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Abstract—Recently, deep learning-based methods, such as
sequence-to-sequence and sequence-to-tree models, have shown
remarkable success in Math Word Problem (MWP) solving.
However, a predominant drawback of them is their insufficient
attention to the inherent characteristics of math problems, in-
cluding the varying significance of words within the problem. To
address this issue, our paper introduces a novel approach termed
“Salient Clue Prioritization (SCP)” for MWP. This approach
revolves around understanding MWP from a fresh perspective by
emphasizing salient clues. Our proposed approach involves two
key training procedures: integrating a coarse-fine representation
for multi-level comprehension during the first training phase,
and dynamically adjusting attention weights based on identified
keywords in the second training phase. Through extensive exper-
imentation, our approach overcomes the limitations of existing
methods by effectively identifying and adaptively utilizing salient
clues to solve MWP. Our results indicate superior performance
compared to other existing models, demonstrating the enhanced
understanding of both the MWP itself and the relationship
between words and final mathematical solutions.

Index Terms—math word problem, coarse-fine adaptation,
pretrained model, weighted attention

I. INTRODUCTION

Math word problem (MWP) solving, a challenging and
significant task in natural language processing (NLP), aims to
convert a succinct narrative that contains numerous mathemat-
ical relationships into an equation that represents the solution.

Previous research has predominantly approached MWP
solving as a sequence-to-sequence (Seq2Seq) task [1]–[5].
Recently, sequence-to-tree-structured (Seq2Tree) [6], [7] has
further advanced the capabilities of MWP solvers, enabling the
generation of complex mathematical expressions. The advent
of pre-trained language models (PLM) such as BERT [8], has
led to their application in MWP solving by researchers [9]–
[12] to enhance the encoder’s representation ability, resulting
in significant improvements in expression generation. More-
over, [13], [14] introduce a new perspective that treats MWP
as a relation extraction task.

Although using PLM is beneficial for extracting various
information to generate expressions, these works overlook the
semantic aspect of the corpus, and fail to consider the intrinsic
features of math problems, such as the varying importance
of words within the problem. To address this limitation, we
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小男孩喜欢看《格林童话》，这个星期的
前3天看了178页，后4天看了余下的125页．
这本书共有多少页？
两条船同时从两地相向而行．快船每小时
行20千米，慢船每小时行18千米，5小时后
相遇，两地相距多少千米？
“感恩节”酬宾服装一律降价20%，我有优
惠卡还可以再打0.9，妈妈买了一套衣服花
了450元钱，这套衣服原价多少元？

Train Dataset

Fig. 1. Overall system pipeline. Firstly, the initial finetuned model is obtained
through coarse-fine integration (CFI). Secondly, the mask-then-infer strategy
is employed to create a salient clue database. Dynamic training with attention
weight adjustment (DAWA) is performed with the salient clues.

propose a novel approach called “Salient Clue Prioritization
(SCP)” for MWP solving. Our approach provides a new
perspective on understanding MWP by highlighting salient
clues, which directly impact the final answer. Our approach
involves two phases. In the first phase, we utilize the Roberta
[15] to extract fine-grained token-level features. Additionally,
we employ a semantic segmentation method [16] to extract
the coarse-grained phrase-level descriptions of the problem.
By combining these two features using letter-match maps,
we generate a coarse-fine integration (CFI) feature, which en-
hances the representation capability by incorporating features
at different levels. We employ a mask-then-infer strategy, a
simple yet efficient approach, to identify the salient clues.
In the second phase, to enhance the model’s understanding
of the impact of the salient clue on the entire sentence, we
dynamically adjust attention weights based on the salient clues.

Our model aims to enhance the discernment of word sig-
nificance within the given problem. By effectively harnessing
crucial words, our model allocates increased attention to these
pivotal words while ensuring their accurate representation.
This enables the model to prioritize and concentrate on words
that hold substantial influence over the solution.

