or visual modality) into a fixed-dimension
feature. We explore three attention methods, namely Self-
attention, Relation-attention, and Transformer-attention. For-
mally, we denote a number of emotion features as {f1, · · · , fn }.

Self-attention. We apply 1-dimensional Fully-Connected(FC)
layerW0

d×1 and a sigmoid function σ for each emotion fea-
ture, the weight of the i-th feature f Ti is defined by:

αi = σ (f Ti ·W
0
d×1) (1)
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With these self-attention weights, we aggregate all the
emotion features into a global representation fs as follows:

fs =

∑n
i=1 αi fi∑n
i=1 αi

. (2)

Relation-attention. This attention module was designed to
learn weights from the relationship between features. Af-
ter the self-attention, features are aggregated into a single
vectorfs . Since fs inherently contains global representation
of these features, we use the sample concatenation of indi-
vidual features and global represenation [fi : fs ] to model
the global-local relation. Similar to the Self-attention module,
with individual emotion features, we apply 1-dimensional FC
layerW1

d×1 and a sigmoid function σ . The relation-attention
weight of the i-th feautre [fi : fs ]T is formulated as follows:

βi = σ ([fi : fs ]T ·W1
d×1), (3)

With Self-attention and Relation-attention weights, all the
emotion features was convert into a new feature as follows:

fr =

∑n
i=0 αiβi [fi : fs ]∑n

i=0 αiβi
. (4)

Transformer-attention. Inspired by the works in[32] and [30],
we formulate the attention weight as follows:

f ′i =W2
m×d · fi + b (5)

γi = exp(utd×1 · tanh(f ′i )) (6)
To reduce the dimension of the feature fi , we use aw × d-

dimensional FC layer W2
m×d in Eq.(5). Then the weight of

the i-th feautre fi is processed by a 1-dimensional FC layer
ut, exp() and tanh() function in Eq.(6).
With these transformer-attention weights, we aggregate

all the emotion features into a single feature ft as follows:

ft =

∑n
i=1 γi fi∑n
i=1 γi

. (7)

Cross-modal Feature Fusion

Figure 2: Our factorized bilinear pooling(FBP) module.

We apply Factorized Bilinear Pooling(FBP) for cross-
modal feature fusion. Given two features in different modali-
ties,i.e. the audio feature vector a ∈ Rm for a spectrogram
and visual featurev ∈ Rn for frame sequence, the simplest
cross-modal bilinear model is defined as follows:

zi = aTW iv (8)

whereW ∈ Rm×n is a projection matrix, zi ∈ R is the
output of the bilinear model. we use the Eq.(9) to obtain the
output feature z = [z1, · · · , zo]. The formula derivation from
formula Eq.(8) to Eq( 9) was discribed in the paper[32].

z = [z1, · · · , zo] = SumPooling(ŨT
a ◦ Ṽ

T
v,k) (9)

The implementation of Eq( 9) is illustrated in Fig2, where
Ũ

T
a and ṼT

v are implemented by feeding feature a andv to
FC layers, respectively, and the function SumPooling(x ,k)
applies sum pooling with non-overlapped windows to x .
Besides, Dropout is adopted to prevent over-fitting. The l2-
normalization (z ← z/∥z∥) is used to normalize the energy of
z to avoid the dramatical variation of the output magnitude,
due to the introduced element-wise multiplication.

3 EXPERIMENTS
Dataset
In this workwe use four emotion datasets to train ourmodels,
i.e. AffectNet[20], RAF-DB[16], FER+[2], AFEW[5, 6].

The human-annotated part of AffectNet dataset contains
287,651 training images and 4,000 test images, which are
annotated with both emotion labels and arousal valence
values. Only emotion labels are used in this task.

The RAF-DB dataset consists of 15,339 images labeled
with 7-class basic emotion and 3,954 labeled with 12-class
compound emotion. Only images labeled with basic emotion
are used in this study.

The FER+ dataset contains 28,709 training, 3,589 validation
and 3,589 test images. We combine its training data with
validation data for the training split and evaluate the model
performance on the test data.
The AFEW contains 773 train, 383 val and 653 test sam-

ples, which are collected from movies and TV serials with
spontaneous expressions, various poses, and illuminations.

Exploration of Emotion Features
We explore emotion features in two perspectives, namely
CNN backbones and pretraining emotion datasets.
For the choice of the CNN model, we compare IR50[4],

ResNet18[12], and VGGFace[21] in the Table 1, where the
former two models are pretrained on MS-Celeb-1M dataset
and the last one on VGGFace dataset. We find that the large
CNN, IR50, is superior to the other two models.
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We use the well-trained IR50 model to extract features
and only train softmax classifier using these features. The
IR50 models pre-trained on FER+, RAF-DB, and AffectNet
achieve 50.13%, 51.436%, and 53.78%, respectively. Therefore,
we choose the IR50 model pretrain on AffectNet as our visual
features in the following fusion experiments.

