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ABSTRACT

Despite the growing interest in Chinese character generation, creating a nonexistent character remains an
open challenge. Radical-based Chinese character generation is still a novel task while radical-based Chi-
nese character recognition is more technologically advanced. To fully utilize the knowledge of recognition
task, we first propose an attention-based generator. The generator chooses the most relevant radical to
generate each zone with an attention mechanism. Then, we present a joint optimization approach to
training generation-recognition models, which can help the generator and recognizer learn from each
other effectively. The joint optimization is implemented via contrastive learning and dual learning. Con-
sidering the symmetry of the generation and recognition, contrastive learning aims to strengthen the
performance of the encoder of recognizer and the decoder of generator. Since the generation and recog-
nition tasks can form a closed loop, dual learning feeds the output from one to another as input. Based
on the feedback signals generated during the two tasks, we can iteratively update the two models un-
til convergence. Finally, as our model ignores the order information of a sequence, we exploit position
embedding to extend the image representation ability and propose tree position embedding to represent
the positional information for tree structure captions of Chinese characters. The experimental results in
printed and nature scenes show that the proposed method improves the quality of the generating images

and increases the recognition accuracy for Chinese characters.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

In our daily lives, automatic recognition of Chinese text is fre-
quently employed. However, the recognition of Chinese characters
or texts is among the most challenging topics in pattern recogni-
tion, due to the numerous character categories, complex internal
structures and confusion among similar characters. Additionally,
recognition of rarely used Chinese characters is typically a few-
shot learning problem since samples of such character categories
are difficult to collect. Moreover, recognition of some novel Chinese
characters is a zero-shot learning problem, as these characters are
newly created and have never been seen before.

In this case, a radical-based model is suggested that fully ex-
ploits the highly hierarchical structure of Chinese characters. Only
roughly 500 radicals and 10 spatial structures are sufficient to de-

Abbreviations: RTN, Radical and Transformer based Network; TPE, Tree Position
Embedding.
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scribe the more than 20,000 Chinese characters because all Chi-
nese characters are made up of radicals. Ten spatial structures
are shown in Fig. 1 while a Chinese character’s caption sequence,
tree view, and spatial structure diagram are shown in Fig. 2. The
radical-based method aims to decompose Chinese characters into
radicals and describe their spatial structures as captions for recog-
nition.

However, the radical-based recognition method still needs to
be improved in the complex Chinese scene. In addition to im-
proving the recognition model itself, data augmentation and dual
learning have also been used recently. Geirhos et al. [1] used the
Chinese characters with new styles generated by style transfer as
data augmentation to expand the training set. Zhu et al. [2] em-
ployed a style transfer model as the generator and formed a dual
system with the recognizer. However, style transfer is not the re-
verse task of recognition, which plays a limited role in dual learn-
ing. What’s more, both the above methods are not helpful for the
recognition of novel Chinese characters. On this basis, we propose
a radical-based generator that can create Chinese characters from
texts, since a character-based model cannot identify a novel char-
acter. And then, we design a joint optimization for generation-
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Fig. 1. Graphical representation of ten common spatial structures between the radicals of Chinese characters.
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Fig. 2. In the radical analysis, each Chinese character is equal to a tree, and each tree is stored as a sequence according to the depth-first traversal order.

recognition system and employ the generated characters as data
augmentation in experiments.

Radical-based Chinese character generation is a novel task due
to the diversified character radicals, variable font styles and com-
plicated foreground and background. It is challenging for the model
to generate high-quality characters in complex scenes. Recently, a
radical combination network (RCN) [3] is proposed, which can gen-
erate a Chinese character with caption input. The key idea is to
integrate the information of the radicals and character attributes
as the representation by a recursive network. However, since the
recursive model operates the radicals one by one, the preceding
tokens are covered by the succeeding ones in a sequence. The in-
formation of leaf nodes in bottom layers is largely ignored and
the outputs are most affected by the information of root nodes in
top layers, which implies the weak capacity of dealing with long-
distance dependency. Moreover, the generalization of RCN and the
quality of the generated results on hand-writing scene are not al-
ways satisfactory.

To address this issue, we first propose a radical-and-transformer
generation network (RTN-G) for Chinese character generation. The
information in bottom layer and top layers are simultaneously cal-
culated instead of one by one, which performs better on process-
ing long-distance information than recursive network [4]. The rep-
resentations of radicals are fed to a Transformer network to build
contextualized representations and the model is trained to draw
Chinese characters according to their attributes. Compared with
RCN, RTN-G can produce higher-quality images of Chinese char-
acters with more precise model building. Second, to make a full
use of the prior knowledge of Chinese character recognition, we
employ an attention-based recognizer (RTN-R) to form a set of
symmetric networks with the generator. The recognition model
consists of a fully convolutional network as the encoder and a
transformer decoder. Our model framework is shown in Fig. 4.
The radical-and-transformer based recognition network performs a
recognition task in a symmetrical way while the generator (RTN-G)
and recognizer (RTN-R) can form a closed loop. Then we jointly op-
timize recognition and generation models by leveraging the strong
complementarity between two tasks. Considering the symmetry of
the architecture, we adopt contrastive learning and dual learning
to assist the generator and recognizer in learning from each other:

« Contrastive Learning: Considering the symmetry of recognizer
and generator, the representations in symmetrical position have
the same physical meaning. Given a representation, the model
improves the ability of modeling by identifying the symmetrical
one in a set of candidate representations.

e Dual Learning: The generator and recognizer can be an eval-
uator of each other [5]. The generator and recognizer can be

optimized with the help of each other and they can well col-
laborate to improve the performance for both.