The contributions of this paper are as follows:
• We introduce a coarse-fine integration strategy for MWP

solving. By simultaneously considering information from
different levels, we can achieve a more comprehensive
understanding of the problem.

• We propose a training model to identify the salient
clue and dynamically adjust the attention weights. To



the best of our knowledge, we are the first to propose
salient clue prioritization for MWPs, which is of great
significance to emphasize the keywords that are decisive
to the answers.

• Large experiments show that the proposed model is effi-
cient and outperforms state-of-the-art baselines on MWP
solvers with the similar encoder-decoder framework.

II. RELATED WORK

A. Math Word Problem Solving

Math word problem solving can be firstly dated back
to the 1960s [17]. In the past, many methods relied on
human-designed rules [18] or statistical learning approaches
[19]. These methods concentrate on feature designing and
expression template construction. Recently, deep learning-
based models show great potential for solving MWPs. [1]
proposed the commonly used dataset Math23K and first in-
troduce a vanilla Seq2Seq model. Following it, [3] combines
reinforcement learning to improve performance. Subsequently,
semantic-parsing [2], template-based [20] methods, and group
attention mechanism [5] are incorporated to enhance per-
formance. Then, a new model using Seq2Tree is proposed
by [7], which introduces a goal-driven tree-structured (GTS)
model to generate the expression tree step by step. Fol-
lowing the tree-structured decoder, [21] uses multi-encoders
and multi-decoders to strengthen the generation ability. [22]
introduces syntactic dependency to enhance the understanding
of math word problems. [23], [24] proves that commonsense
knowledge can also improve the understanding performance.
[16], [25], [26] use graph neural networks to obtain useful
information from the problems. Furthermore, [27] introduces
a situation model for algebra story problems. [28] applies
contrast learning to improve the encoder. [29] proposes many
auxiliary tasks to enhance the symbolic reasoning ability. [30]
improves MWPs with pre-trained knowledge and hierarchi-
cal reasoning. Furthermore, [31] proposes a linguistic logic-
enhanced framework for generating expression trees and their
corresponding interpretation. Recently, some researchers try
other perspectives to solve MWPs. [32] applies pointer trans-
former and [13] treats the equation as a directed cyclic graph to
obtain the expression. [14] introduces a new decoder treating
it as an iterative relation extraction task. [33] proposes the
M-tree codes and a sequence-to-code (Seq2Code) framework.
[34] employs multiple consistent reasoning views to address
the challenges of MWP.

B. Attention Mechanism

Attention mechanisms have gained significant attention in
the field of NLP due to their ability to capture the contextual
dependencies and relevance of different parts within a se-
quence. It is initially proposed by [35], where it was employed
in improving the translation quality. Inspired by the success
of attention mechanisms, [36] design a hierarchical attention
network that leverages attention to enhance the understanding
of important words. The advent of self-attention can be at-
tributed to the Transformer [37], which enables the model to

两列 火车 在 两组 互相 平行 的 轨道 上 相向
行驶 ． 甲 车长 720 米 ， 速度 是 28 米 / 
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Fig. 2. First round model training. First, a PLM is used to process the problem,
obtaining fine-level representations. Subsequently, a mean operation is applied
to the creating of coarse-fine integrated representations. After incorporating
the graph features, a tree decoder is employed to generate the target equation.

simultaneously attend to information from various positions
and representation subspace. This is achieved by computing a
weighted average of feature representations, where the weights
are determined by the similarity scores between pairs of
representations.

III. PROPOSED METHOD

In the context of math word problems, we denote the given
problem as P , which consists of a sequence of word tokens
and numeric values. Let VP = {v1, ..., vm} represent the set
of word tokens in P , and let NP = {n1, ..., nl} denote the set
of quantities in P , respectively. The problem of our interest
is to map P to a correct mathematical expression EP , which
can be used to compute the answer using a series of primitive
mathematical operations VOP = {+,−,×, /}.