Table 1: Exploration of CNNmodels and pretrained emotion
datasets.

Model FER+ RAF-DB AffectNet

VGGFace 88.84% 86.93% 51.425%

ResNet18 88.65% 86.696% 52.075%

IR50 89.257% 89.075% 53.925%

Exploration of Fusion Strategies
We explore three intra-modal attention strategies with the
FBP cross-modal fusion. We use speech spectrogram for au-
dio CNN, which obtains 38% on AFEW validation set indivi-
dally. In the Table 2, we find the FBP improves performance
for all the intra-modal fusion methods. Transformer atten-
tion for intra-modal fusion is the best for FBP.

Table 2: Evaluation of intra-modal fusion methods.

Audio
Visual Self Relation Transformer

Self 54.6% 56.9% 60.3%

Relation 54.0% 57.2% 60%

Transformer 54.8% 58% 61.1%

We also use log Mel-spectrogram for audio CNN, which
obtains a little better performance, but the final results are
very similar after intra- and cross-modal fusion. Besides, the
concatenation of audio and visual vectors gets 58% accuracy
in AFEW validation set with transformer attention. This is
3% lower than FBP which shows the effectiveness of FBP.

Feature Enhancement
In the Table 3, the Basic Features means that we only ex-
tract one feature vector for each frame. Besides, We apply
5 kinds of feature enhancement strategies as presented in
Table 3. Specifically, for feature F -Mean, we first obtain 18
transformation frames by using three rotations, three scales,
and flipping for a frame. After that, we compute the features
of these 18 transformation frames and average these 18 fea-
tures as the feature F -Mean. For the feature F -MeanStd , we
compute the average feature and feature standard deviation
of these 18 features. We then concatenate the average feature

and the standard deviation as F -MeanStd . For the feature F -
normFFT , we first compute the Fast Fourier transform(FFT)
of the Basic Feature, and then normalize the feature and con-
catenate the real and imaginary parts as F -normFFT . For the
feature F -AR-Mean, A means that the features are extracted
by the models pre-trained on Affectnet, and R by the mod-
els pre-trained on RAF-DB. we concatenate these two mean
features of two different pretrained models as F -AR-Mean.

Table 3: Evaluation of five feature enhancement strate-
gies. The default setting is Rotation ∈ [−2°, 0°, 2°], scale ∈
[1, 1.03, 1.07]

Visual Feature Augmentation details AFEW Val acc

Basic Feature —- 61.1%
Basic Feature_RAF-DB —- 58.5%

F-Mean default setting 62.14%
F-MeanStd default setting 63.7%

F-MeanStd-2 Rotation ∈ [−15°, 0°, 15°]
scale ∈ [0.75, 1, 1.25] 62.4%

F-NormFFT Normalized FFT 61.35%
F-AR-Mean default setting 62.92%

FG-Net —- 59%

Table 3 shows that the five feature enhancement methods
further improve the performance of FBP where the feature
F-MeanStd achieves the best result on the validation set.

Table 4: Submission results of differentmodel combinations.

Sub Val Test Fusion detail

(1) —- 62.481% 4 FG-Net-1
(2) —- 59.112% 2 F-MeabStd-2 + 2 F-AR-Mean
(3) —- 54.518% 4 FG-Net-2
(4) 64.5% 61.41% 4 F-MeanStd

(5) 65.5% 62.328% F-Mean + F-MeanStd + F-NormFFT
+ F-MeanStd-2 + F-AR-Meam

Results On EmotiW2019
In the Table 4. The first three submitted models are trained
on the training and validation set of AFEW, and the last
two models are trained on the training set of AFEW. We
find that it is difficult to choose models and fuse models if
combining the validation set with the training set. We adopt
class weight in all submissions, which means that we re-
weight the predicted scores by the square root of the sample
numbers([0.15, 0.097, 0.129, 0.185, 0.138, 0.082, 0.215]).

4 CONCLUSIONS
In this paper, we exploit three types of intra-modal fusion
methods, namely self-attention, relation-attention, and trans-
former. They are mainly used to highlight important emotion
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feature. For the fusion of audio and visual information, we
explore feature concatenation and factorized bilinear pooling
(FBP). Besides, we evaluate different emotion features, in-
cluding an audio feature with both speech-spectrogram and
Log Mel-spectrogram and several facial features with differ-
ent CNN models and different emotion pretrained strategies.
With careful evaluation, we obtain 62.48% and rank third in
the EmotiW 2019 Challenge.
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