In addition, the generator creates Chinese characters from texts,
which means the non-existed Chinese characters can be produced.
The non-existed Chinese characters contains a large number of
novel radical combinations and can effectively expand the data set.
More combinations might help the recognition models distinguish
radicals. In the experiments, non-existed characters were employed
and the model correctly recognized easily confused Chinese char-
acters.

Since our model contains no recurrence, we employ position
embedding to represent the positional information of radicals in
images. Considering the significant difference between sequence
and tree structure, we propose a tree position embedding (TPE)
for tree structure captions of Chinese characters to achieve a bet-
ter structure modeling for both Chinese character generation and
recognition tasks.

The main contributions of this study are summarized as fol-
lows:

o We propose an attention-based Chinese character generation
network. In particular, the network well generates the align-
ment strongly corresponding to human intuition. Experimental
results show that our method performs better than the recur-
sive model.

e A joint optimization method is presented for Chinese gener-
ation and recognition tasks by using contrastive learning and
dual learning. Experimental results demonstrate that it further
improves the quality of the generated Chinese characters and
increases the recognition accuracy of Chinese characters in both
printed and natural scenes.

o We propose a tree position embedding (TPE), which performs
better than 1D position embedding (PE). We empirically prove
the superiority of the TPE over the traditional PE for represent-
ing the tree structure information.

2. Related works
2.1. Radical-based recognition

The recognition of Chinese characters is an intricate problem
due to a large number of existing character categories. However,
most recognition methods are character-based and can only rec-
ognize about 4000 commonly used characters. Compared with the
character-based method treating characters as independent ones,
the radical-based method can summarize and extract the similar-
ity among Chinese characters. As shown in Fig. 3, radical-based
method can recognize out-of-dictionary characters but character-
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Fig. 3. The comparison between the radical-based and character-based recognition
methods. Radical-based methods can recognize out-of-dictionary characters but the
character-based cannot.

based cannot. Therefore, radical-based recognition is more valu-
able and performs better on Chinese character recognition. In the
past few decades, lots of efforts have been made for radical-based
Chinese character recognition. Wang and Fan [6] employed a hi-
erarchical radical matching method to recognize a Chinese char-
acter. Shi et al. [7] used a HMM-based model and [8] used an
BLSTM-CRF neural architecture for Chinese character recognition.
RTN-R [9] proposed a Transformer-based encoder-decoder model
[10] for radical-based Chinese character recognition. TAN [11] em-
ploys a tree decoder, which computes a relation node and two rad-
ical nodes at each step. Compared with string decoders, the tree
decoder better understands tree structures but costs more. In our
study, we employ the framework of RTN-R as the recognizer.

2.2. Radical-based generation

Chinese character generation is a challenging task. The most
of existing works generate Chinese characters in character level
with complex background and font styles. Lin et al. [12] gener-
ated nearly real Chinese characters using a GAN model in char-
acter level. However, in addition to the above-mentioned, radical
level generator can create Chinese characters with novel classes,
which is an artistic work and can provide variable combination of
radicals as data augmentation for radical-based recognition. Huang
et al. [13] proposed a novel radical decomposition and rendering
based GAN to transfer the font styles. Zhang et al. [14] used writing
trajectories to generate handwritten Chinese characters. Recently,
RCN [3] proposed a radical-based generator, which can generate
Chinese characters by using radicals. In our study, we propose an
attention-based encoder-decoder network (RTN-G) as the genera-
tor and achieve radical-based generation for Chinese characters.

2.3. Joint optimization

Joint optimization is commonly used for multi-tasks within the
same framework [15]. In this paper, we propose a cross-model
joint optimization for generation and recognition, which consists
of contrastive learning and dual learning [16]. Contrastive learn-
ing has recently achieved success [17]. Many such approaches have
relied on heuristics to design pretext tasks [18]. Discriminative ap-
proaches based on contrastive learning in the latent space have re-
cently shown great promise, achieving state-of-the-art results [19].
Aberdam et al. [20] proposes a contrastive learning approach to
sequential prediction tasks such as text recognition. Baevski et al.
[21] masks the speech input in the latent space and solves a con-
trastive task defined over quantization of the latent representations
which are jointly learned. In our study, we aim to make the model
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Fig. 4. Illustration of our framework which contains a recognizer and a generator.
The two networks perform a recognition task and a generation task respectively.
Through feeding the output to the other network, the recognizer and generator
can jointly learn mapping relationships between radicals and images. Besides, the
model employs contrastive learning for reinforcement of joint learning further. Po-
sition embedding (PE) and tree position embedding (TPE) are employed here. The
red dotted boxes correspond to the attention maps, the red lines correspond to the
process of contrastive learning and the green lines correspond to the process of
dual learning.

identify the true representations of characters in a set of candidate
representations and also make the attention matrices close to their
archor. Dual learning is a training strategy applied to dual tasks
and [22] achieves comparable accuracy to neural machine transla-
tion trained from the full bilingual data, by learning from monolin-
gual data. Zhu et al. [2] applied dual learning on recognition and
generation tasks. In this study, our model improves with this train-
ing strategy.

3. Methodology

In this paper, a joint model based on radical and attention is
presented as shown in Fig. 4, which aims to improve the qual-
ity of generated characters and the accuracy rate of recognition.
Firstly, we propose a radical-based generator to realize the trans-
fer from text to image. Then, we employ a radical-based recognizer
which has proven to be highly effective. Finally, we introduce joint
optimization including contrastive learning and dual learning. De-
tails of the radical and transformer based generator (RTN-G, rad-
ical and transformer based generation network) are described in
Section 3.1. Details of the radical and transformer based recog-
nizer (RTN-R, radical and transformer based recognition network)
are described in Section 3.2. Section 3.3 illustrates the joint opti-
mization and the loss function.

