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What’s new in this study

Speech enhancement in low SNR environments via:

• SNR-based problem decomposition
• Progressive learning
• Compact DNN with less parameters

Background

Deep learning for speech enhancement:

• Learning time-frequency mask (IBM or IRM) as classification (Wang et,
al., 2014)

• Learning target spectra as regression (Xu et, al., 2014, 2015) with a
classical DNN configuration (Figure 1):
1799(257*7)_2048_2048_2048_257, 12.6M parameters

• Learning soft mask as regression (Huang et, al., 2014; Weninger et, al.,
2014)

Challenge:

• One challenge is the performance degradation in low SNR environments.
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Figure 1: Regression DNN-based speech enhancement

Progressive Learning

•
Method: The direct mapping process is decomposed into multiple stages
with an SNR gain achieved in each stage as shown in Figure 5.
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Figure 2: Illustration of SNR-based progressive learning.

DNN implementation

We guide hidden layers to learn targets explicitly, as shown in Figure 3:
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Figure 3: DNN architecture for progressive learning.

•
DNN: 1799(257*7)_2048_257_2048_257_2048_257, 6.3M

•
forward pass: linear active function in the target layers

•
backward pass: objective function defined for the 3 targets (Err1, Err2,
Err3):
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back-propagated gradients in a weighted sum fashion as:
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Experiment configuration

Training data:

• clean speech: WSJ0 (about 12h)
• noise: 115 noise types
• SNR configuration: Table 1

Table 1: Target SNR configurations for progressive learning

Input Target 1 Target 2 Target 3
-5dB 5dB 15dB clean speech
0dB 10dB 20dB clean speech
5dB 15dB 25dB clean speech

Testing configuration:

• three unseen noises from the NOISEX-92 corpus: babble, factory and
destroyer engine

Post-processing: average multiple estimated features to further improve
the overall performance

Results: Single-SNR training

Table 2: A detailed PESQ and STOI comparison of different single-SNR training systems at 0dB SNR

on the test set of three unseen noise environments (N1: Babble, N2: Factory, N3: Destroyer engine),

among: Noisy, DNN baseline, estimations of different levels of SNR and SNR-based progressive learning

combined with post-processing (denoted as SNR-PL DNN: PP).

N1 (0dB) N2 (0dB) N3 (0dB)
System PESQ STOI PESQ STOI PESQ STOI
Noisy 1.683 0.711 1.689 0.757 1.636 0.749

Baseline DNN (12.6M) 1.775 0.710 1.875 0.702 1.760 0.694

SNR-PL DNN: Out1 1.828 0.730 1.850 0.764 1.693 0.763
SNR-PL DNN: Out2 2.015 0.747 2.023 0.764 1.866 0.757
SNR-PL DNN: Out3 1.789 0.731 1.894 0.722 1.760 0.710

SNR-PL DNN: PP (6.3M) 2.007 0.766 2.017 0.783 1.928 0.781

-5dB Results: Multi-SNR training
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Figure 4: PESQ and STOI comparison for multi-SNR training system at -5dB.

0dB Results: Multi-SNR training
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Figure 5: PESQ and STOI comparison for multi-SNR training system at 0dB.

Demo

(a) noisy speech (PESQ=1.278, STOI=0.619)

(c) DNN baseline (PESQ=1.496, STOI=0.566)

(b) clean speech

(d) out3 of SNR-progressive learning (PESQ=1.578, STOI=0.709)

(e) SNR-progressive learning+post-processing (PESQ=1.628, STOI=0.722)

Figure 6: Spectrograms of an utterance corrupted by Destroyer engine noise at -5dB SNR
and enhanced by multi-SNR training: (a) noisy speech, (b) clean speech, (c) DNN baseline
(PESQ=1.496, STOI=0.566); (d) out3 in the proposed DNN (PESQ=1.578, STOI=0.709);
(e) further post-processing (PESQ=1.628, STOI=0.722).

Conclusion

• A novel SNR-based progressive learning framework was proposed for
DNN based speech enhancement.

• It was implemented by guiding hidden layers in the DNN architecture to
learn targets explicitly.

• It can improve performance in low SNR environments and reduce
parameters by 50%.
















