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a b s t r a c t 

Despite the growing interest in Chinese character generation, creating a nonexistent character remains an 

open challenge. Radical-based Chinese character generation is still a novel task while radical-based Chi- 

nese character recognition is more technologically advanced. To fully utilize the knowledge of recognition 

task, we first propose an attention-based generator. The generator chooses the most relevant radical to 

generate each zone with an attention mechanism. Then, we present a joint optimization approach to 

training generation-recognition models, which can help the generator and recognizer learn from each 

other effectively. The joint optimization is implemented via contrastive learning and dual learning. Con- 

sidering the symmetry of the generation and recognition, contrastive learning aims to strengthen the 

performance of the encoder of recognizer and the decoder of generator. Since the generation and recog- 

nition tasks can form a closed loop, dual learning feeds the output from one to another as input. Based 

on the feedback signals generated during the two tasks, we can iteratively update the two models un- 

til convergence. Finally, as our model ignores the order information of a sequence, we exploit position 

embedding to extend the image representation ability and propose tree position embedding to represent 

the positional information for tree structure captions of Chinese characters. The experimental results in 

printed and nature scenes show that the proposed method improves the quality of the generating images 

and increases the recognition accuracy for Chinese characters. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

In our daily lives, automatic recognition of Chinese text is fre- 

uently employed. However, the recognition of Chinese characters 

r texts is among the most challenging topics in pattern recogni- 

ion, due to the numerous character categories, complex internal 

tructures and confusion among similar characters. Additionally, 

ecognition of rarely used Chinese characters is typically a few- 

hot learning problem since samples of such character categories 

re difficult to collect. Moreover, recognition of some novel Chinese 

haracters is a zero-shot learning problem, as these characters are 

ewly created and have never been seen before. 

In this case, a radical-based model is suggested that fully ex- 

loits the highly hierarchical structure of Chinese characters. Only 

oughly 500 radicals and 10 spatial structures are sufficient to de- 
Abbreviations: RTN, Radical and Transformer based Network; TPE, Tree Position 

mbedding. 
� Fully documented templates are available in the elsarticle package on CTAN . 
∗ Corresponding author. 

E-mail address: jundu@ustc.edu.cn (J. Du) . 

v

i

r

a

t

a

ttps://doi.org/10.1016/j.patcog.2023.109538 

031-3203/© 2023 Elsevier Ltd. All rights reserved. 
cribe the more than 20,0 0 0 Chinese characters because all Chi- 

ese characters are made up of radicals. Ten spatial structures 

re shown in Fig. 1 while a Chinese character’s caption sequence, 

ree view, and spatial structure diagram are shown in Fig. 2 . The 

adical-based method aims to decompose Chinese characters into 

adicals and describe their spatial structures as captions for recog- 

ition. 

However, the radical-based recognition method still needs to 

e improved in the complex Chinese scene. In addition to im- 

roving the recognition model itself, data augmentation and dual 

earning have also been used recently. Geirhos et al. [1] used the 

hinese characters with new styles generated by style transfer as 

ata augmentation to expand the training set. Zhu et al. [2] em- 

loyed a style transfer model as the generator and formed a dual 

ystem with the recognizer. However, style transfer is not the re- 

erse task of recognition, which plays a limited role in dual learn- 

ng. What’s more, both the above methods are not helpful for the 

ecognition of novel Chinese characters. On this basis, we propose 

 radical-based generator that can create Chinese characters from 

exts, since a character-based model cannot identify a novel char- 

cter. And then, we design a joint optimization for generation- 

https://doi.org/10.1016/j.patcog.2023.109538
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109538&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:jundu@ustc.edu.cn
https://doi.org/10.1016/j.patcog.2023.109538
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Fig. 1. Graphical representation of ten common spatial structures between the radicals of Chinese characters. 

Fig. 2. In the radical analysis, each Chinese character is equal to a tree, and each tree is stored as a sequence according to the depth-first traversal order. 
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ecognition system and employ the generated characters as data 

ugmentation in experiments. 

Radical-based Chinese character generation is a novel task due 

o the diversified character radicals, variable font styles and com- 

licated foreground and background. It is challenging for the model 

o generate high-quality characters in complex scenes. Recently, a 

adical combination network (RCN) [3] is proposed, which can gen- 

rate a Chinese character with caption input. The key idea is to 

ntegrate the information of the radicals and character attributes 

s the representation by a recursive network. However, since the 

ecursive model operates the radicals one by one, the preceding 

okens are covered by the succeeding ones in a sequence. The in- 

ormation of leaf nodes in bottom layers is largely ignored and 

he outputs are most affected by the information of root nodes in 

op layers, which implies the weak capacity of dealing with long- 

istance dependency. Moreover, the generalization of RCN and the 

uality of the generated results on hand-writing scene are not al- 

ays satisfactory. 

To address this issue, we first propose a radical-and-transformer 

eneration network (RTN-G) for Chinese character generation. The 

nformation in bottom layer and top layers are simultaneously cal- 

ulated instead of one by one, which performs better on process- 

ng long-distance information than recursive network [4] . The rep- 

esentations of radicals are fed to a Transformer network to build 

ontextualized representations and the model is trained to draw 

hinese characters according to their attributes. Compared with 

CN, RTN-G can produce higher-quality images of Chinese char- 

cters with more precise model building. Second, to make a full 

se of the prior knowledge of Chinese character recognition, we 

mploy an attention-based recognizer (RTN-R) to form a set of 

ymmetric networks with the generator. The recognition model 

onsists of a fully convolutional network as the encoder and a 

ransformer decoder. Our model framework is shown in Fig. 4 . 

he radical-and-transformer based recognition network performs a 

ecognition task in a symmetrical way while the generator (RTN-G) 

nd recognizer (RTN-R) can form a closed loop. Then we jointly op- 

imize recognition and generation models by leveraging the strong 

omplementarity between two tasks. Considering the symmetry of 

he architecture, we adopt contrastive learning and dual learning 

o assist the generator and recognizer in learning from each other: 

• Contrastive Learning : Considering the symmetry of recognizer 

and generator, the representations in symmetrical position have 

the same physical meaning. Given a representation, the model 

improves the ability of modeling by identifying the symmetrical 

one in a set of candidate representations. 
• Dual Learning : The generator and recognizer can be an eval- 

uator of each other [5] . The generator and recognizer can be 
2 
optimized with the help of each other and they can well col- 

laborate to improve the performance for both. 