In practical math word problem solving, predefined con-
stants such as π and 1 are often required. To account for these
constants, we define the constant set Vc = {1, π}. Therefore,
the goal is to maximize the probability P (EP |VP ∪VOP∪Vc∪
NP ), which represents the probability of obtaining the correct
mathematical expression EP given the sets of word tokens,
operators, constants, and quantities present in the problem.

A. Overview

Our model framework is illustrated in Figure 1. We prepro-
cess our quantity by replacing them with a general quantity
token “<NUM>” before encoding. Then, we obtain fine-
grained token-level features and coarse-grained phrase-level
descriptions of the problem through different processes. By
combining these two features using letter-match maps, we
create the CFI feature, which enhances the representation
capability by integrating features at different levels. This
CFI feature is then fed into a graph transformer with two
constructed graphs [16] to learn a graph representation. Subse-
quently, the graph representation is input into a tree-structured
decoder [7] to generate the final mathematical expression.
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Fig. 3. Mask-then-infer strategy. We first iteratively mask phrases in a
sentence, resulting in a modified sentence then fed into the finetuned model
for inference. If the answer changes from correct to incorrect, it indicates that
the masked phrase is crucial to the final answer, thus presuming it is a salient
clue.

To gain a better understanding of the importance of different
words, we design a simple but efficient way, referred to as
mask-then-infer, to identify the salient clues in the problem.
This enables us to build a salient clue database Dkey. To
fully utilize the significance of salient clue, we load the
best-performing model from previous training and perform
continuous training while incorporating a dynamic attention
weight adjustment in the self-attention layer [8].

B. Coarse-Fine Integration Representation

In order to enhance the MWP solver’s understanding of
problems, it is beneficial to have a multi-granularity repre-
sentation during the encoder-decoder procedure. Therefore, as
shown in Figure 2, we design a letter-match map to integrate
the fine-grained representation obtained from the pre-trained
language models such as BERT or Roberta, along with the
coarse-grained representation from Jieba1 segmentation.

Considering that PLM could provide a strong foundation
with fine-grained features, we employ Roberta to capture
token-level representations of the text. Additionally, to fur-
ther comprehend the text itself, we utilize the coarse-grained
representation to grasp a better understanding of the problem
by dividing it into meaningful and independent phrases, facil-
itating subsequent text analysis and processing. To effectively
integrate the strengths of both approaches and achieve a
more comprehensive and accurate representation of the math
problem, we propose a coarse-fine granularity relation graph
for their fusion.

We denote the fine-grained tokens and their features for
problem P obtained from Roberta as {t1, t2, ..., tM} and
{f1, f2, ..., fM}, respectively, where M represents the length
of sequence encoded by Roberta. The coarse-grained phrase-
level description is denoted as CP = {p̃1, p̃2, . . . , p̃N}, where
N is the number of segmented phrases. To unify the features
from different granularities, we introduce a relation graph

1http://github.com/fxsjy/jieba

G ∈ RM×N to align the fine and coarse granularities. The
relation graph is defined as follows:

Gij =

{
1 if ti in p̃j
0 otherwise . (1)

Once we have obtained the relation graph G that captures
the relationship between features from different levels, we are
capable of getting the CFI feature as follows:

hj =
∑

{i|Gij=1}

fi/

M∑
i=1

Gij , j = 1, ..., N. (2)

Following the above producer, we obtain the CFI represen-
tation matrix H = [h1, ...,hN ], which then is processed by
graph convolution network [38] with two constructed graphs
[16].

C. Salient Clue Retrieval
The salient clue is crucial in problem-solving as it directly

influences how the model understands the problem, thereby
impacting the answer. Therefore, we propose a simple yet
efficient approach, referred to as the mask-then-inference
strategy, to identify salient clues in the math problem.

