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ABSTRACT
Satisfactory recognition performance has been achieved for simple
and controllable printed molecular images. However, recognizing
handwritten chemical structure images remains unresolved due to
the inherent ambiguities in handwritten atoms and bonds, as well
as the signifcant challenge of converting projected 2D molecular
layouts into markup strings. Target to address these problems, this
paper proposes an end-to-end framework for handwritten chemical
structure images recognition, with novel structure-specific markup
language (SSML) and random conditional guided decoder (RCGD).
SSML alleviates ambiguity and complexity in Chemfig syntax by de-
signing an innovative markup language to accurately depict molec-
ular structures. Besides, we propose RCGD to address the issue
of multiple path decoding of molecular structures, which is com-
posed of conditional attention guidance, memory classification and
path selection mechanisms. In order to fully confirm the effective-
ness of the end-to-end method, a new database containing 50,000
handwritten chemical structure images (EDU-CHEMC) has been
established. Experimental results demonstrate that compared to
traditional SMILES sequences, our SSML can significantly reduces
the semantic gap between chemical images and markup strings. It
is worth noting that our method can also recognize invalid or non-
existent organic molecular structures, making it highly applicable
for tasks related to teaching evaluations in the fields of chemistry
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1 INTRODUCTION
Recognition systems for chemical molecular structures have been
widely utilized in various fields, including pharmaceutical research
and development, human-computer interaction, biochemistry, edu-
cation, and organic synthesis [13, 16, 24]. These systems are partic-
ularly valuable for pharmaceutical enterprises, as they enable the
gathering and organization of millions of chemical molecular struc-
tures from academic journals and patents spanning several decades.
By incorporating visualization technology, large-scale chemical
molecular structure databases [5] can be enhanced, improving ef-
ficiency and convenience in analyzing drug molecular structures.
Therefore, it is crucial to develop user-friendly tools that facilitate
effective human-computer interaction.

Thanks to advancements in computer vision techniques [8, 12,
15, 20], recent years have witnessed significant advancements in
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chemical molecular structure recognition for both the commer-
cial and academic communities [4, 5, 22, 23, 25, 35, 40]. Despite
the great success, most existing methods overlook recognizing
handwritten molecular images and oversimplify the complexity of
molecular structure recognition, relying excessively on rule-based
post-processing methods. Recognizing large and complex molecu-
lar structures still remains a great challenge due to the complexity
of 2D projections from 3D molecular structures, such as Natta pro-
jection and Fischer projection.

To model complex molecular structures and generalize to vari-
ant handwritten images, in this paper, we propose a novel solu-
tion which has two prominent components. First, a new structure-
specific markup language (SSML) is designed to minimize the se-
mantic gap between molecular structure images and sequence-
styled markup annotations. The proposed SSML is derived from
the visual characteristics of molecular structures, making it more
suitable for handling complex molecular structures. Second, we
propose a random conditional guided decoder (RCGD), which can
be seen as a graph traversal, to address the issue of multiple path
decoding of molecular structures (Fig. 1).

As shown in Fig. 1(a), the process of RCGD starts with a branch
point which generates two candidate branch angle units (BAUs),
with BAU-1 pointing upwards and BAU-2 to the lower right. Both
of them are sent to the memory and tagged as unexplored. Subse-
quently, in Fig. 1(b), RCGD selects BAU-1, and marks it as explored
with light yellow. The decoding process continues by traversing
upwards along BAU-1. At the moment of Fig. 1(e), the red path
completes the traversal of one branch, and then RCGD selects BAU-
6 to continue traversing (the blue arrow). However, the atom it
encounters is already connected with a visited atom (two red solid
circles), resulting in a "re-connection" relationship that needs to
be predicted by the model. The corresponding candidate BAU-8
is explored, and its states are marked as light yellow in Fig. 1(f).
The decoding process continues in this way and concludes until all
bonds and atoms on the graph are traversed.

To validate the effectiveness of our method, we establish a new
database named EDU-CHEMC which contains 50, 000 handwritten
molecular structure images as well as corresponding SSML-styled
annotations. Extensive experiments are conducted on both the
public Mini-CASIA-CSDB data set [5] and our EDU-CHEMC. With
the proposed structure-specific markup language, our end-to-end
decoder RCGD achieves state-of-the-art performances with an exact
match (EM) score of 95.01% and 62.86% on the Mini-CASIA-CSDB
test set and EDU-CHEMC test set using a DenseNet [10] backbone,
outperforming other methods by a large margin.

Our main contributions can be summarized as follows:

• We establish a new benchmark named EDU-CHEMC, com-
prising 50, 000 handwritten molecular structure images gath-
ered from diverse devices such as cameras, scanners, and
electronic screens. SSML-styled annotations are also avail-
able and will be made public soon.

• A new molecular structure markup language (SSML) is de-
signed. SSML demonstrates greater consistency with images
and is not restricted by chemical knowledge. This flexibility
allows it to represent erroneous or non-existent molecular
structures, making it particularly suitable for learning.
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Figure 1: Illustration of the "graph traversal process" in
RCGD. The "Memory" stores the current states of all branch
angle units (BAUs). (a) to (e) show partial traversal paths in
temporal order, where the red arrows cover the visited bonds
and atoms, and the numbered arrows represent the candidate
BAUs with their IDs. The deep yellow arrow indicates unex-
plored BAUs, while the light yellow arrow denotes explored
or exhausted ones. (f) In (e) denotes a "re-connection" rela-
tionship (two red solid circles) where an atom hass already
connected to a previously visited atom.