In addition, the generator creates Chinese characters from texts, 

hich means the non-existed Chinese characters can be produced. 

he non-existed Chinese characters contains a large number of 

ovel radical combinations and can effectively expand the data set. 

ore combinations might help the recognition models distinguish 

adicals. In the experiments, non-existed characters were employed 

nd the model correctly recognized easily confused Chinese char- 

cters. 

Since our model contains no recurrence, we employ position 

mbedding to represent the positional information of radicals in 

mages. Considering the significant difference between sequence 

nd tree structure, we propose a tree position embedding (TPE) 

or tree structure captions of Chinese characters to achieve a bet- 

er structure modeling for both Chinese character generation and 

ecognition tasks. 

The main contributions of this study are summarized as fol- 

ows: 

• We propose an attention-based Chinese character generation 

network. In particular, the network well generates the align- 

ment strongly corresponding to human intuition. Experimental 

results show that our method performs better than the recur- 

sive model. 
• A joint optimization method is presented for Chinese gener- 

ation and recognition tasks by using contrastive learning and 

dual learning. Experimental results demonstrate that it further 

improves the quality of the generated Chinese characters and 

increases the recognition accuracy of Chinese characters in both 

printed and natural scenes. 
• We propose a tree position embedding (TPE), which performs 

better than 1D position embedding (PE). We empirically prove 

the superiority of the TPE over the traditional PE for represent- 

ing the tree structure information. 

. Related works 

.1. Radical-based recognition 

The recognition of Chinese characters is an intricate problem 

ue to a large number of existing character categories. However, 

ost recognition methods are character-based and can only rec- 

gnize about 40 0 0 commonly used characters. Compared with the 

haracter-based method treating characters as independent ones, 

he radical-based method can summarize and extract the similar- 

ty among Chinese characters. As shown in Fig. 3 , radical-based 

ethod can recognize out-of-dictionary characters but character- 
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Fig. 3. The comparison between the radical-based and character-based recognition 

methods. Radical-based methods can recognize out-of-dictionary characters but the 

character-based cannot. 
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Fig. 4. Illustration of our framework which contains a recognizer and a generator. 

The two networks perform a recognition task and a generation task respectively. 

Through feeding the output to the other network, the recognizer and generator 

can jointly learn mapping relationships between radicals and images. Besides, the 

model employs contrastive learning for reinforcement of joint learning further. Po- 

sition embedding (PE) and tree position embedding (TPE) are employed here. The 

red dotted boxes correspond to the attention maps, the red lines correspond to the 

process of contrastive learning and the green lines correspond to the process of 

dual learning. 
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ased cannot. Therefore, radical-based recognition is more valu- 

ble and performs better on Chinese character recognition. In the 

ast few decades, lots of effort s have been made for radical-based 

hinese character recognition. Wang and Fan [6] employed a hi- 

rarchical radical matching method to recognize a Chinese char- 

cter. Shi et al. [7] used a HMM-based model and [8] used an 

LSTM-CRF neural architecture for Chinese character recognition. 

TN-R [9] proposed a Transformer-based encoder-decoder model 

10] for radical-based Chinese character recognition. TAN [11] em- 

loys a tree decoder, which computes a relation node and two rad- 

cal nodes at each step. Compared with string decoders, the tree 

ecoder better understands tree structures but costs more. In our 

tudy, we employ the framework of RTN-R as the recognizer. 

.2. Radical-based generation 

Chinese character generation is a challenging task. The most 

f existing works generate Chinese characters in character level 

ith complex background and font styles. Lin et al. [12] gener- 

ted nearly real Chinese characters using a GAN model in char- 

cter level. However, in addition to the above-mentioned, radical 

evel generator can create Chinese characters with novel classes, 

hich is an artistic work and can provide variable combination of 

adicals as data augmentation for radical-based recognition. Huang 

t al. [13] proposed a novel radical decomposition and rendering 

ased GAN to transfer the font styles. Zhang et al. [14] used writing 

rajectories to generate handwritten Chinese characters. Recently, 

CN [3] proposed a radical-based generator, which can generate 

hinese characters by using radicals. In our study, we propose an 

ttention-based encoder-decoder network (RTN-G) as the genera- 

or and achieve radical-based generation for Chinese characters. 

.3. Joint optimization 

Joint optimization is commonly used for multi-tasks within the 

ame framework [15] . In this paper, we propose a cross-model 

oint optimization for generation and recognition, which consists 

f contrastive learning and dual learning [16] . Contrastive learn- 

ng has recently achieved success [17] . Many such approaches have 

elied on heuristics to design pretext tasks [18] . Discriminative ap- 

roaches based on contrastive learning in the latent space have re- 

ently shown great promise, achieving state-of-the-art results [19] . 

berdam et al. [20] proposes a contrastive learning approach to 

equential prediction tasks such as text recognition. Baevski et al. 

21] masks the speech input in the latent space and solves a con- 

rastive task defined over quantization of the latent representations 

hich are jointly learned. In our study, we aim to make the model 
3 
dentify the true representations of characters in a set of candidate 

epresentations and also make the attention matrices close to their 

rchor. Dual learning is a training strategy applied to dual tasks 

nd [22] achieves comparable accuracy to neural machine transla- 

ion trained from the full bilingual data, by learning from monolin- 

ual data. Zhu et al. [2] applied dual learning on recognition and 

eneration tasks. In this study, our model improves with this train- 

ng strategy. 

. Methodology 

In this paper, a joint model based on radical and attention is 

resented as shown in Fig. 4 , which aims to improve the qual- 

ty of generated characters and the accuracy rate of recognition. 

irstly, we propose a radical-based generator to realize the trans- 

er from text to image. Then, we employ a radical-based recognizer 

hich has proven to be highly effective. Finally, we introduce joint 

ptimization including contrastive learning and dual learning. De- 

ails of the radical and transformer based generator (RTN-G, rad- 

cal and transformer based generation network) are described in 

ection 3.1 . Details of the radical and transformer based recog- 

izer (RTN-R, radical and transformer based recognition network) 

re described in Section 3.2 . Section 3.3 illustrates the joint opti- 

ization and the loss function. 