3.1. Radical-and-transformer-based generation network

On the basis of previous work RCN [3], we propose an
attention-based generator, an encoder-decoder network, as shown
in the bottom half of Fig. 4. Transformer blocks [4] with L layers
are used for the encoder and decoder, and configurations are out-
lined in Table 1. The deconvolution algorithm is employed to gen-
erate the final output images.

Firstly, we map N symbols of source captions S¢ to a sequence
of radical representations X as encoder input. Each token is finally
represented by the summation of the word embedding x; and the
tree position embedding TPE(i).

X = (% +TPE(1),...,xy + TPE(N)) (1)

where x;, TPE(i) € RP and D is the model dimension. We map sym-
bols of character attributes to background feature B as decoder in-
put, which represents writing style, background, color, angle, etc.
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Table 1
Encoder and decoder configurations of generator and recognizer. The layers are
shown in bold.

Generator Recognizer
Encoder Decoder Encoder Decoder
Layer: 12 Layer: 12 Layer: 6 Layer: 6
Input
Word Background Image Masked Word
Embeddings Feature Feature Embedding
(N x D) 2 x D) " x D) (N x N x D)
Multi-Head Attention
Head: 4 Head: 4 Head: 8 Head: 8
Add & Norm
Feed Forward
W1 c RDXD W1 c RDXZD W1 c RDXD W] c RDXZD
W2 e RDXD W2 e ]RZDxD W2 e RDXD W2 c RZDxD
Add & Norm

Each relative position corresponds to a position embedding PE(i)
[23].

B = (b, + PE(1), ..., b + PE(K)) 2)

where b;, PE(i) € RP, and K = ";—‘Q’ denotes the length of B. H and
W denote the shape of output images, and T denotes the multiple
of sampling. Then, X is fed to the encoder to build context vector
C. Given C and B, the decoder generates character representations
Z with fixed-shape. Finally, Z is up-sampled to generate RGB im-
ages F, where F e RM*Wx3,

3.1.1. Encoder

The encoder is composed of a stack of L identical layers. Each
layer has a multi-head self-attention mechanism with M heads
[24] and a position-wise feed-forward network.

Multi-head self-attention mechanism is a proved attention
mechanism, where self-attention can be described as:

Attention(Q, K, V) = softmax QI—(T v (3)
A vD

where Q, K,V € RN*D are mapped by encoder input. We use the
dot product on Q and V to obtain the correlation matrix as weight
and employ a weighted summation on V. The multi-head attention
can be expressed in the same notation as:

MultiHead(Q, K, V) = Concat(hy, ..., hy)Wy
h; = Attention(QW<, KWX vw!) (4)

1

where h; represents the ith head, W; e RP*P/M jre the projection
matrices for the it" head, and Wq € RP*D,

The feed-forward network (FFN) contains two fully connected
layers and an active layer. The parameters of multi-head self-
attention and FFN are illustrated in Table 1.

FFN(x) = max (0, xW + b;)W, + b, (5)

3.1.2. Decoder

The decoder is composed of a stack of L identical layers.
Each layer has a multi-head attention mechanism with M heads
[25] and a feed-forward network, which is similar to the encoder.

We map encoder output to key K and value V and map de-
coder input to query Q. Regarding the decoder input as a blank
canvas, we draw characters according to the relationship between
radicals and image zones, which is built by attention. We define
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the multiplication of attention matrices in different layers as tex-
tual attention Ag, which will be used in joint optimization.

LM QK"
A, = softmax| —- (6)

where i denotes the ith head and j denotes the jt layer in decoder.
Ag performs as the weighting coefficients so that it can choose the
most relevant radical from the whole input sequence for calculat-
ing the context vector.

Given a source caption Sc, background feature B and a target
image Sj, the generator can be defined as the following conditional
probability:

H W H W

P(SiISc. B) = [ [[ [P(Siij1Sc. B) = [ [ [ [ P(Suijl2i) (7)
i=1 j=1 i=1 j=1

where z;, denotes the image representations [26] and k = L“g;r 1.

To better optimize the deep network, the entire network uses a

residual connection and layer normalization (Add & Norm).

3.2. Radical-and-transformer-based recognition network

We employ the framework of RTN-R [9] as recognizing network,
which is symmetrical to the generator and has the similar encoder
and decoder with the generator’s. The model is composed of a con-
volutional feature extractor (CNN), Transformer encoder and de-
coder with L layers, which are outlined in Table 1.

The model first learns to encode the source images S; into high-
level representations Z. PE is added on the character representa-
tions Z. Then the encoder captures information from the entire se-
quence to build context vector C. Finally, the decoder uses this con-
text vector to generate variable-length output sequence X word by
word, which is radical representations. At each step the model is
auto-regressive, consuming the summation of previously generated
symbols’ representations and TPE as additional input when gener-
ating the next. Given a source image S; and a target caption Sc, the
recognizer can be defined as the following conditional probability:

ISi| ISi|
P(ScIS)) = [ [P(ScilSc-i. S) = [ [P(Scilei) (8)

i=1 i=1

where Sc_; denotes a prefix of Sc with length i — 1.

Similar to generation tasks, we define the multiplication of at-
tention matrices as visual attention A;, which can choose the most
relevant part from the whole input image for calculating the con-
text vector.

