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Video Segmentation and Tokenization for
Model-Based Video Scene Classification

Qing Wang, Yajian Wang, Hang Chen, Shuxian Wang, Jun Du and Chin-Hui Lee

Abstract—In this paper, we propose a novel approach for seg-
menting and tokenizing a video scene recording into a sequence
of cascade units, known as visual segment units and modeled
with visual segment models (VSMs) for video scene classification
(VSC). Specifically, the proposed VSM framework takes deep
visual features extracted from pre-trained encoders as inputs
and models the temporal interactions between segment units by
hidden Markov models. Next, we use unit co-occurrence statistics
to introduce relationships between VSM units within a video
scene recording. Furthermore, the VSM approach is extended to
an acoustic-visual variant, subsequently integrating itself into a
deep learning-based multi-modal scene classification system. This
combination serves to further exploit the complementary nature
of audio and video data. By incorporating a set of visual segment
units into modeling a video scene class, it captures both inter-class
similarity and intra-class diversity, facilitating improved scene
classification, especially within categories prone to confusion.
Extensive experimental results on a benchmark published by
the DCASE (Detection and Classification of Acoustic Scenes and
Events) 2021 Challenge show that the proposed framework can
effectively handle the confusion issue among similar video scenes.
In addition, our multi-modal integration system achieves state-
of-the-art performance in the audio-visual scene classification
task in the DCASE 2021 Challenge, thereby demonstrating the
effectiveness of our proposed approach.

Index Terms—Video scene classification, visual segment model,
pre-trained model, latent semantic analysis, deep learning

I. INTRODUCTION

AUTOMATIC scene classification (SC) stands as a crucial
task in scene analysis, with its primary objective being

the categorization of a given signal into a predefined class,
thereby facilitating machine comprehension of its surround-
ings. This task has a variety of applications spanning various
domains, including autonomous driving, smart surveillance,
personal archiving [1], and robotic navigation [2]. One promis-
ing application of scene classification is found in smartphones,
where it enables continuous environmental awareness, auto-
matically adjusting call volume upon entry into a noisy scene.

Previous studies on scene classification are mainly based
on separate audio and video domains. Early approaches for
acoustic scene classification (ASC) task focused on designing
proper features for the classifiers [3]–[5]. In [6], mel-frequency
cepstral coefficients (MFCCs) were adopted as the spectral
representation, with Gaussian mixture models (GMMs) [7] and
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support vector machines (SVMs) [8] serving as the designated
classifiers. Bisot et. al [9] investigated different matrix factor-
ization methods to perform feature learning for ASC, achiev-
ing significant performance improvement compared to previ-
ous handcrafted features. Recent developments have witnessed
the integration of convolutional neural networks (CNNs) to
solve the ASC task, demonstrating superior performance over
conventional approaches [10]–[12].

Visual scene classification [13] has been a long-standing
challenge in computer vision, which aims to classify an image
or a video. Various approaches have been developed for image
scene classification, including global attribute descriptors [14],
patch feature encoding [15], spatial layout pattern learning
[16], discriminative region detection [17], and the emergence
of deep models [18]. Different from static images, video
scene classification (VSC) is a more complicated task, as it
involves analyzing the temporal evolution of visual content
within videos. In [19], hidden Markov models (HMMs) were
used to model the time-varying patterns exhibited by different
scene categories in video data. Some works [20], [21] applied
image scene classification methods to produce results for
videos, where key frames were selected for classification.
Recently, more powerful models have been proposed for video
understanding, such as SlowFast Networks [22], Multiscale
Vision Transformers (ViT) [23], and UniformerV2 [24].

Hearing and vision are the two primary senses through
which humans perceive and comprehend their environment.
With the rapid progress in artificial intelligence technologies,
the field of audio-visual learning (AVL) [25] has witnessed
significant advancements in both academic research and indus-
trial applications. AVL combines information from two sen-
sory modalities, thereby overcoming the limitations associated
with single-modal tasks. Transfer learning-based methods have
shown promising results in the audio-visual scene classifica-
tion (AVSC) task [26], [27]. However, it is worth noting that
many video encoders utilize pre-trained image models, which
do not fully leverage the temporal information present in video
clips, as they only take a single image frame as input. Self-
supervised learning (SSL) techniques offer an alternative for
audio-visual representation [28]–[30], achieving promising re-
sults in various multi-modal downstream tasks. However, since
SSL models are typically trained on large-scale unlabeled
datasets, they often face the risk of overfitting, particularly
when these models have a high number of parameters and are
applied to downstream tasks with low data resources.

One of the challenges in VSC is the similarity between
different scene categories. In cases where these categories are
easily confused, the static visual image of a single frame
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within the video can appear similar, making the contextual
dependencies among visual frames captured by temporal in-
formation crucial for recognizing scenes correctly. In this
study, we propose a novel visual segment model (VSM) based
approach for video scene classification with the assumption
that the overall visual characteristics of all scenes can be
represented by a universal set of fundamental units. The
VSM methodology is inspired by the acoustic segment model
(ASM), which was first introduced in [31] to characterize
fundamental speech sound units for automatic speech recog-
nition (ASR). In an ASM-based framework, variable-length
segments are modeled using GMM-HMMs to incorporate
temporal information. Each training sample is then encoded
into a sequence of segment units.