.1. Radical-and-transformer-based generation network 

On the basis of previous work RCN [3] , we propose an 

ttention-based generator, an encoder-decoder network, as shown 

n the bottom half of Fig. 4 . Transformer blocks [4] with L layers

re used for the encoder and decoder, and configurations are out- 

ined in Table 1 . The deconvolution algorithm is employed to gen- 

rate the final output images. 

Firstly, we map N symbols of source captions S C to a sequence 

f radical representations X as encoder input. Each token is finally 

epresented by the summation of the word embedding x i and the 

ree position embedding TPE (i ) . 

 = ( x 1 + TPE (1) , . . . , x N + TPE (N)) (1) 

here x i , TPE (i ) ∈ R 

D and D is the model dimension. We map sym-

ols of character attributes to background feature B as decoder in- 

ut, which represents writing style, background, color, angle, etc. 
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Table 1 

Encoder and decoder configurations of generator and recognizer. The layers are 

shown in bold. 

Generator Recognizer 

Encoder Decoder Encoder Decoder 

Layer: 12 Layer: 12 Layer: 6 Layer: 6 

Input 

Word Background Image Masked Word 

Embeddings Feature Feature Embedding 

(N × D ) ( HW 
T 2 

× D ) ( HW 
T 2 

× D ) (N × N × D ) 

Multi-Head Attention 

Head: 4 Head: 4 Head: 8 Head: 8 

Add & Norm 

Feed Forward 

W 1 ∈ R D ×D W 1 ∈ R D ×2 D W 1 ∈ R D ×D W 1 ∈ R D ×2 D 

W 2 ∈ R D ×D W 2 ∈ R 2 D ×D W 2 ∈ R D ×D W 2 ∈ R 2 D ×D 

Add & Norm 

E

[

B

w  

W

o

C

Z

a

3

l

[

m

A

w

d

a

c

M

h

w

m

l

a

F

3

E

[

c

c

r

t

t

A

w

A

m

i

i

p

P  

w

T

r

3

w

a

v

c

l

t

q

t

w

a

s

a

r

P

w

t

r

t

3

e

s

a

3

fi

e

o

m

n

i

a

l

ach relative position corresponds to a position embedding PE (i ) 

23] . 

 = ( b 1 + PE (1) , . . . , b K + PE (K)) (2) 

here b i , PE (i ) ∈ R 

D , and K = 

HW 

T 2 
denotes the length of B . H and

 denote the shape of output images, and T denotes the multiple 

f sampling. Then, X is fed to the encoder to build context vector 

 . Given C and B , the decoder generates character representations 

 with fixed-shape. Finally, Z is up-sampled to generate RGB im- 

ges F , where F ∈ R 

H×W ×3 . 

.1.1. Encoder 

The encoder is composed of a stack of L identical layers. Each 

ayer has a multi-head self-attention mechanism with M heads 

24] and a position-wise feed-forward network. 

Multi-head self-attention mechanism is a proved attention 

echanism, where self-attention can be described as: 

ttention ( Q , K , V ) = softmax 

(
Q K 

� 
√ 

D 

)
V (3) 

here Q , K , V ∈ R 

N×D are mapped by encoder input. We use the 

ot product on Q and V to obtain the correlation matrix as weight 

nd employ a weighted summation on V . The multi-head attention 

an be expressed in the same notation as: 

ultiHead ( Q , K , V ) = Concat ( h 1 , . . . , h M 

) W O 

 i = Attention ( QW 

Q 
i 
, KW 

K 
i , V W 

V 
i ) (4) 

here h i represents the i th head, W i ∈ R 

D ×D/M are the projection 

atrices for the i th head, and W O ∈ R 

D ×D . 

The feed-forward network (FFN) contains two fully connected 

ayers and an active layer. The parameters of multi-head self- 

ttention and FFN are illustrated in Table 1 . 

FN ( x ) = max (0 , xW 1 + b 1 ) W 2 + b 2 (5) 

.1.2. Decoder 

The decoder is composed of a stack of L identical layers. 

ach layer has a multi-head attention mechanism with M heads 

25] and a feed-forward network, which is similar to the encoder. 

We map encoder output to key K and value V and map de- 

oder input to query Q . Regarding the decoder input as a blank 

anvas, we draw characters according to the relationship between 

adicals and image zones, which is built by attention. We define 
4

he multiplication of attention matrices in different layers as tex- 

ual attention A g , which will be used in joint optimization. 

 g = 

L ∏ 

j=1 

M ∑ 

i =1 

softmax 

( 

Q 

j 
i 
K 

j 
i 

� 

√ 

D 

) 

(6) 

here i denotes the i th head and j denotes the j th layer in decoder. 

 g performs as the weighting coefficients so that it can choose the 

ost relevant radical from the whole input sequence for calculat- 

ng the context vector. 

Given a source caption S C , background feature B and a target 

mage S I , the generator can be defined as the following conditional 

robability: 

 ( S I | S C , B ) = 

H ∏ 

i =1 

W ∏ 

j=1 

P ( S I i, j | S C , B ) = 

H ∏ 

i =1 

W ∏ 

j=1 

P ( S I i, j | z k ) (7)

here z k denotes the image representations [26] and k = � iW + j 
T 2 

� . 
o better optimize the deep network, the entire network uses a 

esidual connection and layer normalization (Add & Norm). 

.2. Radical-and-transformer-based recognition network 

We employ the framework of RTN-R [9] as recognizing network, 

hich is symmetrical to the generator and has the similar encoder 

nd decoder with the generator’s. The model is composed of a con- 

olutional feature extractor (CNN), Transformer encoder and de- 

oder with L layers, which are outlined in Table 1 . 

The model first learns to encode the source images S I into high- 

evel representations Z . PE is added on the character representa- 

ions Z . Then the encoder captures information from the entire se- 

uence to build context vector C . Finally, the decoder uses this con- 

ext vector to generate variable-length output sequence X word by 

ord, which is radical representations. At each step the model is 

uto-regressive, consuming the summation of previously generated 

ymbols’ representations and TPE as additional input when gener- 

ting the next. Given a source image S I and a target caption S C , the 

ecognizer can be defined as the following conditional probability: 

 ( S C | S I ) = 

| S I | ∏ 

i =1 

P ( S C i | S C <i , S I ) = 

| S I | ∏ 

i =1 

P ( S C i | c i ) (8) 

here S C <i denotes a prefix of S C with length i − 1 . 