3.3. Joint optimization

Joint training can help the generator and recognizer learn from
each other effectively [27]. In this section, we introduce the two
sub-tasks of joint optimization and how they help the generator
and recognizer:

3.3.1. Contrastive learning

Considering the symmetry of recognizer and generator, we de-
fine the output of generator decoder and the input of recognizer
encoder as a set of samples, which are both the representations
of characters. Given the character representation of generator, the
model needs to identify the true character representation of recog-
nizer in a set of candidate representations. Similarly, we define the
input of generator encoder and the output of recognizer decoder as
a set of representations of radicals, and we also employ contrastive
learning on radical representations.
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For recognizer, input images are transformed to character rep-
resentations Z, then radical representations X and finally radical
symbols. Meanwhile, the generator processes the symbols in a re-
verse way. Considering the symmetry of generator and recognizer,
we propose three sets of contrastive learning on radical represen-
tations, character representations and attention matrices.

o Radical and character representations: For each Chinese char-
acter, the radical presentation X in generation and recognition
should be close to each other in the mapped space. We employ
learnable matrices WR to map radicals to contrastive learning
space as r.

re = WiX,
re = WX, (9)

where WR e RONxD and r e RP, subscript g and r represent
whether the variable belongs to generation or recognition. Sim-
ilarly, for character representations Z, we employ W¢ to map
Z to contrastive space as ¢g and c¢.. By imposing the vector
constraint on radical and character presentations, the generator
and recognizer can learn from each other and jointly improve
the performance of the network.

Attention matrices: The generator and recognizer learn textual
attention Ag and visual attention A; during training and build
the correspondence between radicals and zones in both direc-
tions. Given the symmetry of the visual attention and textual
attention, we utilize mean-square errors as the contrastive loss
for evaluating the similarity between the two attention matri-
ces.

3.3.2. Dual learning

Noticing that generator and recognizer can always happen in
dual directions, we employ them as evaluators for each other.
Starting from source images S, we first feed it into the recognizer
R and then further feed the prediction results P into the genera-
tor G. By evaluating the output image F, we will get a sense of the
quality of the two models, and be able to improve them accord-
ingly. The process starting from source captions Sc is the same as
above.

3.4. Optimization strategy

During training, the generator and recognizer learn to model
Chinese characters by solving generation loss £g and recognition
loss L. This is augmented by joint losses £; to encourage the gen-
erator and recognizer to learn from each other.

L=Lg+ L +aL; (10)

where « is a tuned hyper-parameter.

3.4.1. Generation loss

Lg is employed to guide the character generation. We use
mean-square error (MSE) as the loss function to measure the Eu-
clidean distance between output image F and target image S;. The
generator learns coding of glyph by minimizing L.

Ly = |IF —Sill2 (11)

3.4.2. Recognition loss
We use cross-entropy (CE) as the loss function that the recog-
nizer learns pixel-radical correspondence.

Ly = —S¢ - log(P) (12)

where P represents the prediction results of recognizer, S¢ repre-
sents the target caption.
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3.4.3. Joint loss

The generation and recognition tasks build the two models in-
dependently, and the joint loss £; is designed to increase the asso-
ciation of them. The joint loss is a summation of two terms: con-
trastive loss £. and dual loss Ly.

where § is a tuned hyper-parameter.

For contrastive loss L., we employ InfoNCE loss [28] to measure
the similarity of radical representations R and character represen-
tations C in contrastive space, and employ MSE loss to measure the
Euclidean distance between attention matrices Ag and A;. Given
radical level representations 1 and character level representations
cg of generator, the model needs to identify the true representa-
tions of recognizer r; and ¢; in a set of candidate representations
¥ € Dy and ¢ € D, which include the true representations and M
distractors. Distractors are uniformly sampled from other samples
of the same batch. The loss is defined as:

exp(sim(rg, 11)/T)
> i, €XP(sim(rg, )/7)
exp(sim(cg, ¢;)/T)

Lc=—V;-log

—Y-lo - —~
Ve 108 > &p, €Xp(sim(cg, €)/7)
Al -A
~Ya-log (l - W) (14)

where Ag and A; represent the textual and visual attention, M rep-
resents the number of attention head, M - N - N represents the size
of attention matix and y are tuned hyper-parameters. We compute
the cosine similarity sim(a, b) = a'b/||a||,||b||, for radical repre-
sentations and character representations. Dual loss Lp is defined
as:

Lq=[G(P) = Sill2 — Sc - log(R(F)) (15)

where G and R represent the function of the generator and recog-
nizer.

4. Tree position embedding

Since our model contains no recurrence, we must inject some
information about the relative or absolute position of the tokens.
We add position embedding to each sequence representations to
distinguish the order of tokens, which is proven effective in the
published works. Traditional position embedding (PE) [23] is de-
fined as:

. i
PE,‘_zd = SIn <)\_2d/D)

i
PE; 5441 = cOs (W) (16)

where i is the position, d is the dimension and A is set to 10,000.

The distances of 1D position embedding are determined by the
distance of the tokens in the sequence. However, considering the
difference between sequence structure and tree structure, PE is not
quite applicable here for tree structure captions. Figure 5 shows
the way of node and layer numbering in a tree, and we elaborate
why PE is not suitable for tree structure information through it.
Obviously, the position embedding of tree structure should satisfy
two constraints: (1) The embedding of child nodes should be at the
same distance from the one of parent node. (2) The embedding of
nodes should be closer if they appear closer in a tree. However, PE
will result in erroneous conclusions. Each parent node and its child
nodes do not comply with the 15t constraint. Moreover, since the
nodes follow the depth-first traversal as a sequence, some nodes
belong to different sub-trees in a tree, but they are adjacent in a
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Fig. 5. The number of tree nodes is shown. The tree is recorded as a sequence
arranged according to depth-first traversal from 0 to 14.
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sequence. For example, in Fig. 5 node 7 is adjacent to node 6 and
8 in the sequence, but node 8 is much too far away from node 7
in the tree.

Thus, we propose a novel tree position embedding (TPE), which
complies with the above constraints. The model takes the tokens
following the depth-first traversal as a sequence. TPE can help our
model distinguish the position of each token. We use sine func-
tions of different frequencies to represent root node, left and right
child node in each layer.

Root = sin (MT”)
Ly =sin(Y2) d=1,....D (17)

R, = sin (44z)

where | represents the layer, d is the dimension, L; and R; repre-
sent the left and right child node in Ith layer. That is, each node
corresponds to a sinusoid and the periods are restricted to integer.