In this study, we focus on low-resource AVSC and propose
a novel VSM-based approach to generate effective represen-
tations for modeling visual scenes. The method begins by
extracting deep visual features from pre-trained encoders for
each video clip, which are then divided into non-overlapping
segments. These segments are designed to encapsulate co-
herent visual properties, with segment boundaries indicating
visual discontinuities. Next, a video recording is represented as
a temporal sequence of fundamental units via visual segment
modeling, which involves initial segmentation and iterative
training. Given the temporal interactions and relationships
between frames in a video, HMMs serve as a straightforward
way to model temporal dependencies. Then, feature vectors are
obtained using latent semantic analysis (LSA) [32], followed
by vector-based classification. Furthermore, we extend the
VSM approach to an audio-visual version by leveraging com-
plementary information from both modalities. We incorporate
the acoustic-visual segment model (AVSM) framework into
our previously proposed AVSC system [33] to fully exploit the
synergy between the audio and video modalities. This method
enhances our understanding of changes in visual features,
ultimately improving the accuracy of classifying scenes that
are easily confused.

The three major contributions are summarized as follows
and respectively detailed in Sections V-B, V-C, and V-D:

• We propose a novel VSM-based hybrid classification
approach, which consists of three essential modules:
visual segment modeling, latent semantic analysis and
vector-based classification. Visual segment modeling is
at the core of our approach, which aims to translate a
video recording into a sequence of discrete visual units.

• We further extend the proposed VSM-based framework
to an AVSM-based approach and subsequently integrate
it into a deep learning-based multi-modal scene classi-
fication system to fully exploit the synergy between the
audio and video modalities.

• We conduct a comprehensive set of experiments to
demonstrate the effectiveness of the VSM-based approach
in obtaining high-quality video representations, which
outperforms those obtained by deep models. Furthermore,
our multi-modal fusion system achieves a state-of-the-art
classification accuracy when evaluated on the develop-
ment set of the DCASE (Detection and Classification of
Acoustic Scenes and Events) 2021 Challenge.

II. RELATED WORKS

A. Bag-of-Words Representation

The bag-of-words (BoW) methodology, originally proposed
for text categorization [34], [35], has been successfully adapted
to the field of computer vision. Sivic and Zisserman [36] were
among the pioneers in applying the BoW representation to
object and scene retrieval by building a visual vocabulary.
Csurka et. al [37] introduced a bag-of-keypoints approach to
visual categorization, utilizing scale invariant feature transform
(SIFT) descriptors. In [38], an enhanced bag-of-visual-word
(BoVW) method was presented to represent visual content,
involving the construction of informative visual words from
representative keypoints and a novel approach to restructure
the vector space model. Another notable contribution was
made in [39], which proposed a BoVW model that combined
both local and global features for high spatial resolution image
scene classification. This model demonstrated superiority over
state-of-the-art methods when evaluated on datasets like UC
Merced and Google data sets of SIRI-WHU. Furthermore,
Gidaris et. al [40] proposed a self-supervised approach for
predicting the BoW representation. In [41], acoustic features
were incorporated into the standard BoVW approach for movie
shot representation, followed by a latent topic driving model
designed for affective scene classification.

Most of these works mainly focused on the image domain
and used BoW models to represent individual images. Our
method differs from these previous works by introducing a
segment model for building a visual inventory for video data.

B. Visual Tokenization

Visual tokenization aims to map pixels into compact discrete
tokens suitable for language models. Image tokenization meth-
ods, including VQ-VAE [42] and ViT-VQGAN [43], usually
consist of a CNN encoder and a vector-quantization (VQ) bot-
tleneck to obtain discrete tokens. Video tokenization is more
challenging due to the temporal coherence of video data. As
depicted in [44], C-ViViT employs a spatial transformer and a
causal transformer to build a joint image-video tokenizer. The
state-of-the-art video tokenizer is MAGVIT-v2 [45], which is
designed with a lookup-free quantization approach to generate
concise and expressive tokens for both videos and images.

Discrete tokens are generated by applying quantization
techniques on individual feature maps from the CNN encoders.
Our method is quite different from these methods. First, VQ is
performed on segment-level features. Second, HMMs are used
to improve tokenization by utilizing temporal information.