• We introduce a novelmolecular structure recognitionmethod
called Random Conditional Guided Decoder (RCGD). By in-
corporating conditional attention guidance, memory clas-
sification and path selection mechanisms, RCGD surpasses
conventional string decoders by a large margin.

2 RELATEDWORK
2.1 Molecular structure representation
The representation format for chemical molecular structures has
always been a crucial concern in academic writing related to chem-
ical and biological technologies. Traditionally, molecular structures
were predominantly conveyed through images. However, the emer-
gence of big data and knowledge discovery has led to the increasing
use of SMILES [30] or inChl [9] notation in recent chemistry pa-
pers to represent chemical formulas. Furthermore, RDKit, an open-
source package, provides support for diverse chemical informatics
operations, such as 2D and 3D molecular structural manipulations,
molecular visualization, and other functionalities. The RDKit toolkit
facilitates seamless conversion between SMILES and Chemfig [21].
In this paper, we utilize Chemfig for annotating molecular formulas.
Chemfig is specifically designed for drawing molecular structure
images, thereby reducing the semantic gap between the visual rep-
resentation and the corresponding annotation.

2.2 Handcrafted rules based modeling
In the field of molecular structure recognition, a combination of
traditional image analysis, and recognition with rule-based post-
processing has been the predominant method [23, 35, 40] between
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1990 and 2017. This approach involves a sequence of mandatory pro-
cedures. Firstly, image pre-processing techniques are applied such
as noise reduction, thinning, and enhancing images. Afterwards,
the corresponding handcrafted features, including SIFT or HOG
features, are extracted. Finally, a perceptron or SVM classifier is
employed for recognition. To recognize text in structural formulas
image, either template matching or existing OCR engines are usu-
ally utilized. Precise reconstruction of molecular structural formula
characteristics is essential for higher performance. Accurate and
clear identification of each component’s location and properties is
essential. The recognition accuracy is significantly affected if the
position precision is insufficient.

Recently, advancements in computer vision techniques for object
detection [2, 27, 28, 36] and semantic segmentation [11, 12, 17, 19, 29,
37, 43, 46] have significantly improved the detection of molecular
elements and chemical bonds. Combining extracted content and
location of elements, together with rule-based post-processing [35]
has led to higher accuracy. To further improve effectiveness, several
studies focus on identifying recognition error patterns in the model.
Additionally, machine translation models [26, 31] have been used
to post-process and correct identified structural errors.

2.3 End-to-End modeling
Scholars in the field of hand-writtenmathematical expression recog-
nition have proposed end-to-end recognition methods [14, 33, 38,
40, 41, 45] based on sequence modeling strategies, in addition to
chemical molecular structure recognition tasks. These methods
have significantly improved recognition accuracy and expanded
their application scope, including automatic math problem-solving
robots. Further research on TreeDecoder [41, 45], structured string
decoder [33], and other methods [32, 34, 39, 42] has led to the
realization that reducing the semantic gap between images and
annotations is an effective means of completing image to markup
generation. Drawing inspiration from this idea, this paper proposes
a structure-specific sequence modeling method designed explicitly
for molecular structure recognition. By doing so, this approach
reduces the semantic gap between images and annotations while
also more effectively tagging the image structure for direct and
efficient modeling. Currently, several related end-to-end molecular
structure recognition methods [4, 23, 31] are available. However,
using SMILES format for chemical structure representation has limi-
tations. It requires domain-specific knowledge and does not provide
complete information regarding chemical structures, resulting in
less effective modeling and recognition efficiency.

3 METHODOLOGY
In this section, we first introduce the details of Structure-Specific
Markup Language (SSML) and then present the Random Condi-
tional Guided Decoder (RCGD).

3.1 The Structure-Specific Markup Language
Our SSML is most closely-related to Chemfig, a LaTeX package uti-
lizing TikZis and serves as a markup language for chemical struc-
tural formulas. Compared to the most commonly used SMILES,
Chemfig has advantages on keeping structural appearance of chem-
ical images and requires minimal abstract chemical knowledge.

(a) (b)

Figure 2: (a) The handwritten chemical molecular image. (b)
The rendered image from the corresponding Chemfig string
H_{4}C-N(=[1]O)=[-1]O.

Fig. 2(a) presents an handwritten chemical molecular image to
illustrate the Chemfig syntax. In Fig. 2(a), the atom "N" is connected
to two double bonds, one pointing towards the upper-right direction
and the other towards the lower-right direction. Chemfig provides a
description of "angle" to specify the orientation of bonds in a mole-
cule, such as "[1]" and "[-1]" to express the approximate orientation
of these two double bonds. The angle information enables Chemfig
to stick to the molecular structure and build a more comprehensive
visual representation.

Despite its advantages, employing Chemfig markup strings as
the target for Encoder-Decoder training encounters following chal-
lenges: a) Ambiguity in Chemfig syntax. Different starting points
and traversal orders result in multiple correct Chemfig sequences
that can represent the same molecule image. This ambiguity is
unavoidable and increases the difficulty of model learning. b) Com-
plexity of Chemfig syntax. Prior rules and domain knowledge are
necessary for Chemfig to ensure correct labeling of compound
structures, which adds to the complexity. To address the above
issues, we extend the Chemfig and propose a structure-specific
markup language (SSML), as presented in Fig. 3. The structure-
specific SSML is unambiguous and more effectively incorporates
visual information, akin to following step-by-step instructions for
drawing the molecular structure.