The tree position embedding TPE (i) € RP of position i is defined
as a mean of the representations of i and all its recurrent parent
nodes, which can be expressed as the following equations:

TPE(1) = (Root + Ly)/2
TPE(4) = (Root + L1 + L, + R3)/4 (18)

We choose this function because we hypothesized it would al-
low the model to easily learn to observe relative positions in a
tree structure. TPE can better describe the positional relevance be-
tween tree nodes, which can be mathematically proved. We denote
¢5(.,-) as a function to calculate closeness/proximity between em-
bedded positions, which is used in the later proof. Equations ((17),
(18)) can be reduced to the following property.

¢r(x.y) = FOT- f(¥) (19)

4.1. Equality

Intuitively, child nodes 2i + 1 and 2i + 2 should be at the same
distance from parent node i. PE will result in erroneous conclu-
sions obviously.

Gre (i, 20 + 1) — Ppe (i, 21 + 2)

L i+1 i+2
= Z |:cos (pd/D) — cos (XZd/D)i| (20)
d=1

However, TPE fulfils the above-mentioned property. We define
I =logy(i+1)] + 1 as the layer of node i.

o o l l
,204+1) — ,2042) = +— ——— =0 21
¢ree (i, 21+ 1) — Prpe (i, 2 + 2) 1 I+1 (21)
In addition, since Root, L; and R; are orthogonal to each other,
the child nodes having the same parent node can be separated
from one another. In other words, although child nodes can be at
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the same PE distance from parent node by giving the child nodes
the same numbering, the model can not distinguish child nodes.

2

. . l
¢TpE(21+1,21+2)=m #1 (22)

4.2. Location relevance

Generally, if words appear close to each other in a tree, they are
more likely to determine the semantics together. Taking node i as
an example, it should be closer to its child node 2i + 1 than node
n, where n ¢ {i,2i +1,2i+2, ['51]}.

12
frosi.20 4 1)~ grelim) = =g — L >0 (23)

The results indicate that TPE can establish correct correspon-

dence of positions in a tree structure, while PE cannot. Only when
n > 2i+ 2, PE is eligible.

s . D/2 i+1 n—i
dpe(i, 21 + 1) — ¢pe (i, n) = Zd=] [cos (kZd/D> — cos <k2d/D>i|

(24)

5. Experimental setup
5.1. Datasets

We prepare the printed and natural scene characters and design
related experiments to verify the effectiveness of our method in
simple and complex scenes.

o Printed Text: In the experiments on printed characters, we
choose 27,533 Chinese characters in 8 font styles (i.e. Hei, Song,
Kai, Deng, Fangsong, Li, Yao, Youyuan) as database and divide
them into training set and testing. There are 180,052 printed
characters in 8 font styles in training set, which contains 22,933
classes. And there are 31,760 printed characters in testing set,
which contains 4172 classes that do not appear in training
set.

o Scene Text: The natural scene database is the Chinese Text in
the Wild (CTW) [29], which includes 1,018,402 Chinese charac-
ters and 6 types of character attributes for each one: occluded,
complex background, distorted, 3D raised, WordArt and hand-
written. Following the official dataset splitting, we use 3580
Chinese character categories with 760,107 instances for train-
ing, 2015 Chinese character categories with 52,765 instances for
validation and 103,519 instances for testing.
Handwriting Text: We select the ICDAR-2013 competition
[30] of HCCR and CASIA [31] database as handwriting database.
For training, we adopt the CASIA database including HWDB
1.0 and 1.1. The ICDAR-2013 database is used to evaluate the
performance on within-dictionary Chinese characters, and CA-
SIA HWDB 1.2 is used to evaluate the performance on out-of-
dictionary Chinese characters. There are 3319 non-common Chi-
nese characters in HWDB1.2 dataset and we pick 3277 classes,
which is the same as that in DenseRAN [32]. Note that the Chi-
nese characters in HWDB1.2 dataset are not appeared in train-
ing set.

 Random Caption: The output images of generator depend
on the basic of input captions, which describe the details
of characters. Therefore, we prepare 3000 random caption of
novel/nonexistent Chinese characters as a validation set to eval-
uate the generalization performance of the generator.
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Fig. 6. We employ 9 novel characters to evaluate the generalization of our model. The first row gives the example results of RCN [3]; the last row gives the example results

of the proposed attention-based generator.

5.2. Settings

The images for training and testing are resized as 32 x 32. The
captions contain 624 radicals and 10 spatial structures for Chinese
characters. The parameters of Transformer blocks are illustrated in
Table 1. The model dimension D is 512. The up-sampling module
of generator has seven blocks and the temporal convolutions with
strides (2,1,2,1,1,2,1) and kernel widths (3,3,3,3,3,5,5). We employ a
16-layer VGG network [33] as feature extractor in recognizer. The
length of background feature K is 16, where H,W and T are 32, 32
and 8. The hyper-parameters «, 8, yr, ¥c and y, are 0.5, 0.2, 1, 1
and 0.8, which are tuned according to the validation set. Each task
uses dropout rate 0.2. The temperature T in the contrastive loss is
set to 0.1.

Besides, the models were implemented with PyTorch 1.3. In the
experiments on printed scene, batches are built by 32 images and
we train on a single V100 32G GPU for 5 h. In the experiments
on natural scene and handwriting scene, batches are built by 256
images and we train on 4 V100 32G GPU for 30 h and 18 h respec-
tively.

6. Experiments

In this section, we will show the effectiveness of the proposed
joint optimization. From Sections 6.1 to 6.3, we tested our model
in printed scene, natural scene and handwriting scene respectively.
The experiments are designed to answer the three questions: Q1
Are contrastive learning, dual learning and TPE effective in the
joint optimization; Q2 Compared with other state-of-the-art meth-
ods, does our model perform better than other models; Q3 Can
joint optimization outperform traditional data augmentation?