C. Acoustic Segment Model

The ASM model was first proposed for ASR by Lee et. al
[31]. In this work, an HMM was trained for each segment
model representing acoustically similar sounds, aiming to
capture the intra-segment variability within each sound class.
Subsequently, the ASM approach has been applied to various
audio classification tasks, including spoken language recogni-
tion [46], music genre classification [47], speaker recognition
[48], and acoustic scene classification [49], [50]. Bai et. al [49]
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proposed an ASM approach to represent an audio recording as
a temporal sequence of basic sound units. Each unit was mod-
eled using a GMM-HMM, and the method outperformed CNN
in acoustic scene classification. In [51], an ASM model was
utilized to generate guidance information and was combined
with a two-stage attention network to identify salient frames
for scene classification. Inspired by the idea of stop words in
information retrieval, Hu et. al [50] proposed an ASM-based
segment unit selection framework to remove frames carrying
little information content for the ASC task.

D. Audio-Visual Scene Classification

The goal of AVSC is to automatically categorize diverse
types of audio-visual scenes, such as indoor versus outdoor
scenes and urban versus rural scenes. This task typically
involves analyzing a variety of features extracted from both
the audio and visual components of a scene. In recent years,
the accuracy of image classification has been significantly
improved, largely due to the availability of large-scale image
datasets like ImageNet [52] and Places [53]. Leveraging this
progress, Hu et. al introduced an annotated dataset [26] con-
sisting of geotagged aerial image-sound pairs. In their work,
the authors proposed three transfer learning-based approaches
that incorporated sound event knowledge into the visual scene
recognition task. Additionally, Pham et. al [54], a wide range
of deep learning (DL)-based models were investigated using
different spectrogram features for crowded audio-visual scene
classification. Their approach applied late fusion to integrate
information from both audio and visual modalities, resulting
in enhanced classification accuracy.

AVSC was first introduced in the DCASE 2021 Chal-
lenge [27], marking a significant development in the field
and attracting much attention from the Audio and Acoustic
Signal Processing (AASP) research community. The top-
ranked system in the challenge [55] adopted a two-stage fine-
tuning method to obtain robust visual representations from
powerful pre-trained image models such as EfficientNet [56].
The authors in [57] proposed a multi-modal fusion method
to address AVSC. It leveraged both audio and video models
based on CNN variants, as well as CLIP-based networks [58]
with multiple image encoders for feature extraction. A multi-
branch model was introduced in [59], which was enhanced by
contrastive event-object alignment and semantic-based fusion,
resulting in competitive performance compared to state-of-the-
art models in the AVSC domain. Unlike previous works that
mainly employed CNN models, Zhou et. al [60] proposed an
attentional graph convolutional network (AGCN) for AVSC.
This AGCN was designed for structure-aware representation
learning, providing an alternative approach to the task.

Indeed, many video encoders in recent works [27], [55],
[57], [59], [61] have utilized pre-trained image models that
do not fully exploit the temporal information present in video
data, as they operate on individual image frames. In contrast,
this paper introduces an innovative approach that leverages
the inherent characteristics of scene transitions within video
data. We introduce a visual segment model that is designed
explicitly for semantic representation. This approach aims to

address the limitations associated with relying solely on pre-
trained image models for video analysis.

III. VSM-BASED HYBRID CLASSIFICATION

In this section, we present our proposed VSM-based hybrid
classification approach. The overall framework is shown in
Fig. 1. It consists of three stages: visual segment modeling,
latent semantic analysis and vector-based classification. In
Section III-A, we elaborate on the VSM-based method for
visual inventory generation. In Section III-B, we introduce the
LSA technique to characterize each video clip as a feature
vector. Finally, in Section III-C, we present the vector-based
classification using a DNN classifier.

A. Visual Segment Modeling

Similar to how speech utterances consist of phonemes,
different video scene recordings are composed of fundamental
units that exhibit internal correlations. Based on this under-
standing, we assume that the overall visual characteristics of
video scene recordings can be well represented by a universal
collection of fundamental units. This idea is similar to the
notion that a video scene recording inherently contains a
sequence of visual segments. Within scenes belonging to the
same category, there exist dissimilar segments with differences
in lighting, angles, objects, etc., which we call intra-class
diversity. There also exist similar segments across categories,
such as sky, buildings, etc., which denote inter-class similarity.

To solve these challenges, we propose a VSM-based method
to build a visual inventory and then translate each video scene
recording into a sequence of fundamental visual units defined
in the inventory. The VSM training process consists of three
key steps as shown in Fig. 1. (a). Deep models are adopted
as visual feature extractors due to their powerful modeling
ability in classification tasks. Unsupervised techniques, such
as K-means clustering algorithm [62], are used in the initial
segmentation stage to create an initial set of VSMs and
transcripts. This stage utilizes changes in visual features to
suggest potential boundaries between segments. With these
initial VSMs, we can achieve a finer segmentation of each
video scene recording through iterative training algorithms
such as HMM training.