3.1.1 Structure Analysis. Fig. 3(a) displays three different Chem-
fig markup strings, all representing the same molecular formula.
To resolve this ambiguity, SSML extends Chemfig’s syntax and
present a graph representation for molecular structure. Parsing
with hand-crafted rules, we can recover all "atomic groups" and
"chemical bonds" from the SSML-styled strings and then connect
them to produce a graph. Fig. 3(b) displays a graph example where
strings such as "HO", "COOH" or vertices of benzene rings are de-
noted as "atomic groups". For benzene ring, we treat the central
ring as a special atomic group. The lines between atomic groups
indicate "chemical bonds", which can be single "-", double "=", or
triple "∼" bonds. An atomic group can be connected to another
atomic group through a single or multiple chemical bonds. By us-
ing atomic groups as vertices and chemical bonds as edges, we
obtain a graph representation of the molecular structure (Fig. 3(c).
The graph representations of the same molecule are identical even
with various Chemfig markup strings, eliminating ambiguity in
annotation.
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3.1.2 Structure-Specific Markup Generation. The graph produced
during the structure parsing step is a complex data structure that
must be converted into a form suitable for model training, for
Encoder-Decoder models, this typically means a one-dimensional
string, or standardized label. Here we just briefly introduce the
steps for generating the SSML:

• Step 1: Start with a graph representation of the molecule or
chemical structure and traverse from a designated starting
point (typically the left-most atom).

• Step 2: As you traverse, add the atoms and chemical bonds
to the output string. For the atoms, include their written
representation while ensuring consistency with their vi-
sual appearance. As for the chemical bonds, use the for-
mat "<bond>[:<angle value>]" to indicate the bond type and
drawing angle. The angle value is calculated during graph
construction and output according to the format.

• Step 3: When confronted with a branch point containing
multiple branches, we follow an ascending traversing order
according to chemical bond angles. For the selected branch,
a pair of "phantom" symbols named "(" and ")" are employed
to enclose the resulting markup strings.

• Step 4: If a reconnection is detected, the notations "?[<tag>]"
and "?[<tag>,<bond>]" will be added to the output sequence
following the relevant atoms. A pair of notations with the
same tag denotes the starting and ending atoms of the re-
connection. For instance, as illustrated in Fig. 3(c), "?[a]" and
"?[a,-]" represent a reconnection with a single bond.

• Step 5: For the circle in benzene ring, we consider it as a
special atom, defined as "\circle", which is connected to a
certain atom on the benzene ring via a virtual bond "- -".

• Step 6: Once the traversal is finished, we obtain the SSML
label, as depicted in Fig. 3(c), where modeling units are sepa-
rated by spaces. The SSML comprises five types of elements,
namely "atomic group," "bond", "angle", "phantom," and "re-
connection mark".

The SSML mentioned above can be directly used as the training
target for the String Decoder widely used in SMILES-based methods.
For convenience, we refer to it as SD-SSML. For the RCGD method
proposed in this paper, we need to make slight modifications. We
refer to the modified markup language as RCGD-SSML, which will
be discussed in next section together with the RCGD method.

3.2 Random Conditional Guided Decoder
Among all the attention-based Encoder-Decoder frameworks used
for identifying handwritten mathematical expressions, the String
Decoder and Tree Decoder are the most frequently used decoder
modules. This paper employs the widely-used LaTeX-based string
decoding paradigm, as it is a widely-used model for translating
chemical structure images into SMILES strings. In light of this,
we briefly review the RNN-based string decoder, followed by a
discussion of its differences compared with the proposed RCGD.

3.2.1 String Decoder. We feed the image I into the encoder to
extract visual features 𝑥 ∈ R𝑑𝑥×ℎ×𝑤 ,where 𝑑𝑥 represents the
dimension of the output features, and ℎ and𝑤 represent the height
and width of the feature map outputted by the encoder, which can

HO-**6(---(-COOH)---)

COOH-[4]**6(---(-OH)---)

**6([:30]-(-OH)---(-COOH)--)

H O -[:0] ?[a] ( -[:60] -[:0] -[:300] ( -[:0] C O O

H ) -[:240] -[:180] ?[a,{-}] ( --[:60] \circle ) )

Atom group

Bond Angle Phantom

Reconnection mark

HO COOH

(a) (b)

(c)

H O -[:0] \angle[:60] \angle[:300] \eob

-[:60] -[:0] -[:300] \angle[:0] \angle[:240] \eob

-[:0] C O O H \eob

-[:240] -[:180] \angle[:60] \angle[:120] \eob

--[:60] \circle \eob

reconnection

(d)

Figure 3: (a) Original equivalent Chemfig strings. (b) Molec-
ular structure image. (c) The SSML label for String Decoder
(SD-SSML). (d) The SSML label for RCGD (RCGD-SSML).

be a CNN or ViT [6, 18] structure. Once the encoded features are
obtained, the model decodes each character in an autoregressive
manner. In each step of the decoding process, attention modules
are used to query the visual context features in 𝑥 that are relevant
to the current decoding state. The calculation process is as follows:

𝑒𝑡,𝑖 = 𝑤𝑇 tanh(𝑊 𝑥𝑥𝑖 +𝑊 𝑦𝐸𝑦𝑡−1

+𝑊 𝑠𝑠𝑡−1 + (𝑊 𝛼 ∗ [𝛼𝑡−1;
𝑡−1∑︁
𝑗

𝛼 𝑗 ])𝑖 )
(1)