6.1. Experiments on printed text (Q1)

Evaluating the quality of synthesized images is an open and
difficult problem. So the experiments are first performed on sim-
ple scenarios (printed dataset). For generation, mean-square error
(MSE) is used to evaluate the differences between the target im-
ages and generated images, and structural similarity (SSIM) is used
to measure the similarity of two images. Top1 and Top5 accuracy
rates are employed as the indicators of recognizer. We summarize
the overall performances in Table 2.

Table 2
Ablation of joint optimization in printed scene. SIM: contrastive learning.
DUAL: dual learning. TPE/PE: tree or 1D position embedding is adopted. MSE:
mean-square error. SSIM: structural similarity. Top1/Top5: recognition accuracy
rate (%).

SIM DUAL TPE[PE MSE  SSIM  Topl  Top5
Isolated 0232 079 8517 90.88
PE 0211 082 8655 96.64
TPE 0.199 0851 8722  96.81
Joint v TPE 0172 0887 90.11 9753
v TPE 0.178 0815 8920 973
v v PE 0.166 0913 9255 98.14
v v TPE 0160 0929 9361 984

We design an ablation experiment to verify the validity of the
sub-tasks in joint optimization and the effectiveness of TPE. In
Table 2, “isolated” represents the generator and recognizer opti-
mize independently; “joint” represents the joint optimization tasks
are primed. Table 2 clearly declares that joint optimization im-
proves the performance of both generator (MSE reduced from 0.199
to 0.160, SSIM increase from 0.851 to 0.929) and recognizer (Topl
accuracy increased from 87.22% to 93.61%, Top5 accuracy increased
from 96.81% to 98.4%). The first 2 lines in results of joint model
indicate more significant contributions of contrastive learning than
dual learning. The last 2 lines in results of joint model imply that
TPE plays a more important role than PE.

To check the generalization of the model, random captions are
used here. As illustrated in Fig. 6, we compare the generating im-
ages of RTN-G and RCN [3]. Evidently, the proposed RTN-G us-
ing joint optimization and TPE performs better. More specifically,
in Fig. 7, we show how the generator learns to produce an un-
seen Chinese character. The generator finds the best match from
the attention map and well generates the alignment strongly cor-
responding to human intuition.

6.2. Experiments on scene text

In this section, we evaluate our model in a natural scene
database. Compared with the printed Chinese character dataset,
CTW dataset is more challenging due to its diversity and complex-
ity. All CTW data are used for recognition tasks, and part of CTW
data are adopted for generation and joint optimization tasks.

6.2.1. Ablation experiments on joint optimization (Q1)

We employ the same method as in the Section 6.1 to eval-
uate the performance of our model in natural scenes on CTW
dataset. According to the officially provided annotations, the low-
quality samples were removed from the training set of the gener-
ation tasks. Since the generator requires character attributes, the
characters with complex backgrounds and artistic fonts can not be
created by the current version. We employ characters with “dis-
torted” and “raised” attributes for generation and joint optimiza-
tion tasks only. For character attributes, we acquire the approxi-
mation of background and text color by pixel statistics and mathe-
matical operation. A pre-trained classification network is employed
to identify the font styles.

Figure 8 shows the generated results in natural scenes, where
the left part shows the source image and the middle part shows
the generated characters. In the right part of Fig. 8, we synthesize
a seemingly realistic photograph of streets-capes by sticking these
generated characters back to the source image. Although the cur-
rent version can only operate in simple artificial scenes, the syn-
thesized images are entirely realistic-looking.

As for recognition tasks, we employ the results in [9] as a
baseline. We illustrate the performance in Table 3, compared
with baseline (Top1 accuracy: 87.31%), TPE and joint optimization
provide an additional boost in recognition performance (+1.33%).
Moreover, TPE improves the recognition rate by 0.13% and 0.42%
over PE in isolated model and joint model. Limited to the capacity
of generator, only partial data are adopted for the joint optimiza-
tion which makes recognition rate hard to vastly promote. With
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Fig. 7. Attention visualization of generating an unseen Chinese character.

Source Image Generated Characters Synthetic Image

Fig. 8. Exampling results of our model in nature scenes on CTW dataset. The left part gives the original image. The middle part gives the generated characters which have
the same attributes as the original image. According to the coordinate of each character, we replace the character in the original image and obtain a synthetic image as

shown in the right part.

Table 3

Ablation of joint optimization in natural scene on CTW dataset. SIM: contrastive
learning. DUAL: dual learning. TPE/PE: tree or 1D position embedding is adopted.
MSE: mean-square error. SSIM: structural similarity. Top1/Top5: recognition accu-
racy rate (%).

SIM  DUAL TPE/PE  MSE SSIM Top1 Top5
Isolated 0.284 0.625 86.14 90.76
PE 0263  0.699 87.31[9] 91.54
TPE 0244 0.723 87.44 91.63
Joint v TPE 0.229 0.765  87.60 91.73
v TPE 0223 0.771 87.91 92.02
v v PE 0214  0.82 88.22 92.15
v v TPE 0.199 0.858 88.64 92.44

the improvement of generator in the future, the recognizer should
benefit more from the joint optimization.

6.2.2. Comparison with state-of-the-arts (Q2)

We compare our model with other state-of-the-art generation
and recognition methods to show the competitive results of our
proposed joint model. In order to examine the robustness of the
joint model on generation tasks, we compare our model with Syn-
thText[34] and SRNet [35]. In fact, SynthText and SRNet are not
fully comparable with our model. SynthText needs True Type Font
files as input and SRNet needs character image as input which fo-
cuses on style transfer. However, the input of our model is just text
that includes less information. To make it fair, the results are gen-
erated by CTW dataset without any additional data. Besides, since
the CTW dataset does not contain all Chinese characters, we split
all Chinese characters into within-dictionary characters and out-of-
dictionary characters.