1) Visual Feature Extraction: The visual feature extractor
fv is derived from the pre-trained VGG-19 image encoder,
which was trained on the on ImageNet [63]. This architec-
ture consists of five convolution blocks, each followed by
a max-pooling operation, and is further supplemented with
two fully-connected (FC) layers, as illustrated in Fig. 2.
Each convolution block contains several convolutional layers.
Each convolutional layer (Conv) utilizes 2D kernels of size
3× 3, along with batch normalization and rectified linear unit
(ReLU) activation function. The number of channels increases
sequentially from 64 to 128, 256, and 512 across the five
convolution blocks. Max-pooling is performed using a 2 × 2
pixel window with a stride of 2. The two FC layers consist
of 128 and 64 units, respectively, with ReLU non-linearities.
The final FC layer performs C-way scene classification using
softmax activation.
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Fig. 1. The overall framework of the proposed VSM-based hybrid classification approach. (a) Visual segment modeling. (b) Latent semantic analysis. (c)
Vector-based classification.
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Fig. 2. An illustration of the visual feature extractor. The convolutional layer
parameters are denoted as “Conv ⟨kenel size⟩, ⟨number of channels⟩”.

Let the image corresponding to a video frame be Iv, where
Iv ∈ RWv×Hv×3. The visual feature Ev ∈ RDv is obtained as
follows:

Ev = fv(Iv) (1)

The convolutional layers in the visual feature extractor
inherit their weights from the pre-trained VGG-19 network,
while the FC layers are initialized with random weights. The
visual feature extractor is then fine-tuned using a classification
objective with the cross-entropy (CE) loss function:

L = − 1

L

L∑
l=1

C∑
c=1

yl,clogŷl,c (2)

where ŷl,c and yl,c are the posterior probability of the model
output and the ground truth, respectively, for the l-th sample
and the c-th category. L is the number of samples in a mini-
batch, and C denotes the number of scene categories. The
mini-batch size is set to 32, and the fine-tuning of the pre-
trained weights is conducted with a relatively small learning
rate of 1e-5. Then, 64-dimensional visual features are extracted
from the fine-tuned extractor, as illustrated in Fig. 2.

2) Initial Segmentation: The initial segmentation process
uses changes in visual features to obtain rough segment
boundaries, which consists of two main steps: segmentation
and quantization. The generation of initial VSM sequences
is performed at the segment-level feature. In the segmentation
step, an equal-segmentation method is used, where all training
video data is divided into sequences of fixed-length segments

with non-overlapping frames. Since the later VSM training
involves an iterative procedure to redefine the optimal position
of segment boundaries, we consider it is reasonable to sacrifice
finer segmentation for faster processing at this stage. We
calculate the arithmetic mean of visual features within a
segment and use the resulting feature vector to represent the
entire visual segment. The mean feature vector from each
visual segment in every training recording is used to build
a universal set of fundamental units. In this study, we conduct
ablation experiments to determine the proper segment length.

It is expected that the observations of the same fundamental
unit will be close in a certain metric, while observations
of different units will be clearly separated, assuming that
the features extracted from the video signal capture slowly
changing visual characteristics. Therefore, methods like VQ
[64] and GMM-HMM [49] can be employed to cluster visual
segments into a small number of categories. This results in an
initial collection of VSM units representing the whole visual
space, as characterized by the training data. In the quantiza-
tion step, three methods are adopted in this study: K-means
clustering, hierarchical K-means (HK-means) clustering, and
GMM-HMM based method.

K-means clustering [62] is one of the most widely used
unsupervised algorithms for clustering analysis. Its main goal
is to group similar data points into a user-defined number
of clusters. In this study, the K-means algorithm is used to
determine a set of J centroids by minimizing the Euclidean
distance using segment-level visual feature vectors. Video
segments are then clustered into a small number of J classes,
where each class represents a VSM unit. As a result, each
video recording is transformed into an initial VSM sequence
by identifying the closest centroid for each visual segment.

The HK-means algorithm is a hybrid clustering method that
combines both hierarchical clustering and K-means clustering.
In our VSM-based framework, we incorporate the simple
HK-means algorithm as described in [65] to speed up the
clustering process and obtain stable centroids. In this work,
we choose two hierarchy levels with l = 2. At each level of
the clustering hierarchy, we adjust the number of clusters to
k1 and k2. Using the standard K-means algorithm, we first
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divide all segment-level visual features into k1 clusters. Then,
we iteratively cluster each set of points from the previous step
into k2 clusters. As a result, we generate a total of J = k1×k2
classes to represent the whole visual space, where the centroids
are used to map video clips into initial VSM sequences.

The GMM-HMM based method, which is adopted for the
initial segmentation and clustering of acoustic features in the
ASM-based ASC framework [49], is also used as an alternative
to cluster visual segments using hidden Markov chains. We use
C GMM-HMMs, each with a left-to-right HMM topology,
to model C types of video scenes. Each scene category is
represented by a GMM-HMM with S hidden states. The
parameters of the GMM-HMMs are updated via the Baum-
Welch algorithm [66]. All the hidden states of the GMM-
HMMs collectively form a set of J = C × S VSM units
jointly. Then, each video recording is decoded into a sequence
of hidden states, forming what is known as a VSM sequence.