𝛼𝑡,𝑖 =
𝑒𝑡,𝑖∑ℎ×𝑤

𝑗=1 𝑒𝑡, 𝑗
(2)

𝑐𝑡 =

ℎ×𝑤∑︁
𝑖=1

𝛼𝑡,𝑖𝑥𝑖 (3)

Here,𝑊 𝑥 ,𝑊 𝑦,𝑊 𝑠 ,𝑊 𝛼 and𝑤 are projection parameters for the
attention module. 𝐸 ∈ R𝑑𝑦×𝑉 represents word embedding, with 𝑑𝑦
being the dimension of the word embedding, and 𝑉 representing
the number of modeled unit characters. 𝑦𝑡−1 ∈ R𝑉 is the one-
hot vector corresponding to the output of the previous step, and
𝑠𝑡−1 ∈ R𝑑𝑠 is the output state of the previous decoding step in
the recurrent neural network, with 𝑑𝑠 being the state dimension. ∗
denotes a convolution operation for modeling historical attention
weight information. 𝑒𝑡,𝑖 is the energy of 𝑥𝑖 at the t-th decoding step.
All the energy values are fed into the softmax function to obtain
the attention weight 𝛼𝑡 at all positions at the current decoding step.
The visual context information is obtained by a weighted sum of
the feature map. Finally, we combine the recurrent neural network
to model the language model and complete the final classification
decision:
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𝑠𝑡 = 𝐺𝑅𝑈 (𝑐𝑡 , 𝐸𝑦𝑡−1; 𝑠𝑡−1)
𝑝𝑡 = softmax(𝑊 𝑐𝑠𝑡 )

𝐿𝑐𝑒 = −
𝑉∑︁
𝑖=1

𝑦𝑡𝑖 log(𝑝𝑡𝑖 )
(4)

Here, we use a GRU [3] as the computational unit for the re-
current neural network.𝑊 𝑐 ∈ R𝑉 ×𝑑𝑠 are learnable weights of the
classification layer, and 𝑝𝑡 represents the classification probability
distribution at the t-th decoding step. We adopt cross-entropy loss
𝐿𝑐𝑒 as the training loss, while decoding can be performed during
the inference phase using the beam search algorithm.

Although a String Decoder can fit training data well, it has diffi-
culty in understanding meanings of different modeled units. This
results in poor generalization performance on complex, incorrect,
and reconnection structures. Hence, we propose a Random Con-
ditional Guided Decoder (RCGD) that differs from String Decoder
and other methods by incorporating three mechanisms to address
these issues: conditional attention guidance, memory classification
and path selection.

3.2.2 RCGD-SSML. For RGCD, some modifications need to be
made to the SSML, referred to as RCGD-SSML. Here are the key
changes in RCGD-SSML compared to SD-SSML:

(1) Deletion of branch and reconnection expressions: the orig-
inal syntax for branch and reconnection "(", ")", "?[<tag>]",
"?[<tag>, <bond>]" in SD-SSML are removed in RCGD-SSML.

(2) Addition of a branch ending symbol: In RCGD-SSML, a spe-
cial symbol "\eob" is added to indicate the end of a branch.

(3) Introduction of a branch angle set M: RCGD-SSML includes
a branch angle set M, which changes with each decoding
step. The content of M is synchronized at each time step.

(4) New processing approach for branches:
• When encountering a branch, sequential outputs are gener-
ated as "\angle[:<angle value 1>]", "\angle[:<angle value
2>]", ..., "\angle[:<angle value n>]", followed by "\eob".
Each "\angle[:<angle n>]" represents a branch angle token.
Each output branch angle modeling unit is synchronously
added to M.

• After the "\eob" output, a candidate angle is selected from
M (removed from M, which we implement with a 0/1
mask), and the traversal continues along the new branch
guided by the selected candidate angle. When outputting
the first token of the new branch, the information of the
selected candidate angle is synchronized.

• If M is empty after the output of "\eob", the traversal ends.
(5) New processing approach for reconnection: When an atom

A that is connected to a previously traversed atom B (re-
connection), there must be branch angles attached to both
of them. The bond between A and B is identified, and the
corresponding branch angle attached to them is determined.
The determined branch angle is removed from M, and the
information of the this branch angle and the identified bond
type is synchronized.

Please refer to Fig. 3(c) and (d) for a specific comparison between
SD-SSML and RCDG-SSML.

3.2.3 The Conditional Attention Guidance Mechanism. The Condi-
tional Attention Guidance Mechanism leverages the natural graph
structure of molecular structural formulas and treats their recogni-
tion process as a graph traversal problem. As the model traverses
the graph, it encounters multiple branch angle units, and the or-
der of these angles in the proposed modeling units follows a fixed
counterclockwise direction. However, if decoding is done solely
based on the fixed angle order, the model may "forget" which angle
units have not yet been decoded due to the prolonged decoding
step in later stages. To address this issue, we propose to use angle
directions as conditional information to guide the decoding pro-
cess. When the model encounters branch, it continues to decode
along the specified angle direction. The updated approach elimi-
nates the use of "(" and ")" to indicate the start and end of a branch.
Instead, we first predict "\angle[:<angle value>]" for each branch,
individually storing the context and attention weight information
computed during the prediction in the memory module. When
"\eob" is decoded, indicating that there are no additional branch
angles to predict, we select the angle state information from the
memory as the condition to continue the decoding process with
Attention. The following calculation process is employed:

𝑒𝑡,𝑖 = 𝑤𝑇 tanh(𝑊 𝑥𝑥𝑖 +𝑊 𝑦𝐸𝑦𝑡−1

+𝑊 𝑠𝑠𝑡−1 + (𝑊 𝛼 ∗ [𝛼𝑡−1;
𝑡−1∑︁
𝑗

𝛼 𝑗 ])𝑖

+𝑊 𝑠𝑝𝑠𝑏 + (𝑊 𝛼𝑝 ∗ 𝛼𝑏 )𝑖 )

(5)

Here, 𝛼𝑏 and 𝑠𝑏 represent the attention weight information and
state features of the corresponding decoding branch. It is worth
emphasizing that when there is no branch angle to decode, 𝛼𝑏 and
𝑠𝑏 are both zero vectors, and the calculation method of the original
attention structure is maintained. After decoding each branch angle,
the corresponding angle state information in the memory will be
consumed. When "\eob" is decoded and the memory is empty, the
decoding process terminates.

3.2.4 Memory Classification Mechanism. The main difference be-
tween the graph structure and the tree structure is that the graph
structure has reconnection characteristics. In this scheme, the angle
corresponding to the reconnection has already been stored in the
memory and has not yet been decoded. Therefore, we propose to
build a simple multi-label classification module to determine the
corresponding direction of the reconnection angle and to simulta-
neously classify the type of the reconnection bond (such as single
bond, double bond, etc.). If N represents the number of bond types,
then the calculation formula is as follows:

𝑞𝑡𝑏 = softmax(𝑊𝑚𝑠𝑏 +𝑊 𝑜𝑠𝑡 )

𝐿𝑏𝑐 = −
𝐵∑︁

𝑏=1

𝑁+1∑︁
𝑖=1

𝑧𝑡𝑏𝑖 log(𝑞𝑡𝑏𝑖 )
(6)

In this context, 𝑠𝑡 is the state of the decoding process when
branch angles are decoded.𝑊𝑚 and𝑊 𝑜 parameters for bond clas-
sification are stored in R(𝑁+1)×𝑑𝑠 . The probability distribution of
bond classification between the state feature stored in the mem-
ory and the t-th decoding step is represented as 𝑞𝑡𝑏 ∈ R𝑁+1. We
also add an additional category to represent the option of no bond
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connection for the stored state feature, and 𝑧𝑡𝑏 represents the cor-
responding one-hot classification label. 𝐵 denotes the number of
remaining branch angles in the memory that have not been de-
coded yet. 𝐿𝑏𝑐 represents the loss that results from reconnection.
Generally speaking, if a branch angle is decoded in the current de-
coding step, the current step’s state information and all remaining
decoding branch angles in memory need to be classified together.
The classification result is either a certain type of chemical bond
or empty. If it is empty, it indicates that the branch angle does not
connect with the remaining decoding branch angles.

3.2.5 Path Selection Mechanism. The recognition process of RCGD
can be regarded as a graph traversal problem, where different tra-
versals of a graph can yield different sequences. Although the con-
ditional attention guidance mechanism decodes according to a fixed
counterclockwise order, it can cause overfitting and recognition
errors in complex or uncommon structures. Thus, we have pro-
posed a path selection mechanism that randomly samples different
paths during the training process to improve the alignment between
visual information and decoded characters. During the inference
process, we enable the model to attempt decoding all candidate
branch angles stored in memory and participate in calculating the
beam search path score. This allows automatic selection of the path
with the highest score for continued decoding.

In summary, our RCGD has two loss functions: modeling unit
classification loss 𝐿𝑐𝑒 and memory classification loss 𝐿𝑏𝑐 . The over-
all loss function is the sum of their individual components.

4 DATA SETS
We evaluate the performance of our proposed method on handwrit-
ten and printed data sets. Most available printed data sets consist
of synthetic images with clean backgrounds. For the printed sce-
nario, we use the publicly accessible CASIA-CSDB [5] data set as
a benchmark. Unfortunately, in the case of handwritten scenarios,
no publicly accessible handwritten molecular structure data sets
currently exist. Therefore, we establish our own handwritten data
set obtained mainly from real-world handwritten molecular struc-
tures in an educational setting. This data set includes numerous
instances with writing errors and nonexistent structural data. A
detailed introduction to both of these data sets can be found below.

The CASIA-CSDB data set is presently the largest publicly acces-
sible printed molecular structure image data based on the chemical
database ChEMBL [7], which stores data in SMILES string format.
The RDKit software is employed to produce 480,668 samples which
called CASIA-CSDB. The Mini-CASIA-CSDB subset includes 97,309
samples, and specific information on the data partitions is presented
in Table 1. However, the images provided with the CASIA-CSDB
data set have low rendering resolution (300 × 300), causing signifi-
cant blurring, many samples even incomprehensible to humans. To
overcome these limitations, we increase the rendering resolution
to 500 × 500 and train our model using these high resolution RGB
images as shown in Fig. 4. Due to limited computational resources,
we conduct our experiments only the Mini-CASIA-CSDB.