After training the model using the CFI feature, we obtain the
best-performing model from the first round of training. During
the inference phase on the training dataset, as illustrated in
Figure 3, we employ a masking technique, where we mask
tokens of each phrase as “<unk>” one by one in the problem.
Subsequently, we evaluate the correctness of the generated
results.

Specifically, we consider a phrase as a salient clue if the
answer changes from correct to incorrect or from incorrect
to correct after masking it. Conversely, if the answer remains
unchanged, we assume that the phrase has little impact on
the final result. Therefore, we can retrieve the phrases that
significantly influence the final result.

D. Attention Weight Adjustment
Following the dot-product attention in Transformer [37],

which is given as

Attention (Q,K,V ) = softmax

(
QK⊤
√
d

)
V , (3)

where Q,K,V ∈ RN
′
×d with N

′
being the sequence length,

and d being the hidden dimension.
To emphasize the importance of salient clues in a sentence,

we use attention weight adjustment by introducing a weight
vector w ∈ RN

′
×1 , which is illustrated in Figure 4. The weight

vector w is defined as follows:

wi =

{
λ if i-th phrase is a salient clue
1 otherwise , (4)

where λ is a learned parameter. Based on this, we design the
adjusted attention mechanism as follows:

Attention (Q,K,V ,W) = softmax

(
QK⊤ ⊙W√

d

)
V , (5)

where ⊙ denotes the element-wise product, and W = ww⊤

represents the weight correlation matrix.

http://github.com/fxsjy/jieba
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Fig. 4. Dynamic attention weight adjustment. The attention mechanism is
re-weighted to dynamically adjust the attention based on the identified salient
clues.

TABLE I
THE ACCURACY COMPARISON TO DIFFERENT METHODS. VAL ACC.:
ACCURACY OF THE VALUE CALCULATED FROM THE EQUATIONS; ♢:

USING THE SAME SEQ2TREE FRAMEWORK; ♣: USING THE PRE-TRAINED
LANGUAGE MODELS.

Framework Model Encoder Val Acc. (%)
Seq2Seq Math-EN [39] RNN 66.7
Seq2Seq T-RNN [20] RNN 66.9
Seq2Seq Group-ATT [5] RNN 69.5

Seq2Tree♢ GTS [20] RNN 75.6
Seq2Tree♢ Graph2Tree [16] RNN 77.4
Seq2Tree♢ BERT-Tree [40] PLM♣ 83.9

I-RE Re-Deduction [14] PLM♣ 85.1
Seq2Code SUMC-Solver [33] RNN 77.4
Seq2Code SUMC-Solver [33] PLM♣ 82.5
Seq2Tree♢ Logic-Solver [31] PLM♣ 83.4
Seq2Tree♢ Ours PLM♣ 86.9

IV. EXPERIMENTS

A. Datasets and Experiment Setup

1) Datasets: We conduct experiments on Math23k [1], a
Chinese math word problem dataset, which contains 23,161
problems labeled with structured equations and answers. The
dataset encompasses 822k words, and 70.1k sentences with
2,187 templates, which is one of the most challenging and
popular Chinese MWPs datasets.

2) Experiment Setup: We implement our model with Py-
Torch and conduct experiments with an NVIDIA-Tesla M40
24GB GPU. We replace all numbers in the problem text with
“<NUM>”. The sizes of word embeddings and all hidden
states for other layers are all set as 512. The batch size here we
used is 32. We optimize Roberta with ADAMW [41] optimizer
and use ADAM [42] for the decoder. The initial fine-tuning
learning rate is set as 5e−5 and 1e−3 for pre-trained BERT

TABLE II
ABLATION STUDIES OF THE DIFFERENT COMBINATIONS ON THE MATH23K

DATASET. ALL MODELS USE A TREE DECODER. CFI: COARSE-FINE
INTEGRATION; DAWA: DYNAMIC ATTENTION WEIGHT ADJUSTMENT.