3) Iterative Training: With the initial VSM transcripts ob-
tained in the previous stage, we can perform an iterative HMM
training process to generate more refined segmentation results.
Specifically, each VSM unit is characterized by an HMM using
the training data and corresponding initial transcripts, where
each HMM consists of two states. The probability density
function for each state is represented by a GMM. After training
the GMM-HMMs, a new VSM sequence is re-estimated for
each video recording through Viterbi decoding. These re-
estimated VSM sequences are then used as new transcripts
for further GMM-HMM training. In general, a small number
of re-estimation iterations is sufficient to achieve convergence.
In this study, we use five iterations of HMM training. Finally,
each video scene recording is transformed into a sequence of
VSM units specified in the set of HMMs.

B. Latent Semantic Analysis

We now represent each video clip as a sequence of VSM
units, similar to how a transcription of a text document is
represented as a sequence of words. This allows us to use
text classification techniques such as LSA, an algebraic model
for information retrieval proposed by Dumais et. al [67].
LSA uses statistical computation on large corpora of texts to
extract the underlying semantic relationships between words.
In this study, we adopt the LSA technique to transform a VSM
sequence into a feature vector.

The goal of LSA is to represent the training set as a
term-document matrix, in which each row corresponds to
a unique VSM term and each column corresponds to a
video recording. Given a collection of visual units denoted as
S = {s0, s1, ..., sJ−1}, where J denotes the number of VSM
units, the characteristics of the training set, which contains
M video recordings, can be represented as a term-document
matrix H = (h1,h2, ...,hM ). In this matrix, each component
hm describes the statistics related to both uni-gram terms and
bi-gram terms. Due to the large number of non-existent bi-
gram terms in the data set, the resulting dimension of hm,
denoted as N , is much smaller than the theoretical value
J×(J+1). The n-th VSM term in the m-th vector, denoted as

hn,m, contains the term frequency (TF) weighted by inverse
document frequency (IDF), which is given as follows:

hn,m = TFn,m × IDFn (3)

where TF represents the frequency with which a VSM term
from its row appears in a scene recording denoted by its
column. Meanwhile, IDF quantifies the informativeness of the
VSM term. The term frequency of the n-th VSM term within
the m-th scene recording, denoted as TFn,m, and the inverse
document frequency of the n-th VSM term, denoted as IDFn,
are expressed as follows:

TFn,m =
Pn,m∑N
n=1 Pn,m

(4)

IDFn = log
M + 1

Qn + 1
(5)

where Pn,m denotes the number of occurrences of the n-th
VSM term within the m-th scene recording. Concurrently, M
represents the total number of scene recordings in the training
set, while Qn denotes the aggregate count of occurrences of
the n-th VSM term throughout the entire training set.

Term weighting schemes, such as TF-IDF, provide a mea-
sure of indexing power. On one hand, terms that appear
frequently in a few documents but rarely in others have high
indexing power for those specific documents. On the other
hand, terms that appear very frequently across all documents
offer little indexing power. Examples of terms with maximum
indexing power include proper nouns, such as names of
individuals and countries, while function words like “a” and
“the” have minimal indexing power.

In the testing phase, we firstly calculate the TF values of
each transcribed video recording using Eq. (4), where the IDF
values are obtained in the training phase. Then, the term-
document matrix for test set, denoted as Htest, is calculated
using Eq. (3) and used for classification.

C. Vector-Based Classification

Using the LSA technique, each video recording is trans-
formed into a feature vector, making VSC a vector-based
classification problem. Several vector-based classifiers, such
as SVM [68] and artificial neural network (ANN) [69], have
been developed in the field. In this study, the feature vectors
are fed into a DNN classifier. The DNN usually consists of
five layers of nodes. The input layer accepts feature vectors,
with the number of nodes equal to the total number of uni-
gram and bi-gram terms present in the dataset. Three hidden
layers consist of 1024, 512, and 128 nodes, respectively. For a
classification task with C classes, the output layer contains C
nodes. The ReLU and softmax activation functions are applied
to the hidden and output nodes, respectively.

IV. AVSM-BASED MULTI-MODAL CLASSIFICATION

We expand upon the proposed VSM approach to create an
AVSM approach by exploiting the complementarity of both
audio and video modalities. In addition, we design a fusion
model that takes both deep features and semantic features as
input for scene category prediction.
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A. AVSM Model

As shown in Fig. 3, the proposed AVSM model consists of
three stages, similar to the VSM model, but there are two main
differences. First, whereas the VSM model utilizes only visual
features as input, the AVSM model incorporates both visual
and acoustic features to make use of the complementarity be-
tween video and audio data. Second, considering the enhanced
representation of multi-modal features, we use GMM-HMM
for the initial clustering of segments, without the need for
iterative training in the AVSM model.