Similar to generation tasks, we define the multiplication of at- 

ention matrices as visual attention A r , which can choose the most 

elevant part from the whole input image for calculating the con- 

ext vector. 

.3. Joint optimization 

Joint training can help the generator and recognizer learn from 

ach other effectively [27] . In this section, we introduce the two 

ub-tasks of joint optimization and how they help the generator 

nd recognizer: 

.3.1. Contrastive learning 

Considering the symmetry of recognizer and generator, we de- 

ne the output of generator decoder and the input of recognizer 

ncoder as a set of samples, which are both the representations 

f characters. Given the character representation of generator, the 

odel needs to identify the true character representation of recog- 

izer in a set of candidate representations. Similarly, we define the 

nput of generator encoder and the output of recognizer decoder as 

 set of representations of radicals, and we also employ contrastive 

earning on radical representations. 
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For recognizer, input images are transformed to character rep- 

esentations Z , then radical representations X and finally radical 

ymbols. Meanwhile, the generator processes the symbols in a re- 

erse way. Considering the symmetry of generator and recognizer, 

e propose three sets of contrastive learning on radical represen- 

ations, character representations and attention matrices. 

• Radical and character representations: For each Chinese char- 

acter, the radical presentation X in generation and recognition 

should be close to each other in the mapped space. We employ 

learnable matrices W 

R to map radicals to contrastive learning 

space as r . 

r g = W 

R 
g X g 

r r = W 

R 
r X r (9) 

where W 

R ∈ R 

D ·N×D and r ∈ R 

D , subscript g and r represent 

whether the variable belongs to generation or recognition. Sim- 

ilarly, for character representations Z , we employ W 

C to map 

Z to contrastive space as c g and c c . By imposing the vector 

constraint on radical and character presentations, the generator 

and recognizer can learn from each other and jointly improve 

the performance of the network. 
• Attention matrices: The generator and recognizer learn textual 

attention A g and visual attention A r during training and build 

the correspondence between radicals and zones in both direc- 

tions. Given the symmetry of the visual attention and textual 

attention, we utilize mean-square errors as the contrastive loss 

for evaluating the similarity between the two attention matri- 

ces. 

.3.2. Dual learning 

Noticing that generator and recognizer can always happen in 

ual directions, we employ them as evaluators for each other. 

tarting from source images S I , we first feed it into the recognizer 

 and then further feed the prediction results P into the genera- 

or G. By evaluating the output image F , we will get a sense of the

uality of the two models, and be able to improve them accord- 

ngly. The process starting from source captions S C is the same as 

bove. 

.4. Optimization strategy 

During training, the generator and recognizer learn to model 

hinese characters by solving generation loss L g and recognition 

oss L r . This is augmented by joint losses L j to encourage the gen-

rator and recognizer to learn from each other. 

 = L g + L r + αL j (10) 

here α is a tuned hyper-parameter. 

.4.1. Generation loss 

L g is employed to guide the character generation. We use 

ean-square error (MSE) as the loss function to measure the Eu- 

lidean distance between output image F and target image S I . The 

enerator learns coding of glyph by minimizing L g . 

 g = ‖ F − S I ‖ 2 (11) 

.4.2. Recognition loss 

We use cross-entropy (CE) as the loss function that the recog- 

izer learns pixel-radical correspondence. 

 r = −S C · log ( P ) (12) 

here P represents the prediction results of recognizer, S C repre- 

ents the target caption. 
5 
.4.3. Joint loss 

The generation and recognition tasks build the two models in- 

ependently, and the joint loss L j is designed to increase the asso- 

iation of them. The joint loss is a summation of two terms: con- 

rastive loss L c and dual loss L d . 

 j = L c + βL d (13) 

here β is a tuned hyper-parameter. 

For contrastive loss L c , we employ InfoNCE loss [28] to measure 

he similarity of radical representations R and character represen- 

ations C in contrastive space, and employ MSE loss to measure the 

uclidean distance between attention matrices A g and A r . Given 

adical level representations r g and character level representations 

 g of generator, the model needs to identify the true representa- 

ions of recognizer r r and c r in a set of candidate representations 

˜ 
 ∈ D r and 

˜ c ∈ D c , which include the true representations and M

istractors. Distractors are uniformly sampled from other samples 

f the same batch. The loss is defined as: 

 c = − γr · log 
exp ( sim (r g , r r ) /τ ) ∑ 

˜ r ∼D r 
exp ( sim (r g , ̃  r ) /τ ) 

− γc · log 
exp ( sim (c g , c r ) /τ ) ∑ 

˜ c ∼D c 
exp ( sim (c g , ̃  c ) /τ ) 

− γa · log 

(
1 − ‖ A 

� 
r − A g ‖ 2 

M · N · N 

)
(14) 

here A g and A r represent the textual and visual attention, M rep- 

esents the number of attention head, M · N · N represents the size 

f attention matix and γ are tuned hyper-parameters. We compute 

he cosine similarity sim ( a , b ) = a 

� b / ‖ a ‖ 2 ‖ b ‖ 2 for radical repre-

entations and character representations. Dual loss L D is defined 

s: 

 d = ‖G( P ) − S I ‖ 2 − S C · log (R ( F )) (15) 

here G and R represent the function of the generator and recog- 

izer. 

. Tree position embedding 

Since our model contains no recurrence, we must inject some 

nformation about the relative or absolute position of the tokens. 

e add position embedding to each sequence representations to 

istinguish the order of tokens, which is proven effective in the 

ublished works. Traditional position embedding (PE) [23] is de- 

ned as: 

PE i, 2 d = sin 

(
i 

λ2 d/D 

)

E i, 2 d+1 = cos 

(
i 

λ2 d/D 

)
(16) 

here i is the position, d is the dimension and λ is set to 10,0 0 0. 

The distances of 1D position embedding are determined by the 

istance of the tokens in the sequence. However, considering the 

ifference between sequence structure and tree structure, PE is not 

uite applicable here for tree structure captions. Figure 5 shows 

he way of node and layer numbering in a tree, and we elaborate 

hy PE is not suitable for tree structure information through it. 

bviously, the position embedding of tree structure should satisfy 

wo constraints: (1) The embedding of child nodes should be at the 

ame distance from the one of parent node. (2) The embedding of 

odes should be closer if they appear closer in a tree. However, PE 

ill result in erroneous conclusions. Each parent node and its child 

odes do not comply with the 1 st constraint. Moreover, since the 

odes follow the depth-first traversal as a sequence, some nodes 

elong to different sub-trees in a tree, but they are adjacent in a 
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Fig. 5. The number of tree nodes is shown. The tree is recorded as a sequence 

arranged according to depth-first traversal from 0 to 14. 
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uate the generalization performance of the generator. 
equence. For example, in Fig. 5 node 7 is adjacent to node 6 and

 in the sequence, but node 8 is much too far away from node 7

n the tree. 