As shown in Table 4, we prepare 2 within-dictionary charac-
ters and 2 out-of-dictionary to evaluate the performance. The qual-
ity of our model performs similarly to other generation methods,
even the input information of our model is relatively weak. Com-
pared with other generation models, our model can create out-of-
dictionary characters, while SynthText and SRNet can never create
novel characters.

In experiments on recognition, except that the experimental re-
sults of our model are measured by the tool provided by CTW, all
other experimental results are selected from published papers. For
fairness, all our experiments only use offline information in the of-

Table 4

The generation results of SynthText, SRNet and our model.
Compared with character based synthesis algorithms, radical
based generation method can create out-of-dictionary charac-
ters. Meanwhile, the qualities of within-dictionary characters
are very similar.

Within-dictionary ~ Out-of-dictionary

SynthText [34]  [F
SRNet [35]

Ours

Table 5

Evaluation of character generation and recognition systems on CTW. MSE: mean-
square error. SSIM: structural similarity. Top1/Top5: radical expression recogni-
tion accuracy rate (%). FPS: frames per second in testing processing.

MSE  SSIM  FPS Topl(%) Top5(%)  FPS
ResNet50 [29] 79.00 85.9 212.8
DenseNet [36] 79.45 86.3 323.7
RAN [36] 85.22 90.15 86.3
RTN-R [9] 87.31 91.54 92.2
SynthText [34] 0325 0521 894.4

RCN [3] 0311 0558 135

SRNet [35] 0212 0788 906

RTIN-G 0244 0723 1417

RTN-R+RTN-G 0.199 0.838 141.7 88.64 92.44 92.2

ficial CTW training set without additional data augmentation. As
shown in the Table 5, we select mainstream radical and attention
based generation and recognition algorithms for comparison. Ob-
viously, joint optimization model (RTN-G + RTN-R) is significantly
better than other single models in terms of character generation
and recognition. Among those, “RAN” (Radical Analysis Network),
“RTN-R” are advanced radical-based recognition models in recent
years. These experimental results fully prove that joint optimiza-
tion model has good generalization and superior performance for
Chinese character generation and recognition. In addition, we dis-
play the time cost of each model in testing processing. In these
recognition models, ResNet50 and DenseNet are character-based
models, which do not need decode radical sequences. They cost
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Table 6
Evaluation of recognition models on CTW with respect
to 6 attributes; “all” includes all characters on the test

dataset.
RAN RTN-R RTN-R+RTN-G

occluded 71.55 73.94 72.64

background 82.84  84.54 85.13

distorted 71.55 83.60 83.66

3D raised 76.17  78.06 78.92

wordart 87.11 84.25 86.95

handwritten 63.58 66.70 67.27

all 85.56 87.31 88.64

r-- D & P
3<p

RAN # o * il
RTN-R J F& 3 bl
RTN-R+RTN-G JBR bt} 3k B

Fig. 9. The example comparison among RAN, RTN-R and joint model in recognition
tasks. The red characters denote the error predicted result and the green characters
denote the correct ones.

Model Recognition Results & Attention Visualization
! 1 r n
RAN < q}‘ <7 o’ < 1[|]
3Xp 2cp 2% 2P 2cp
i B =] 2 =]
RTN-R -4 < 4 < [
3cp kP Jep Xp 2P
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Fig. 10. The comparison of recognition results and attention visualization among
RAN, RTN-R and RTN-R+RTN-G in recognition tasks. The joint model corrects error
predicted results of single model, and the attention becomes more accurate after
joint optimization.

less than radical-based models RAN and RTN-R. The generation
model SynthText is a rule-based non-neural method, so its speed is
much higher than others. Moreover, our joint model does not need
additional time compared to a single model (RTN-R or RTN-G) in
testing processing.

To demonstrate the robustness of our model in natural scenes,
Table 6 shows the performance of recognition models with re-
spect to 6 attributes: occluded, complex background, distorted, 3D
raised, wordart characters and handwritten characters. We can ob-
serve that the recognition rates of joint model are much higher
than others in complex background, distorted, 3D raised and hand-
written. However, our joint model performs worse than RTN-R in
occluded, since the generator cannot create a high-quality image
with occlusion, which brings negative effect to the recognizer. As
for wordart, our joint model achieves higher accuracy rate than
single model RTN-R, but still no more than RAN.

In Fig. 9, we compare the recognition results of RAN, RTN-R and
our proposed joint model. Obviously, complex samples with artistic
fonts are challenging to process for single recognition model. How-
ever, joint optimization can address this problem well. In addition,
Fig. 10 shows the recognition results and attention visualization of
a complex sample. The joint model corrects error predicted results
of single model and attention becomes more in line with the work
mechanism of human vision. The performance of feature extraction
and feature classification of recognition model improves with the
help of generation model.
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Table 7
Comparison of accuracy rate (%) among offline augmentation and online augmen-
tation of within-dictionary characters and out-of-dictionary characters on CTW
dataset.