The visual feature extractor in the AVSM model keeps the
same weights as in the VSM model, as shown in Fig. 2.
For acoustic feature extraction, a fully convolutional neural
network (FCNN) is adopted, which has demonstrated promis-
ing performance for the ASC task in our previous work [12].
The acoustic feature extractor fa, depicted in Fig. 4, consists
of nine stacked convolutional layers and a channel attention
module [70]. Each convolutional layer (Conv) is followed by
batch normalization and a ReLU activation function. Dropout
is used to alleviate overfitting. The number of channels in the
last convolutional layer is equal to the number of scene classes.

We use log-Mel filter bank (LMFB) features of the audio
data, with delta and delta-delta operations, forming the input
Ia ∈ RTi×Fi×Ci . The acoustic feature Ea is derived as follows:

Ea = fa(Ia) (6)

where Ea ∈ RTa×Da . To ensure that the frames of the acoustic
and visual features are matched, we set Ti = 600 for audio
data with 10-second duration, and the time pooling size of
the first convolutional layer is set to 2. We use Fi = 128 and
Ci = 6 by default. The frequency pooling sizes for the first,
second, fourth, and eighth convolutional layers are set to 2.

The channel attention module is an improved version of the
Squeeze-and-Excitation block, incorporating two aggregation

strategies to generate global spatial information. Suppose the
input to the channel attention module is represented by Xa ∈
RTa×Fa×C , the global spatial information, denoted as c1 and
c2, can be obtained as follows:

c1 = GAP(Xa) (7)

c2 = GMP(Xa) (8)

where GAP(·) and GMP(·) denote global average pooling
and global max pooling, respectively. Then, a simple gating
mechanism with a sigmoid activation function is employed:

α = σ(W21g(W11c1) + W22g(W12c2)) (9)

where g(·) is the ReLU activation function, W11,W12 ∈
RC

r ×C , and W21,W22 ∈ RC×C
r . Parameter r denotes the

reduction ratio. The output of the channel attention module is
generated as follows:

X̂a = Xa ·α (10)

Different from the visual feature extractor, the acoustic
feature extractor is trained from scratch with a mini-batch
size of 256. The initial learning rate is set to 1e-3 and will
be reduced by 50% if the accuracy does not improve for 20
consecutive epochs. We perform a reshaping operation on the
output of the channel attention, resulting in the final acoustic
features with a dimension equal to Da = Fa × C = 80.

To exploit the complementarity between video and audio
data, we concatenate the features from both modalities. With
this more robust acoustic-visual feature representation, we
generate initial AVSM sequences using GMM-HMMs. These
sequences are then fed into an algebraic model called LSA
to extract latent semantic structures between AVSM units.
Finally, a DNN with five FC layers is used for scene clas-
sification. The DNN classifier in the AVSM model shares the
same parameters as those in the VSM model, with the only
exception being the number of input layers.

B. Acoustic-Visual-Semantic Fusion Model

Although AVSM sequences are derived from both acoustic
and visual features, they are actually encoded in different
formats. To better integrate these diverse modalities, we in-
troduce an acoustic-visual-semantic fusion model (AVSFM)
to generate unified representations of scene recordings. As
shown in Fig. 5, the AVSFM model consists of three separate
preprocessing modules and a shared DNN module.

1) Preprocessing Module: Audio and video data exhibit dif-
ferent characteristics. For example, audio is a one-dimensional
(1D) continuous signal, while video is a three-dimensional
(3D) continuous signal. Unlike audio and video data, an AVSM
sequence is a 1D discrete signal with segment boundaries.
Therefore, we introduce three separate preprocessing modules,
namely acoustic, visual and semantic encoders.

Specifically, we extract LMFB features with delta and delta-
delta operations for audio. For the acoustic encoder, we use a
variant of the acoustic feature extractor shown in Fig. 4, where
the time pooling size and frequency pooling size are both
set to 2 for the first, second, fourth, and eighth convolutional
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Semantic EncoderVisual EncoderAcoustic Encoder

Metro Station

Acoustic-Visual-Semantic Fusion

DNN Encoder

Temporal Average Pooling 

Fig. 5. An illustration of the AVSFM model, consisting of an acoustic
preprocssing module, a visual preprocessing module, a semantic preprocssing
module, and a shared DNN module.

layers. For the visual encoder, we use VGG-19 and flatten the
visual embedding corresponding to each video frame into a
1D vector using 2D max pooling. In addition, we incorporate
AVSM sequences into the classification model by introducing
a semantic encoder. As shown in Fig. 3, we use the algebraic
model known as LSA as our semantic encoder.

The acoustic, visual, and semantic encoders are trained
separately. We extract 39 × 128 × 6 LMFB features for a 1-
second audio clip, which are then used to train the acoustic
FCNN encoder shown in Fig. 4. Therefore, the acoustic
embedding is computed as za ∈ R10×160 for audio with length
of 10 seconds. The visual encoder is trained using all images in
the video, with each image having a size of 224×224×3. We
select the first and fifteenth video frames within each second
and combine their visual embeddings to obtain a representation
for a 1-second video clip. The visual embedding is denoted
as zv ∈ R10×512 for video with length of 10 seconds. As
shown in Fig. 3, we train the semantic encoder with AVSM
sequences generated by GMM-HMMs. For audio-visual data
with length of 10 seconds, we extract the semantic embedding
zs ∈ R1×200, with the number of AVSM units equal to 40.