Thus, we propose a novel tree position embedding (TPE), which 

omplies with the above constraints. The model takes the tokens 

ollowing the depth-first traversal as a sequence. TPE can help our 

odel distinguish the position of each token. We use sine func- 

ions of different frequencies to represent root node, left and right 

hild node in each layer. 

Root = sin 

(
2 dπ

D 

)
L l = sin 

(
(4 l−2) dπ

D 

)
R l = sin 

(
4 ldπ

D 

)
∣∣∣∣∣∣∣ d = 1 , . . . , D (17) 

here l represents the layer, d is the dimension, L l and R l repre- 

ent the left and right child node in l th layer. That is, each node

orresponds to a sinusoid and the periods are restricted to integer. 

The tree position embedding TPE (i ) ∈ R 

D of position i is defined 

s a mean of the representations of i and all its recurrent parent 

odes, which can be expressed as the following equations: 

PE (1) = (Root + L 1 ) / 2 

PE (4) = (Root + L 1 + L 2 + R 3 ) / 4 (18) 

We choose this function because we hypothesized it would al- 

ow the model to easily learn to observe relative positions in a 

ree structure. TPE can better describe the positional relevance be- 

ween tree nodes, which can be mathematically proved. We denote 

f (·, ·) as a function to calculate closeness/proximity between em- 

edded positions, which is used in the later proof. Equations ( (17), 

18) ) can be reduced to the following property. 

f (x, y ) = f (x ) T · f (y ) (19) 

.1. Equality 

Intuitively, child nodes 2 i + 1 and 2 i + 2 should be at the same

istance from parent node i . PE will result in erroneous conclu- 

ions obviously. 

PE (i, 2 i + 1) − φPE (i, 2 i + 2) 

= 

D/ 2 ∑ 

d=1 

[
cos 

(
i + 1 

λ2 d/D 

)
− cos 

(
i + 2 

λ2 d/D 

)]
(20) 

However, TPE fulfils the above-mentioned property. We define 

 = � log 2 (i + 1) � + 1 as the layer of node i . 

TPE (i, 2 i + 1) − φTPE (i, 2 i + 2) = 

l 

l + 1 

− l 

l + 1 

= 0 (21)

In addition, since Root , L l and R l are orthogonal to each other, 

he child nodes having the same parent node can be separated 

rom one another. In other words, although child nodes can be at 
6 
he same PE distance from parent node by giving the child nodes 

he same numbering, the model can not distinguish child nodes. 

TPE (2 i + 1 , 2 i + 2) = 

l 2 

(l + 1) 2 

 = 1 (22)

.2. Location relevance 

Generally, if words appear close to each other in a tree, they are 

ore likely to determine the semantics together. Taking node i as 

n example, it should be closer to its child node 2 i + 1 than node

 , where n / ∈ { i, 2 i + 1 , 2 i + 2 , � i −1 
2 �} . 

TPE (i, 2 i + 1) − φTPE (i, n ) ≥ l 

l + 1 

− (l − 1) 2 

l 2 
> 0 (23) 

The results indicate that TPE can establish correct correspon- 

ence of positions in a tree structure, while PE cannot. Only when 

 > 2 i + 2 , PE is eligible. 

PE (i, 2 i + 1) − φPE (i, n ) = 

∑ D/ 2 

d=1 

[
cos 

(
i + 1 

λ2 d/D 

)
− cos 

(
n − i 

λ2 d/D 

)]
(24) 

. Experimental setup 

.1. Datasets 

We prepare the printed and natural scene characters and design 

elated experiments to verify the effectiveness of our method in 

imple and complex scenes. 

• Printed Text : In the experiments on printed characters, we 

choose 27,533 Chinese characters in 8 font styles (i.e. Hei, Song, 

Kai, Deng, Fangsong, Li, Yao, Youyuan) as database and divide 

them into training set and testing. There are 180,052 printed 

characters in 8 font styles in training set, which contains 22,933 

classes. And there are 31,760 printed characters in testing set, 

which contains 4172 classes that do not appear in training 

set. 
• Scene Text : The natural scene database is the Chinese Text in 

the Wild (CTW) [29] , which includes 1,018,402 Chinese charac- 

ters and 6 types of character attributes for each one: occluded, 

complex background, distorted, 3D raised, WordArt and hand- 

written. Following the official dataset splitting, we use 3580 

Chinese character categories with 760,107 instances for train- 

ing, 2015 Chinese character categories with 52,765 instances for 

validation and 103,519 instances for testing. 
• Handwriting Text : We select the ICDAR-2013 competition 

[30] of HCCR and CASIA [31] database as handwriting database. 

For training, we adopt the CASIA database including HWDB 

1.0 and 1.1. The ICDAR-2013 database is used to evaluate the 

performance on within-dictionary Chinese characters, and CA- 

SIA HWDB 1.2 is used to evaluate the performance on out-of- 

dictionary Chinese characters. There are 3319 non-common Chi- 

nese characters in HWDB1.2 dataset and we pick 3277 classes, 

which is the same as that in DenseRAN [32] . Note that the Chi- 

nese characters in HWDB1.2 dataset are not appeared in train- 

ing set. 
• Random Caption : The output images of generator depend 

on the basic of input captions, which describe the details 

of characters. Therefore, we prepare 30 0 0 random caption of 

novel/nonexistent Chinese characters as a validation set to eval- 
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Fig. 6. We employ 9 novel characters to evaluate the generalization of our model. The first row gives the example results of RCN [3] ; the last row gives the example results 

of the proposed attention-based generator. 
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.2. Settings 

The images for training and testing are resized as 32 × 32 . The 

aptions contain 624 radicals and 10 spatial structures for Chinese 

haracters. The parameters of Transformer blocks are illustrated in 

able 1 . The model dimension D is 512. The up-sampling module 

f generator has seven blocks and the temporal convolutions with 

trides (2,1,2,1,1,2,1) and kernel widths (3,3,3,3,3,5,5). We employ a 

6-layer VGG network [33] as feature extractor in recognizer. The 

ength of background feature K is 16, where H, W and T are 32, 32

nd 8. The hyper-parameters α, β , γr , γc and γa are 0.5, 0.2, 1, 1 

nd 0.8, which are tuned according to the validation set. Each task 

ses dropout rate 0.2. The temperature τ in the contrastive loss is 

et to 0.1. 