We establish a handwritten data set named EDU-CHEMC, which
consists of totally 52,987 handwritten molecular structure images
collected in educational scenarios. The images were obtained using
various devices such as cameras, scanners, and screens and are

CC(C)(C)COC(N)=O Cc1nn2c(=O)c3c4c(sc3nc2n1-
c1ccccc1)COC(C)(C)C4

CCOC(=O)c1ccc(NC(=O)N[C@@H](Cc2ccc(-
c3ccccc3)cc2)C(=O)N[C@H]2CC[N+](C)(Cc3ccc4c(c3)OCO4)C2)cc1

Figure 4: The high-resolution CASIA-CSDB images and its
SMILES strings.

labeled as native Chemfig strings. To promote research related to
the recognition of handwritten chemical structures, we plan to
release this dataset in the near future. The key characteristics of
this data set are as follows:

• Real-world educational scenarios. The data consists of hand-
written molecular structures from primary and secondary
education scenarios, which to our knowledge has never been
made public before. Additionally, a small proportion of data
is people copying and photographing ChEMBL molecular
structures, also under real settings.

• Mixture of molecular structures and regular formulas. In
addition to isolated isolated molecular structures, many in-
stances of the data contain combinations of formulas and
molecular structures, such as organic reaction equations as
shown in Fig. 5.

• Writing diversity. The data exhibits various styles of struc-
ture writing, such as the use/non-use of abbreviations, the
type of Kekule ring notation for benzene, and the inclu-
sion/exclusion of hydrogen atoms. Moreover, the data con-
tains numerous instances of artificially-written erroneous
and even nonexistent structures that violate chemical princi-
ples as shown in Fig. 6, and the recognition of such structures
can potentially be applied in correcting and revising hand-
written answers.

• Complex structures. To test the model’s generalization per-
formance, the molecular structure complexity level is defined
as the number summation of atoms and bonds, with around
10% of the test set featuring a complexity level exceeding
that of the most complex sample in the training set. The
complexity distribution of our dataset is shown in Fig. 7. The
data partitions of our EDU-CHEMC data set are shown in
Table 1.
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Table 1: The partition details of Mini-CASIA-CSDB and our
proposed EDU-CHEMC.

Data sets Training set validation set Test set
Mini-CASIA-CSDB 80781 8242 8286

EDU-CHEMC 48998 999 2992

Figure 5: Examples of images that contain mixture of molec-
ular structures and regular formulas in our handwritten data
set.

(a) (b)

×

×

Figure 6: Examples of images that encounter chemical erro-
neous in our handwritten data set. In both (a) and (b), the
chemical bond connections of the carbon atoms marked by
the red circle violate the valence principle.
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Figure 7: Complexity histogram of our handwritten data
set. We can see that our testing set contain samples whose
complexity level is never seen in training set.

5 EXPERIMENTS
5.1 Evaluation Metrics
Exact Match (EM). Similar to handwritten mathematical expres-
sion recognition tasks, we use the EM score as the primary evalua-
tion criterion. Specifically, EM represents a full match between the
predicted and labeled strings. For the SMILES modeling approach,
since the original labels in the CASIA-CSDB data set have been

standardized and the SMILES strings are concise enough, we di-
rectly compare whether the predicted and labeled strings are the
same. For the Chemfig modeling approach, due to the polysemous
nature of the labels, we first convert both the labels and recognition
strings into Graphs and then compare if their Graph forms match.
Let T denote the number of samples and R denote the number of
predicted results that match the labeled results, then EM can be
calculated using the following formula:

𝐸𝑀 =
𝑅

𝑇
(7)

In addition, for our EDU-CHEMC data, since it contains mixtures
of formulas and molecular structures (see Fig. 5), a single image
may contain multiple molecular structures. Therefore, we define
two auxiliary metrics as follows:

Structure Exact Match (Structure EM). For samples that con-
tain mixed molecular structure and regular formulas, when all the
molecular structure recognition results match the labeled Graphs,
we consider the sample to be "correctly recognized for the struc-
ture". Let T denote the number of samples and 𝑅𝑠𝑡𝑟𝑢𝑐𝑡 denote the
number of samples with correctly recognized structures, then:

𝐸𝑀 =
𝑅𝑠𝑡𝑟𝑢𝑐𝑡

𝑇
(8)

Structure EM and Single EM measure the model’s recognition
performance for the only molecular structures in the mixed-mode
data.

5.2 Implementation Details
The base approach used in this paper is an end-to-end recognition
framework based on the attention mechanism, which only uses
conventional cross-entropy loss to optimize the model and does not
include any additional loss functions. In RCGD, an extra memory
classification loss 𝐿𝑏𝑐 is introduced.

The Encoder network used in this paper is DenseNet, which in-
cludes three dense blocks that convert the input RGB three-channel
image into high-dimensional features. The growth rate and depth in
each dense block are set to 24 and 32, respectively, which is exactly
the same as the Encoder configuration in DenseWAP.

The String Decoder(SD) and Random Conditional Guided De-
coder(RCGD) used in this paper both employ a GRU with a hidden
state dimension of 256 as the recurrent unit of the RNN, and the
attention projection dimension is set to 128. In addition, the embed-
ding dimension is set to 256 and a dropout rate of 15% is applied.
For the RCGD Decoder, the projection dimension for memory clas-
sification is set to 256.

The optimizer used in this paper is Adam, with an initial learning
rate of 2e-4 and a learning rate decay strategy of multi-step decay,
using Pytorch’s MultiStepLR to adjust the learning rate, and a decay
factor of gamma set to 0.5. In the Mini-CASIA-CSDB data, we use
milestones of [40,60,70,75,80,85,...], and in our EDU-CHEMC data,
we use milestones of [60,90,105,115,120,125,...]. We use teacher-
forcing to calculate the character accuracy on the validation set
and select the model with the highest character ACC for testing.