Additional Data Augmentation Type Topl Top5

RTN-R - - 87.44 9163
ADS_Synth Offline 87.32 9154
ADS_SRNet Offline 87.68 91.98
ADS_Ours (Within)  Offline 87.56 91.76
ADS_Ours (Out) Offline 8842 9231
RTN-G+RTN-R - - 88.64 9247
Text_Within Online 88.72  92.88
Text_Out Online 88.91 94.21

6.2.3. Comparison with data augmentation (Q3)

Traditional data augmentation aims to use generation models
to create synthetic images and employ them as training set on
recognition tasks. We define traditional data augmentation as of-
fline augmentation since the generator and recognizer are inde-
pendent. However, our proposed generator and recognizer are not.
The joint model can provide not only synthetic images but also
information of generation. We define this method as online aug-
mentation, which needs generator and recognizer to run at the
same time. We believe that the cost of online augmentation is
less than offline augmentation, and it performs better. In addition,
traditional generation methods can not create an out-of-dictionary
Chinese character, which is an advantage of our model. Since the
number of radical combinations influence the performance directly
and out-of-dictionary Chinese character contains a large number of
novel radical combinations, our method can provide more valuable
dataset. To further assess the impact of online/offline augmenta-
tion and within/out-of-dictionary characters on recognition tasks,
we conduct recognition experiments on RTN-R.

We first use within-dictionary character set (Text_Within) to
build additional data sets ADS_Synth, ADS_SRNet and ADS_Ours
(Within) by SynthText, SRNet and our model. The above three data
sets are used to compare the effect of with-in-dictionary data aug-
mentation on recognition performance. Then, we build ADS_Ours
(Out) with out-of-dictionary character set (Text_Out), including ex-
isted characters and random captions (mentioned in Section 5.1).
Each additional dataset contains 5 million images.

As shown in Table 7, offline augmentation of within-dictionary
characters improves recognition rate up to only 0.24% in large
data sets. Since offline augmentation can only provide seen char-
acters with different backgrounds and CTW is of enough variety,
the diversity brought by offline augmentation of within-dictionary
characters is minimal. Evidently, offline augmentation of out-of-
dictionary characters is more effective and improves recognition
rate up to 0.98%. Novel radical combinations of training data makes
the recognizer more robust and generalized. The results of online
augmentation also verify this conclusion. Moreover, ADS_Synth,
ADS_SRNet and ADS_Ours(Within) are built from the same char-
acter set, and they are comparable. It is worth noting that SRNet
achieves the highest image quality metric among single models
in Table 5, and ADS_SRNet contributes the most to the recogni-
tion model in the above 3 additional datasets. This illustrates that
higher-quality images improve the recognition rate.

Furthermore, the results also demonstrate the great superiority
of online augmentation, the accuracy rate achieves 88.91%. Com-
pared with offline augmentation, more information during genera-
tion is used by recognizer instead of a synthetic image only. Con-
trastive learning and dual learning improve the performance of
feature extraction and feature classification of recognition model.
Moreover, the storage requirement and reading/writing operation
of online augmentation is lower than offline augmentation, since
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Fig. 11. The generated results

Table 8

Performance comparison of our method and other state-of-the-
art methods on ICDAR-2013 competition set and HWDB1.2 set.
FPS: frames per second in testing processing.

ICDAR-2013  HWDB1.2  FPS
Direct+ConvNet [37] 96.13 0 522.4
DenseNet [32] 95.9 0 323.7
VGG14-RAN [32] 93.79 38.74 86.3
Dense-RAN [32] 96.66 40.82 76.5
TAN [11] 96.78 42.88 52.1
RTN-R 96.72 42.53 92.2
RTN-R+RTN-G 96.88 44.12 92.2

online augmentation is synchronous and offline augmentation is
asynchronous.

6.3. Experiments on handwriting text (Q2)

In order to prove that our method still performs well in hand-
writing scene, we compare our model with other state-of-the-art
recognition methods. We employ CASIA HWDB1.0 and 1.1 as train-
ing set, which contains 2,674,784 samples. The testing set includes
within-dictionary character set (ICDAR-2013) and out-of-dictionary
character set (HWDB1.2), since radical-based recognizer and gener-
ator can handle out-of-dictionary characters, while character-based
model cannot.

We list the state-of-the-art recognition methods of HCCR in
Table 8. VGG14-RAN and Dense-RAN are RAN models with VGG14
encoder and DenseNet encoder, respectively. TAN (Tree-structure
Analysis Network) is an improved radical-based recognition model,
which introduces a tree decoder and makes full use of the informa-
tion of tree structure in a Chinese character. The recognition rate
of TAN is superior to other single recognition methods due to pow-
erful tree decoder. The joint optimization improves the accuracy
rate of RTN-R and exceeds TAN, which achieves 96.88% on within-
dictionary character set and 44.12% on out-of-dictionary character
set. The recognizer benefits from the knowledge of generator and
performs better than a single recognition model. Multi-level in-
formation is shared between generator and recognizer during the
joint optimization.

Moreover, Fig. 11 shows the generated results of RTN-G. We can
observe that despite our generator cannot work well enough on
complex Chinese characters with a large number of strokes, most
characters look real.

7. Conclusion

In this paper, we introduce a novel attention-based Chinese
character generator, a joint optimization mechanism and tree posi-
tion embedding. Compared with the recursive generator, our pro-
posed model can generate Chinese characters in natural scene,
and performs better on out-of-dictionary Chinese characters. The
tree position embedding captures the hierarchical structure of Chi-
nese characters and enhances our model’s ability to generate and
recognize complex characters. Experimental results show that our
proposed model outperforms the state-of-the-art baseline model
on both character generation and recognition tasks. The joint op-

of our model in handwriting scene.

10

timization mechanism and tree position embedding greatly con-
tribute to the improvement of our model’s performance.

Furthermore, we aim to explore the generalizability of our
joint optimization strategy to other tasks that involve symmetri-
cal model systems. In future work, we plan to make efforts in
generating Chinese characters on line level to achieve joint opti-
mization of text generation and recognition. Considering the ef-
fect of our generated images in natural scene, we plan to discuss
the erasure of characters in radical-level, which also is a valu-
able research. In addition, we will improve our model to handle
the noise/occlusion/distortion problems and design corresponding
optimization method for such problems. Finally, the reduction of
computational cost is also our concern.
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