Besides, the models were implemented with PyTorch 1.3. In the 

xperiments on printed scene, batches are built by 32 images and 

e train on a single V100 32G GPU for 5 h. In the experiments

n natural scene and handwriting scene, batches are built by 256 

mages and we train on 4 V100 32G GPU for 30 h and 18 h respec-

ively. 

. Experiments 

In this section, we will show the effectiveness of the proposed 

oint optimization. From Sections 6.1 to 6.3 , we tested our model 

n printed scene, natural scene and handwriting scene respectively. 

he experiments are designed to answer the three questions: Q1 

re contrastive learning, dual learning and TPE effective in the 

oint optimization; Q2 Compared with other state-of-the-art meth- 

ds, does our model perform better than other models; Q3 Can 

oint optimization outperform traditional data augmentation? 

.1. Experiments on printed text (Q1) 

Evaluating the quality of synthesized images is an open and 

ifficult problem. So the experiments are first performed on sim- 

le scenarios (printed dataset). For generation, mean-square error 

MSE) is used to evaluate the differences between the target im- 

ges and generated images, and structural similarity (SSIM) is used 

o measure the similarity of two images. Top1 and Top5 accuracy 

ates are employed as the indicators of recognizer. We summarize 

he overall performances in Table 2 . 
Table 2 

Ablation of joint optimization in printed scene. SIM : contrastive learning. 

DUAL : dual learning. TPE/PE : tree or 1D position embedding is adopted. MSE: 

mean-square error. SSIM: structural similarity. Top1/Top5: recognition accuracy 

rate (%). 

SIM DUAL TPE/PE MSE SSIM Top1 Top5 

Isolated 0.232 0.79 85.17 90.88 

PE 0.211 0.82 86.55 96.64 

TPE 0.199 0.851 87.22 96.81 

Joint � TPE 0.172 0.887 90.11 97.53 

� TPE 0.178 0.815 89.20 97.3 

� � PE 0.166 0.913 92.55 98.14 

� � TPE 0.160 0.929 93.61 98.4 
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7 
We design an ablation experiment to verify the validity of the 

ub-tasks in joint optimization and the effectiveness of TPE. In 

able 2 , “isolated” represents the generator and recognizer opti- 

ize independently; “joint” represents the joint optimization tasks 

re primed. Table 2 clearly declares that joint optimization im- 

roves the performance of both generator (MSE reduced from 0.199 

o 0.160, SSIM increase from 0.851 to 0.929) and recognizer (Top1 

ccuracy increased from 87.22% to 93.61%, Top5 accuracy increased 

rom 96.81% to 98.4%). The first 2 lines in results of joint model 

ndicate more significant contributions of contrastive learning than 

ual learning. The last 2 lines in results of joint model imply that 

PE plays a more important role than PE. 

To check the generalization of the model, random captions are 

sed here. As illustrated in Fig. 6 , we compare the generating im- 

ges of RTN-G and RCN [3] . Evidently, the proposed RTN-G us- 

ng joint optimization and TPE performs better. More specifically, 

n Fig. 7 , we show how the generator learns to produce an un- 

een Chinese character. The generator finds the best match from 

he attention map and well generates the alignment strongly cor- 

esponding to human intuition. 

.2. Experiments on scene text 

In this section, we evaluate our model in a natural scene 

atabase. Compared with the printed Chinese character dataset, 

TW dataset is more challenging due to its diversity and complex- 

ty. All CTW data are used for recognition tasks, and part of CTW 

ata are adopted for generation and joint optimization tasks. 

.2.1. Ablation experiments on joint optimization (Q1) 

We employ the same method as in the Section 6.1 to eval- 

ate the performance of our model in natural scenes on CTW 

ataset. According to the officially provided annotations, the low- 

uality samples were removed from the training set of the gener- 

tion tasks. Since the generator requires character attributes, the 

haracters with complex backgrounds and artistic fonts can not be 

reated by the current version. We employ characters with “dis- 

orted” and “raised” attributes for generation and joint optimiza- 

ion tasks only. For character attributes, we acquire the approxi- 

ation of background and text color by pixel statistics and mathe- 

atical operation. A pre-trained classification network is employed 

o identify the font styles. 

Figure 8 shows the generated results in natural scenes, where 

he left part shows the source image and the middle part shows 

he generated characters. In the right part of Fig. 8 , we synthesize 

 seemingly realistic photograph of streets-capes by sticking these 

enerated characters back to the source image. Although the cur- 

ent version can only operate in simple artificial scenes, the syn- 

hesized images are entirely realistic-looking. 

As for recognition tasks, we employ the results in [9] as a 

aseline. We illustrate the performance in Table 3 , compared 

ith baseline (Top1 accuracy: 87.31%), TPE and joint optimization 

rovide an additional boost in recognition performance (+1.33%). 

oreover, TPE improves the recognition rate by 0.13% and 0.42% 

ver PE in isolated model and joint model. Limited to the capacity 

f generator, only partial data are adopted for the joint optimiza- 

ion which makes recognition rate hard to vastly promote. With 
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Fig. 7. Attention visualization of generating an unseen Chinese character. 

Fig. 8. Exampling results of our model in nature scenes on CTW dataset. The left part gives the original image. The middle part gives the generated characters which have 

the same attributes as the original image. According to the coordinate of each character, we replace the character in the original image and obtain a synthetic image as 

shown in the right part. 

Table 3 

Ablation of joint optimization in natural scene on CTW dataset. SIM : contrastive 

learning. DUAL : dual learning. TPE/PE : tree or 1D position embedding is adopted. 

MSE: mean-square error. SSIM: structural similarity. Top1/Top5: recognition accu- 

racy rate (%). 