2) Backbone Network: To effectively integrate different
modalities for scene classification, we adopt an acoustic-
visual-semantic fusion module that concatenates the vector
representations of the acoustic, visual, and semantic data. The
multi-modal representation zm is obtained by combining the
acoustic embedding za, visual embedding zv and semantic
embedding zs as follows:

zm = Concat(za, zv, zs) (11)

where Concat(·) denotes the concatenation operation. To
synchronize the semantic embedding with the acoustic and
visual embeddings in the time dimension, we repeat the
semantic embedding appropriately. The resulting multi-modal
representation zm ∈ R10×872 is fed into a DNN encoder to
learn discriminative features. This encoder consists of four
FC layers with 512, 128, 64, and C nodes, where C denotes

the number of scene categories. Finally, we make predictions
through a temporal average pooling layer.

V. EXPERIMENTS

We evaluate the VSM-based hybrid classification method on
two neural network models with significant differences in ar-
chitectural design: VGG-19 [63] and UniformerV2 [24]. VGG-
19 relies on convolution operations for feature extraction,
which provides good local feature capturing capability but
lacks the ability to model temporal information in videos. Uni-
FormerV2, on the other hand, is a powerful video model that
combines image-pretrained ViTs with an efficient UniFormer
design. Besides, we conduct experiments on a spatiotemporal
feature learning model named TimeSformer [71] and an audio-
visual self-supervised learning model named MAViL [30].

A. Experimental Setup

Dataset. The experiments were conducted on the TAU
Audio-Visual Scenes 2021 (TAU AVS) dataset [27], designed
for low-resource audio-visual scene classification. This dataset
serves as the development set for the DCASE 2021 Chal-
lenge, specifically designed for AVSC. This dataset comprises
synchronized audio and video recordings, each spanning 10
seconds, from 12 European cities. It contains a total of 7908
training clips, 740 validation clips, and 3645 test clips, all
recorded in binaural format. The audio clips have a sampling
rate of 48kHz and a resolution of 24-bit. The video clips
have a frame rate of 30 frames per second (fps). The dataset
comprises 10 scene classes: airport, shopping mall, metro
station, pedestrian street, public square, street traffic, tram,
bus, metro, and urban park. The evaluation metric used in
this study is macro-average accuracy.

VSM training on VGG-19. In the training process of VSM
on VGG-19, visual features with a size of 300 × 64 are used for
data with 10-second duration. For vector-based classification,
a DNN classifier is trained with a learning rate of 0.05 and
a mini-batch size of 128. The parameters of the DNN are
updated using the stochastic gradient descent (SGD) algorithm.
The number of training epochs is set to 100. A dropout rate
of 0.5, 0.3, and 0.3 is applied at the three hidden layers.

VSM training on UniformerV2. We first fine-tune the
UniFormerV2-B/16 using the TAU Audio-Visual Scenes 2021
dataset to get the DL-based video model, which is pre-trained
on Kinetics-400 [72] and operates on 8 × 224 × 224 video
clips. The DL-based UniformerV2 is fine-tuned for 10 epochs
with a learning rate of 1e-5 and then generates L=4×14×14
spatiotemporal tokens for a 10-second long video clip. Visual
features with a size of 784 × 768 are used to train VSM
models. For vector-based classification, a DNN classifier is
trained with a learning rate of 0.001 and a mini-batch size of
128. The parameters of the DNN are updated using the Adam
algorithm with a total epoch number of 200.

Initial segmentation and iterative training. We adopt
three methods for initial segmentation. In K-means clustering,
the parameter J is set to the number of VSM units. When
using the HK-means algorithm, we choose two hierarchy
levels. The number of clusters in the first and second level is
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TABLE I
AN ACCURACY (%) COMPARISON FOR VIDEO SCENE CLASSIFICATION AMONG VSM SYSTEMS FROM V1 TO V9 ON THE VALIDATION SET (ACCd) OF
THE TAU AVS DATASET. ATTRIBUTES FOR COMPARISON INCLUDE: 1) INITIAL SEGMENTATION; 2) NUMBER OF VSM UNITS; 3) SEGMENT LENGTH.