Encoder Graph CFI DAWA Val Acc.
RNN-based - - - 75.6
RNN-based

√
- - 77.4

Bert - - - 82.8
Roberta - - - 83.6
Roberta -

√
- 84.9

Roberta
√ √

- 85.8
Roberta

√ √ √
86.9

TABLE III
COMPARISON OF THE PROPOSED SALIENT CLUES STRATEGY FOR
DIFFERENT INITIALIZED ATTENTION WEIGHTS ON THE MATH23K

DATASET.

Initial Value Stable Value Val Acc. (%)
1.0 1.192 86.6
1.1 1.194 86.9
1.2 1.190 86.1
1.3 1.203 86.0

models and tree-decoder. We set the dropout rate as 0.3 and
weight decay as 1e−5 to avoid over-fitting.

B. Overall Result

1) Baselines.: We classify the baseline approaches into the
following groups: Seq2Seq, Seq2Tree, Seq2Code and iterative
extraction of relationships (I-RE). We compare our model
to an extensive set of baselines and state-of-the-art models:
Math-EN [39] leverages equation normalization techniques to
reduce the target space. T-RNN [20] employs recursive neural
networks for predicted tree-structured templates. GROUP-
ATT [5] adopts the concept of multi-head attention from the
Transformer architecture [37]. GTS [20] develops goal-driven
tree-structured neural networks to generate expression trees.
Graph2tree [16] follows GTS using a tree-decoder while
merging the graph transformer to enhance the basic relations
between different quantities. BERT-Tree [40] applies BERT
as an encoder but fusing constructive-learning approach to
better understand MWP patterns and perceive the divergence
of patterns. Re-Deduction [14] uses pre-trained language
models as encoders while formulating MWP solving as a
complex relation extraction task. LogicSolver [31] incorpo-
rate mathematical logic knowledge through logical prompt-
enhanced learning. SUMC-Solver [33] analyze mathematical
expressions with M-tree codes and Seq2Code.

2) Performances: The main results on Math23K are shown
in Table I. For the Math23K dataset, we notice that our model
outperforms all baselines on this Chinese dataset. Even if we
apply a similar tree-decoder like GTS, Graph2Tree, BERT-
tree, and Logic-Solver, our model achieves at least 4.1% higher
than others. Compared with other methods which also use the
pre-trained model such as Re-Deduction and SUMC-Solver,
we still outperform them by nearly 1.4%. It is noteworthy that
our model demonstrates superior performance when applied to



Case2:轮船从甲港开往乙港共行 3 天，第一天行了全程的 (2/5) ，第二天行了全程的 (1/3) ，第三天行了 280km ，甲港
到乙港的航程有多少 km ？
A ship travels from Port A to Port B over the course of 3 days. On the first day, it covers 2/5 of the total distance. On the second day, it 
covers 1/3 of the total distance. On the third day, it covers 280 kilometers. How long is the journey from Port A to Port B?

Graph2Tree

Case1:妈妈买了 4 千克香蕉和 3.5 千克苹果，一共花了 51.2 元．已知香蕉每千克 7.2 元，苹果每千克多少元？

Mom bought 4 kilograms of bananas and 3.5 kilograms of apples, spending a total of 51.2 yuan. It is known that the price of bananas is 7.2 
yuan per kilogram. What is the price of apples per kilogram?

Ours

Case3: 学校要植树 500 棵，把植树任务按 2 ： 3 分给 5 、 6 两个年级．实际植树时，六年级超过原分配任务的 (2/5) ，
六年级实际植树多少棵？

Graph2Tree Ours

The school needs to plant 500 trees and assigns the tree-planting task in a 2:3 ratio to grades 5 and 6. During the actual tree-planting process, 
grade 6 exceeded its originally assigned task by 2/5. How many trees did grade 6 actually plant?