As for the comparison methods, since the data sets and evalua-
tion criteria in this field are not fully standardized and the data sets
is relatively new, there are limited comparison methods that can be
used. We choose the two latest works in formula recognition, BTTR
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Table 2: Evaluation on Mini-CASIA-CSDB data set. SD means
String Decoder, RCGD means Random Conditional Guided
Decoder, SSML means Structure-specific Markup Language, *
means our implementation

Method Resolution Markup Struct EM
SD (DenseWAP) 300*300 SMILES / 75.64%

SD (BTTR) 300*300 SMILES / 78.22%
SD (WYGIWYS) 300*300 SMILES / 78.55%
SD (DenseWAP*) 500*500 SMILES / 81.89%
SD (DenseWAP*) 500*500 SSML 92.47% 92.09%

RCGD 500*500 SSML 95.38% 95.01%

[44] and ABM [1], as the comparison methods. The main idea of
these two methods is to supervise training with R2L reverse decod-
ing loss, which enables the decoder to have more powerful language
modeling capabilities. We re-implement these two methods based
on their ideas to fit the chemical structural formula recognition
task in this paper. For BTTR, we only use its L2R decoding result
for testing, and for ABM, consistent with the original paper, we
only use L2R decoder for inference.

5.3 Experiments Results
Experiments on Mini-CASIA-CSDB. We first compare our pro-
posed approach with the SMILES-based approach on the Mini-
CASIA-CSDB data set, as shown in Table 2. It can be seen from
the experimental results that our Chemfig-based SSML improve
recognition performance significantly compared to the SMILES-
based approach. This is mainly due to the reduced polysemy of
our proposed modeling units, as well as the stronger consistency
between the images and labels. Additionally, the RCGD proposed
in this paper has a significant advantage over the String Decoder. It
should be emphasized that the computational and parametric costs
of the RCGD are almost the same as those of the String Decoder.

Table 3: Evaluation on rotated images of Mini-CASIA-CSDB.
SDmeans String Decoder, RCGDmeans RandomConditional
Guided Decoder, SSMLmeans Structure-specific Markup Lan-
guage

Method Markup Normal Rotated
Struct EM Struct EM

SD SMILES / 81.89% / 71.53%
SD SSML 92.47% 92.09% 90.27% 89.90%

RCGD SSML 95.38% 95.01% 94.53% 94.16%

Rotation evaluation onMini-CASIA-CSDB. As we know, the
molecular structure expressed by the structural formula remains
unchanged regardless of how it is rotated on a 2D plane. To further
demonstrate the superiority of the proposed modeling units and
modeling approach in terms of image-text consistency, we perform
tests on the Mini-CASIA-CSDB test dataset with the images rotated
180 degrees. To avoid the characters being flipped and affecting
the recognition results, we rerender the SMILES using the RDKit
tool, controlling its output orientation to be 180 degrees different

Table 4: Evaluation on EDU-CHEMC. SD means String De-
coder, RCGD means Random Conditional Guided Decoder,
SSML means Structure-specific Markup Language, * means
our implementation

Method Markup Struct EM
SD (BTTR) SSML 66.83% 58.21%
SD (ABM) SSML 67.24% 58.78%

SD (DenseWAP*) SSML 69.68% 61.35%
RCGD SSML 71.88% 62.86%

from the standard orientation. The test results are shown in Table
3. When using SMILES markup string the recognition performance
drops by up to 10.36% on the rotated test set. In contrast, when
using the proposed SSML, the string decode(SD) performance drop
is only 2.19%, and the RCGD drop is only 0.85%.

Experiments on EDU-CHEMC. Furthermore, we also validate
the superiority of the Random Conditional Graph Decoder pro-
posed in this paper on the Handwritten Molecular Structure data
set (EDU-CHEMC). As shown in Table 4, the Random Conditional
Graph Decoder also outperforms the String Decoder on this hand-
written task. It is worth noting that both ABM and BTTR employ
reverse training modes to assist forward model training, benefiting
greatly in regular formula recognition tasks but not as much in
molecular structure recognition tasks as unidirectional training
with DenseWAP. In fact, the main reason for this difference is that
regular formulas are consistent in their monotonicity, making it
easier for the model to determine the starting and ending positions.
In contrast, molecular structures are naturally graph-structured,
which makes it difficult to locate their ending positions. Thus, the
reverse pattern of BTTR and ABM cannot be well-trained and may
have a negative impact on the forward decoding mode. However,
the RCGD employed in this paper adopts a conditional guidedmech-
anism and a path selection mechanism to make full use of multiple
traverse paths for training, making it easier to align decoding paths
with visual features.

Due to the page limit, we just put additional contents includ-
ing more analysis and visualization results in the supplementary
materials.

6 CONCLUSION
The End-to-end recognition methods have shown high efficiency
in handwritten mathematical expression recognition, but have not
been fully utilized in the field of handwritten chemical structure
recognition due to the lack of suitable handwritten datasets and
markup annotations. To address these challenges, we proposed a
structure-specific markup language and RCGD algorithm in this pa-
per. Through experiments onmultiple publicly available datasets we
achieved a huge improvement (95.01% vs 81.89%) on Mini-CASIA-
CSDB data compared to the image-to-SMILES method. Our model
currently supports some common chemical molecular image pro-
jections, such as Natta projection, Fischer projection, and Sawhorse
projection, while we aim to expand its capabilities to support more
projection layouts in the future. We hope this work will inspire
further research on this important topic.
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A APPENDIX
In this appendix material, we present additional results on our
method, along with visual comparisons. In the ablation study sec-
tion, we will provide further details and results on the efficacy of
our three mechanisms of RCGD.