SIM DUAL TPE/PE MSE SSIM Top1 Top5 

Isolated 0.284 0.625 86.14 90.76 

PE 0.263 0.699 87.31 [9] 91.54 

TPE 0.244 0.723 87.44 91.63 

Joint � TPE 0.229 0.765 87.60 91.73 

� TPE 0.223 0.771 87.91 92.02 

� � PE 0.214 0.82 88.22 92.15 

� � TPE 0.199 0.858 88.64 92.44 
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Table 4 

The generation results of SynthText, SRNet and our model. 

Compared with character based synthesis algorithms, radical 

based generation method can create out-of-dictionary charac- 

ters. Meanwhile, the qualities of within-dictionary characters 

are very similar. 

Within-dictionary Out-of-dictionary 

SynthText [34] 

SRNet [35] 

Ours 

Table 5 

Evaluation of character generation and recognition systems on CTW. MSE: mean- 

square error. SSIM: structural similarity. Top1/Top5: radical expression recogni- 

tion accuracy rate (%). FPS: frames per second in testing processing. 

MSE SSIM FPS Top1(%) Top5(%) FPS 

ResNet50 [29] 79.00 85.9 212.8 

DenseNet [36] 79.45 86.3 323.7 

RAN [36] 85.22 90.15 86.3 

RTN-R [9] 87.31 91.54 92.2 

SynthText [34] 0.325 0.521 894.4 

RCN [3] 0.311 0.558 13.5 

SRNet [35] 0.212 0.788 90.6 

RTN-G 0.244 0.723 141.7 

RTN-R + RTN-G 0.199 0.838 141.7 88.64 92.44 92.2 
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he improvement of generator in the future, the recognizer should 

enefit more from the joint optimization. 

.2.2. Comparison with state-of-the-arts (Q2) 

We compare our model with other state-of-the-art generation 

nd recognition methods to show the competitive results of our 

roposed joint model. In order to examine the robustness of the 

oint model on generation tasks, we compare our model with Syn- 

hText [34] and SRNet [35] . In fact, SynthText and SRNet are not 

ully comparable with our model. SynthText needs True Type Font 

les as input and SRNet needs character image as input which fo- 

uses on style transfer. However, the input of our model is just text 

hat includes less information. To make it fair, the results are gen- 

rated by CTW dataset without any additional data. Besides, since 

he CTW dataset does not contain all Chinese characters, we split 

ll Chinese characters into within-dictionary characters and out-of- 

ictionary characters. 

As shown in Table 4 , we prepare 2 within-dictionary charac- 

ers and 2 out-of-dictionary to evaluate the performance. The qual- 

ty of our model performs similarly to other generation methods, 

ven the input information of our model is relatively weak. Com- 

ared with other generation models, our model can create out-of- 

ictionary characters, while SynthText and SRNet can never create 

ovel characters. 

In experiments on recognition, except that the experimental re- 

ults of our model are measured by the tool provided by CTW, all 

ther experimental results are selected from published papers. For 

airness, all our experiments only use offline information in the of- 
8 
cial CTW training set without additional data augmentation. As 

hown in the Table 5 , we select mainstream radical and attention 

ased generation and recognition algorithms for comparison. Ob- 

iously, joint optimization model (RTN-G + RTN-R) is significantly 

etter than other single models in terms of character generation 

nd recognition. Among those, “RAN” (Radical Analysis Network), 

RTN-R” are advanced radical-based recognition models in recent 

ears. These experimental results fully prove that joint optimiza- 

ion model has good generalization and superior performance for 

hinese character generation and recognition. In addition, we dis- 

lay the time cost of each model in testing processing. In these 

ecognition models, ResNet50 and DenseNet are character-based 

odels, which do not need decode radical sequences. They cost 
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Table 6 

Evaluation of recognition models on CTW with respect 

to 6 attributes; “all” includes all characters on the test 

dataset. 

RAN RTN-R RTN-R + RTN-G 

occluded 71.55 73.94 72.64 

background 82.84 84.54 85.13 

distorted 71.55 83.60 83.66 

3D raised 76.17 78.06 78.92 

wordart 87.11 84.25 86.95 

handwritten 63.58 66.70 67.27 

all 85.56 87.31 88.64 

Fig. 9. The example comparison among RAN, RTN-R and joint model in recognition 

tasks. The red characters denote the error predicted result and the green characters 

denote the correct ones. 

Fig. 10. The comparison of recognition results and attention visualization among 

RAN, RTN-R and RTN-R+RTN-G in recognition tasks. The joint model corrects error 

predicted results of single model, and the attention becomes more accurate after 

joint optimization. 
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Table 7 

Comparison of accuracy rate (%) among offline augmentation and online augmen- 

tation of within-dictionary characters and out-of-dictionary characters on CTW 

dataset. 

Additional Data Augmentation Type Top1 Top5 

RTN-R – – 87.44 91.63 

ADS_Synth Offline 87.32 91.54 

ADS_SRNet Offline 87.68 91.98 

ADS_Ours (Within) Offline 87.56 91.76 

ADS_Ours (Out) Offline 88.42 92.31 

RTN-G + RTN-R – – 88.64 92.47 

Text_Within Online 88.72 92.88 

Text_Out Online 88.91 94.21 
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ess than radical-based models RAN and RTN-R. The generation 

odel SynthText is a rule-based non-neural method, so its speed is 

uch higher than others. Moreover, our joint model does not need 

dditional time compared to a single model (RTN-R or RTN-G) in 

esting processing. 

To demonstrate the robustness of our model in natural scenes, 

able 6 shows the performance of recognition models with re- 

pect to 6 attributes: occluded, complex background, distorted, 3D 

aised, wordart characters and handwritten characters. We can ob- 

erve that the recognition rates of joint model are much higher 

han others in complex background, distorted, 3D raised and hand- 

ritten. However, our joint model performs worse than RTN-R in 

ccluded, since the generator cannot create a high-quality image 

ith occlusion, which brings negative effect to the recognizer. As 

or wordart, our joint model achieves higher accuracy rate than 

ingle model RTN-R, but still no more than RAN. 