Graph2Tree Ours

(51.2 − 7.2 × 3.5)/4 (51.2 − 7.2 × 4)/3.5

280/(1 − 2/5 − 1/3)×2/5 280/(1 − 2/5 − 1/3)

500 × 3/(2 + 3+3) × (1 + 2/5) 500 × 3/(2 + 3) × (1 + 2/5)

Fig. 5. Three examples of solving MWPs with our strategy and Graph2Tree. We can notice that our model outperforms Graph2Tree and have a better and
more accurate understanding of the MWPs.

Chinese datasets, primarily due to its semantic segmentation
commonly more explicit at the phrase level.

C. The Ablation Study and Parameter Analysis

To investigate the impact of different components and
hyperparameters in our model, we perform comprehensive
ablation studies and conduct a detailed parameter analysis on
the Math23K dataset.

1) The Ablation Study: In order to investigate how well our
model performs as compared to state-of-the-art models using
explicit tree-decoder and PLM, we do some ablation studies
shown in Table II, and analyze the effect of each component.
Effect of Graph Transformer. The accuracy achieved by the
GTS with the RNN-based encoder and tree-decoder is 75.6%.
By incorporating the graph transformer based on this model,
the accuracy significantly improves to 77.4%.
Effect of PLM. Inspired by the BERT-Tree [40], we replace
the encoder with a PLM. Compared to the RNN base, we
use BERT as the encoder, resulting in an improvement of
approximately 5.4%. We further experiment with Roberta as
the encoder, leading to a remarkable accuracy of 83.6%.
Effect of Coarse-Fine Integration. By incorporating the
CFI feature into the fixed encoder-decoder basic structure,
it resulted in an impressive accuracy performance of 84.9%,
surpassing all models that followed the PLM-based encoder
and tree-decoder framework.
Effect of Attention Weight Adjustment. The inclusion of
salient clue identification and dynamic attention weight ad-
justment in our model yielded a substantial accuracy improve-
ment, with a performance of 86.8%. This notable gain provides
compelling evidence for the significance and efficiency of the
attention weight adjustment technique.

2) Parameter Analysis: To investigate the influence of the
initial value of attention weights on the performance, we
conduct an experiment by varying the initial attention weight
from 1 to 1.3 with an increment of 0.1. The results, as shown
in Table III, reveal that the attention weights exhibit a notable

trend towards 1.2 across different initial values. Moreover, we
observe that the best performance is achieved when the initial
value is set to 1.1.

D. Case Study
Subsequently, we perform a detailed case analysis, present-

ing three specific cases as depicted in Figure 5. By leveraging
our salient clue prioritization strategy, our model demon-
strates notable improvements over existing methods in various
aspects. Firstly, it exhibits enhanced accuracy in predicting
operations, constants, and number words, outperforming the
Graph2Tree model which tends to generate erroneous expres-
sions. Moreover, our model displays outstanding capabilities
in extracting and generating precise expressions. This ability
significantly contributes to a better understanding and analysis
of the decision-making clues, as well as facilitates comprehen-
sion of the key factors guiding the model’s predictions.

In summary, our joint token-phrase-level feature integra-
tion approach empowers our model with enhanced accuracy
and attention prioritization in solving MWPs. This analysis
highlights the superiority and effectiveness of our proposed
approach, providing promising insights into the advancement
of MWP-solving techniques.

V. CONCLUSION AND FUTURE WORK

We introduce a novel approach termed “Salient Clue Prior-
itization (SCP)” for MWPs, which enhances MWPs through
salient clue prioritization. We perform extensive experiments
to evaluate our models against other baseline models, and
ablation studies further prove the efficiency of our model
components. Results show that our joint token-phrase-level
feature integration approach outperforms other baselines on
the MWP task. In future work, we aim to further explore how
to provide better explanations of the entire problem-solving
process. Our goal is to transform the problem-solving process
into a human-like reasoning process, allowing us to understand
and follow the step-by-step reasoning involved in finding a
solution.
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