A.1 The Generalization ability to Structure
Complexity Levels

We define molecular complexity as the number of atoms and bonds
in a chemical molecular structure. On EDU-CHEMC dataset, as
Fig. 8 illustrated, the performance of SD and RCGD is comparable
when the complexity is below 40. However, when the molecular
complexity exceeds 40, the performance of RCGD is significantly
better than that of SD.

A.2 The Advantages of Structure-Specific
Markup

Our method can also recognize invalid or non-existent organic
molecular structures, which makes it highly applicable for tasks
related to teaching evaluations in the fields of chemistry and biology
education. As Fig. 9(a-c) the handwritten version of propanedioic
acid illustrated, the "C" atom in the "H3C" group is connected
to 5 single bonds, which violates the principle that the valence
of "C" atoms is 4. In the correct structure of propanedioic acid,
the fragment should be "H2C". However, our recognition result is
"H3C", which is consistent with the handwritten image. So when
encountering incorrect handwritten molecules, our model is able
to identify errors, thus enabling the possibility of correction and
revision.

A.3 More Ablation Studys
The Table 5 shows that the removal of any of these mechanisms re-
sults in a decrease in performance to varying degrees. Notably, the
removal of the memory classification mechanism leads to a more
significant decline in performance. This is because, as the molecu-
lar structures become more complex, the reconnection processing
becomes more complicated.

A.3.1 The Conditional Attention Guidance Mechanism. The role
of the conditional attention guidance mechanism is to avoid the

(a)

(b)

(c) propanedioic acid

Figure 9: Illustration of a example for Invalid orNon-Existent
Organic Molecular Structures. Figure (a) is the original image,
the handwritten parts in red boxes contains errors in chem-
ical principles. Figure (b) is the rendered images of model
outputs. Figure (c) is the corresponding correct forms and
molecule names.

Table 5: Results of RCGD without Path Selection (PS) and
Memory Classification (MC).

Method Struct EM
RCGD 71.88% 62.86%

RCGD w/o PS 70.85% 62.15%
RCGD w/o (PS&MC) 68.84% 60.31%

model’s inability to accurately determine the location of the un-
decoded branch due to excessively long decoding steps. The Fig. 11
illustrates this concept. From the red area in Fig. 11(b), it can be seen
that SD made a mistake in judging the corresponding angle branch
to be decoded when decoding “= O”, resulting in a dislocation
problem. However, as illustrated in Fig. 11(c) the RCGD can find
the correct branch to be decoded by using the state and attention
position information stored in the memory module.

A.3.2 Memory Classification Mechanism. In native Chemfig, “?[a]”
and “?[a,<bond>]” are two modeling units used to represent recon-
nection. This makes it difficult for the model to accurately deter-
mine the “bond angle” unit. The memory classification mechanism
is more reasonably model the reconnection in the graph structure
as illustrated in Fig. 10.

A.3.3 Path Selection Mechanism. The path selection mechanism
may randomly choose the next decoding condition to continue
decoding during training, which prevent overfitting and the gener-
alization of the model is improved.

As shown in the Fig. 12(c), we can observe that after remov-
ing the path selection mechanism, the attention map may produce
multiple peaks during decoding. Fig. 12(d) shows the accumulated
attention visualization results without the path selection mecha-
nism. In Fig. 12(e), the bold arrow represents the current decoded
unit. Although the bond type predicted by the current decoding
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\chemfig { H O -[:30] ( =[:90] O ) -[:330] -[:30] \Chemabove { N } { H } -[:330] ( -
[:30] ?[a] ( --[:30] \circle ) ( -[:90] S -[:30] ?[b] ( --[:0] \circle ) ( -[:60] -[:0] -[:300]
( -[:240] -[:180] ?[b,{-}] -[:240] ?[a,{-}] ) -[:0] O -[:60] ) ) =[:270] O ) }

(a)

(b)

(c)

Figure 11: Illustration of result of conditional attention guid-
ance mechanism. (a) Image of the molecular structure to be
recognized. (b) The decoding string of SD and its correspond-
ing rendered result image. (c) The rendered image of RCGD
recognition result.

(a)

(c) 

(b)

(d) (e)

Figure 12: Illustration of decoding when without the path
selection mechanism. (a) The image of a molecular structure
image to be recognized. (b) displays the recognition result
obtained after removing the path selection mechanism.

?[a]

?[a,{-}] ?[b]

?[c]
?[b,{-}]

?[c,{-}]

?[d]

?[b]

?[b,{-}]?[a,{-}]

(a)

(c)

(b)

Figure 10: Illustration of result of memory classification
mechanism . (a) The image of a molecular structure to be
recognized. (b) The recognition result after removing both
the path selection mechanism and the memory classification
mechanism. (c) The render image of the recognition result
without path selection mechanism.

step is correct, the position of the connecting “C” atom is incor-
rect, leading to severe location confusion when decoding hydrogen
atoms and their connecting bonds in the subsequent steps. This is-
sue mainly stems from the existence of numerous similar branching
structures in the molecular structure. During training, the model
did not perform random path selection, leading the model to fail to
fully utilize the position information contained in the unexplored
branch angles and instead relied only on the semantic information
and local visual information. As a result, when encountering these
similar branching structures, the attention probability distribution
was more dispersed, leading to decoding errors.
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