In Fig. 9 , we compare the recognition results of RAN, RTN-R and 

ur proposed joint model. Obviously, complex samples with artistic 

onts are challenging to process for single recognition model. How- 

ver, joint optimization can address this problem well. In addition, 

ig. 10 shows the recognition results and attention visualization of 

 complex sample. The joint model corrects error predicted results 

f single model and attention becomes more in line with the work 

echanism of human vision. The performance of feature extraction 

nd feature classification of recognition model improves with the 

elp of generation model. 
9 
.2.3. Comparison with data augmentation (Q3) 

Traditional data augmentation aims to use generation models 

o create synthetic images and employ them as training set on 

ecognition tasks. We define traditional data augmentation as of- 

ine augmentation since the generator and recognizer are inde- 

endent. However, our proposed generator and recognizer are not. 

he joint model can provide not only synthetic images but also 

nformation of generation. We define this method as online aug- 

entation, which needs generator and recognizer to run at the 

ame time. We believe that the cost of online augmentation is 

ess than offline augmentation, and it performs better. In addition, 

raditional generation methods can not create an out-of-dictionary 

hinese character, which is an advantage of our model. Since the 

umber of radical combinations influence the performance directly 

nd out-of-dictionary Chinese character contains a large number of 

ovel radical combinations, our method can provide more valuable 

ataset. To further assess the impact of online/offline augmenta- 

ion and within/out-of-dictionary characters on recognition tasks, 

e conduct recognition experiments on RTN-R. 

We first use within-dictionary character set (Text_Within) to 

uild additional data sets ADS_Synth, ADS_SRNet and ADS_Ours 

Within) by SynthText, SRNet and our model. The above three data 

ets are used to compare the effect of with-in-dictionary data aug- 

entation on recognition performance. Then, we build ADS_Ours 

Out) with out-of-dictionary character set (Text_Out), including ex- 

sted characters and random captions (mentioned in Section 5.1). 

ach additional dataset contains 5 million images. 

As shown in Table 7 , offline augmentation of within-dictionary 

haracters improves recognition rate up to only 0.24% in large 

ata sets. Since offline augmentation can only provide seen char- 

cters with different backgrounds and CTW is of enough variety, 

he diversity brought by offline augmentation of within-dictionary 

haracters is minimal. Evidently, offline augmentation of out-of- 

ictionary characters is more effective and improves recognition 

ate up to 0.98%. Novel radical combinations of training data makes 

he recognizer more robust and generalized. The results of online 

ugmentation also verify this conclusion. Moreover, ADS_Synth, 

DS_SRNet and ADS_Ours(Within) are built from the same char- 

cter set, and they are comparable. It is worth noting that SRNet 

chieves the highest image quality metric among single models 

n Table 5 , and ADS_SRNet contributes the most to the recogni- 

ion model in the above 3 additional datasets. This illustrates that 

igher-quality images improve the recognition rate. 

Furthermore, the results also demonstrate the great superiority 

f online augmentation, the accuracy rate achieves 88.91%. Com- 

ared with offline augmentation, more information during genera- 

ion is used by recognizer instead of a synthetic image only. Con- 

rastive learning and dual learning improve the performance of 

eature extraction and feature classification of recognition model. 

oreover, the storage requirement and reading/writing operation 

f online augmentation is lower than offline augmentation, since 
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Fig. 11. The generated results of our model in handwriting scene. 

Table 8 

Performance comparison of our method and other state-of-the- 

art methods on ICDAR-2013 competition set and HWDB1.2 set. 

FPS: frames per second in testing processing. 

ICDAR-2013 HWDB1.2 FPS 

Direct + ConvNet [37] 96.13 0 522.4 

DenseNet [32] 95.9 0 323.7 

VGG14-RAN [32] 93.79 38.74 86.3 

Dense-RAN [32] 96.66 40.82 76.5 

TAN [11] 96.78 42.88 52.1 

RTN-R 96.72 42.53 92.2 

RTN-R + RTN-G 96.88 44.12 92.2 
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nline augmentation is synchronous and offline augmentation is 

synchronous. 

.3. Experiments on handwriting text (Q2) 

In order to prove that our method still performs well in hand- 

riting scene, we compare our model with other state-of-the-art 

ecognition methods. We employ CASIA HWDB1.0 and 1.1 as train- 

ng set, which contains 2,674,784 samples. The testing set includes 

ithin-dictionary character set (ICDAR-2013) and out-of-dictionary 

haracter set (HWDB1.2), since radical-based recognizer and gener- 

tor can handle out-of-dictionary characters, while character-based 

odel cannot. 

We list the state-of-the-art recognition methods of HCCR in 

able 8 . VGG14-RAN and Dense-RAN are RAN models with VGG14 

ncoder and DenseNet encoder, respectively. TAN (Tree-structure 

nalysis Network) is an improved radical-based recognition model, 

hich introduces a tree decoder and makes full use of the informa- 

ion of tree structure in a Chinese character. The recognition rate 

f TAN is superior to other single recognition methods due to pow- 

rful tree decoder. The joint optimization improves the accuracy 

ate of RTN-R and exceeds TAN, which achieves 96.88% on within- 

ictionary character set and 44.12% on out-of-dictionary character 

et. The recognizer benefits from the knowledge of generator and 

erforms better than a single recognition model. Multi-level in- 

ormation is shared between generator and recognizer during the 

oint optimization. 

Moreover, Fig. 11 shows the generated results of RTN-G. We can 

bserve that despite our generator cannot work well enough on 

omplex Chinese characters with a large number of strokes, most 

haracters look real. 

. Conclusion 

In this paper, we introduce a novel attention-based Chinese 

haracter generator, a joint optimization mechanism and tree posi- 

ion embedding. Compared with the recursive generator, our pro- 

osed model can generate Chinese characters in natural scene, 

nd performs better on out-of-dictionary Chinese characters. The 

ree position embedding captures the hierarchical structure of Chi- 

ese characters and enhances our model’s ability to generate and 

ecognize complex characters. Experimental results show that our 

roposed model outperforms the state-of-the-art baseline model 

n both character generation and recognition tasks. The joint op- 
10 
imization mechanism and tree position embedding greatly con- 

ribute to the improvement of our model’s performance. 

Furthermore, we aim to explore the generalizability of our 

oint optimization strategy to other tasks that involve symmetri- 

al model systems. In future work, we plan to make effort s in 

enerating Chinese characters on line level to achieve joint opti- 

ization of text generation and recognition. Considering the ef- 

ect of our generated images in natural scene, we plan to discuss 

he erasure of characters in radical-level, which also is a valu- 

ble research. In addition, we will improve our model to handle 

he noise/occlusion/distortion problems and design corresponding 

ptimization method for such problems. Finally, the reduction of 

omputational cost is also our concern. 
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