

What's new in this study

Speech enhancement in low SNR environments via:

- SNR-based problem decomposition
- Progressive learning
- Compact DNN with less parameters

Background

Deep learning for speech enhancement:

- Learning time-frequency mask (IBM or IRM) as classification (Wang et, *al.*, 2014)
- Learning target spectra as regression (Xu et, al., 2014, 2015) with a classical DNN configuration (Figure 1):
- 1799(257*7)_2048_2048_2048_257, 12.6M parameters
- Learning soft mask as regression (Huang et, al., 2014; Weninger et, al., 2014)

Challenge:

• One challenge is the performance degradation in low SNR environments.

Figure 1: Regression DNN-based speech enhancement

SNR-Based Progressive Learning of Deep Neural Network for Speech Enhancement

Tian Gao¹, Jun Du¹, Li-Rong Dai¹ and Chin-Hui Lee²

¹NELSLIP, University of Science and Technology of China, Hefei, Anhui, China

Progressive Learning

• Method: The direct mapping process is decomposed into multiple stages with an SNR gain achieved in each stage as shown in Figure 5.

Figure 2: Illustration of SNR-based progressive learning.

DNN implementation

We guide hidden layers to learn targets explicitly, as shown in Figure 3:

Figure 3: DNN architecture for progressive learning.

•**DNN**: 1799(257*7)_2048_257_2048_257_2048_257_2048_257, 6.3M

- forward pass: linear active function in the target layers
- **backward pass**: objective function defined for the 3 targets (Err_1 , Err_2 , Err_3):

$$Err = \frac{1}{N} \sum_{n=1}^{N} (\|\hat{X}_{n}^{t} - X_{n}^{t}\|_{2}^{2})$$

(1)

back-propagated gradients in a weighted sum fashion as:

$$\boldsymbol{\epsilon} = \frac{\partial(Err_3)}{\partial(\boldsymbol{W}^{\ell}, \boldsymbol{b}^{\ell})} + \alpha_2 \frac{\partial(Err_2)}{\partial(\boldsymbol{W}^{\ell}, \boldsymbol{b}^{\ell})} + \alpha_1 \frac{\partial(Err_1)}{\partial(\boldsymbol{W}^{\ell}, \boldsymbol{b}^{\ell})}$$
(2)
$$\underset{1 \le \ell \le L_3 + 1}{1 \le \ell \le L_2 + 1} + \alpha_1 \frac{\partial(Err_1)}{\partial(\boldsymbol{W}^{\ell}, \boldsymbol{b}^{\ell})}$$

²Georgia Institute of Technology, Atlanta, Georgia, USA

Experiment configuration

Training data:

- clean speech: WSJ0 (about 12h)
- noise: 115 noise types
- SNR configuration: Table 1

Table 1: Target SNR configurations for progressive learning

Input	Target 1	Target 2	Target 3
-5dB	5dB	15dB	clean speech
0dB	10dB	20dB	clean speech
5dB	15dB	25dB	clean speech

Testing configuration:

 three unseen noises from the NOISEX-92 corpus: babble, factory and destroyer engine

Post-processing: average multiple estimated features to further improve the overall performance

Results: Single-SNR training

Table 2: A detailed PESQ and STOI comparison of different single-SNR training systems at 0dB SNR on the test set of three unseen noise environments (N1: Babble, N2: Factory, N3: Destroyer engine), among: Noisy, DNN baseline, estimations of different levels of SNR and SNR-based progressive learning combined with post-processing (denoted as SNR-PL DNN: PP).

	N1 (0dB)		N2 (0dB)		N3 (0dB)	
System	PESQ	STOI	PESQ	STOI	PESQ	STOI
Noisy	1.683	0.711	1.689	0.757	1.636	0.749
Baseline DNN (12.6M)	1.775	0.710	1.875	0.702	1.760	0.694
SNR-PL DNN: Out1	1.828	0.730	1.850	0.764	1.693	0.763
SNR-PL DNN: Out2	2.015	0.747	2.023	0.764	1.866	0.757
SNR-PL DNN: Out3	1.789	0.731	1.894	0.722	1.760	0.710
SNR-PL DNN: PP (6.3M)	2.007	0.766	2.017	0.783	1.928	0.781

Demo

Figure 6: Spectrograms of an utterance corrupted by Destroyer engine noise at -5dB SNR and enhanced by multi-SNR training: (a) noisy speech, (b) clean speech, (c) DNN baseline (PESQ=1.496, STOI=0.566); (d) out3 in the proposed DNN (PESQ=1.578, STOI=0.709); (e) further post-processing (PESQ=1.628, STOI=0.722).

Conclusion

- A novel SNR-based progressive learning framework was proposed for DNN based speech enhancement.
- It was implemented by guiding hidden layers in the DNN architecture to learn targets explicitly.
- It can improve performance in low SNR environments and reduce parameters by 50%.