System
Initial Segmentation Number of VSM Units Segment Length

ACCdK-means GMM-HMM HK-means 20 40 60 80 100 2 3 6
V1 ✓ - - - - - ✓ - - ✓ - 79.0
V2 - ✓ - - - - ✓ - - ✓ - 80.7
V3 - - ✓ - - - ✓ - - ✓ - 80.7
V4 - - ✓ ✓ - - - - - ✓ - 80.2
V5 - - ✓ - ✓ - - - - ✓ - 80.9
V6 - - ✓ - - ✓ - - - ✓ - 81.6
V7 - - ✓ - - - - ✓ - ✓ - 79.7
V8 - - ✓ - - ✓ - - ✓ - - 80.4
V9 - - ✓ - - ✓ - - - - ✓ 81.2

set to k1 = 20 and k2 = J/k1, respectively. In GMM-HMM,
the number of hidden states in each HMM is determined by
S = J/C, where J is the number of VSM units and C
is the number of scene categories. The emission probability
of each state is modeled by a GMM with 80 mixtures.
During the iterative training step, each HMM consists of two
states, and each state is associated with 40 Gaussian mixtures.
With a relatively small number of clusters, hidden states,
and Gaussian mixtures, the computational complexity of the
proposed VSM approach on the TAU AVS dataset would not
be excessively high.

Uni-modal DL models. For comparison, we train uni-
modal audio and video models. The DL-based audio model
(Audio-DL) employs a FCNN to capture local temporal de-
pendencies and is trained from scratch with 1-second long
data. The DL-based video model (Video-DL) is fine-tuned with
three networks: VGG-19, TimeSformer, and UniformerV2.
Initialized with weights learned from Kinetics-400 [72], both
TimeSformer and UniformerV2 are fine-tuned on 8 × 224 ×
224 video clips. An additional DNN module that share the
same parameters as shown in Fig. 5 is employed for VGG-19,
while for TimeSformer and UniformerV2, only a linear layer
is employed. Both TimeSformer and UniformerV2 are trained
for 10 epochs with a learning rate of 1e-5 and a mini-batch
size of 10 in the fine-tuning stage. When evaluating the FCNN
and VGG-19, we split the test data into ten non-overlapping
segments and obtain the final prediction by averaging the
results of each segment according to [27]. VGG-19 cannot
utilize temporal information with image frames as input.

AVSM and AVSFM training. To ensure the temporal syn-
chronization between the acoustic and visual features during
AVSM training, acoustic features are extracted with a size of
300 × 80 (as shown in Fig. 4). The network architecture and
training hyperparameters of the DNN classifier are the same
as those set in VSM. The parameters of Audio-DL FCNN
and Video-DL VGG-19 are used to initialize the acoustic and
visual encoders in AVSFM, respectively. It is worth noting
that the acoustic feature extractor in Fig. 3 is trained with
10-second long data, while the acoustic encoder in Fig. 5 is
trained with 1-second long data. When training the AVSFM
model, the weights of the acoustic and visual encoders are
fine-tuned. The models are trained using the PyTorch toolkit,

and the Adam optimizer is used during training.
MAViL training. MAViL [30], [73] is a self-supervised

learning model that achieves state-of-the-art performance on
AudioSet [74] and VGGSound [75]. The MAViL pre-trained
on AudioSet is adopted in this study. Following [30], Mel-
frequency spectrogram with dimension of 1024 × 128 is
extracted for the audio, and RGB frames with a size of 8
× 224 × 224 are extracted for the video. During fine-tuning,
MAViL is trained for 60 epochs, with the number of warm-up
epochs equal to 4. A Half-cycle cosine decay learning rate
schedule is used according to [30], and the base learning rate
is set to 0.001. The mini-batch size is set to 10.

B. Effectiveness of VSM-Based Approach

To evaluate the effectiveness of each module, we conduct
ablation experiments with different configurations related to
VSM training. The performance comparison for video scene
classification on the TAU Audio-Visual Scenes 2021 dataset
among VSM models is presented in Table I.

Ablations on initial segmentation. The purpose of initial
segmentation is to divide video segments with similar char-
acteristics into the same cluster, thereby obtaining a rough
collection of visual units known as VSM units. In order
to evaluate the effect of different initialization methods, we
design three VSM systems (denoted as V1, V2 and V3)
as shown in Table I. When GMM-HMM or HK-means are
used, the models (V2 and V3) demonstrate better and similar
performance. This shows that an appropriate initialization can
help build a more accurate visual inventory, which leads to
higher classification accuracy. Given that HK-means clustering
is faster than GMM-HMM, we use HK-means for initial
segmentation in the VSM training process.

Ablations on the number of VSM units. A key parameter
in modeling visual segments is the number of VSM units,
which indicates the number of clusters for all video segments
(J as mentioned in Section III-A). The number of VSM units
determines the coverage of the visual space. Too few VSM
units would not sufficiently capture the variation of visual
events in feature vectors, while too many would lead to redun-
dant information and increased computational complexity. To
investigate the impact of the number of VSM units, we design
systems V3 to V7, as shown in Table I. Notably, we observe
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(a) Video-DL

93 0 0 52 0 11 83 13 17 12

0 309 8 0 0 0 0 0 0 10

0 8 342 0 0 0 0 0 0 10

0 0 2 377 0 0 7 0 0 0

0 0 0 0 355 2 0 0 29 0

0 0 0 0

0 0 0 9

0 0 0 0

0 4 0 0

0 63 50 0

7 294 8 47 31 0

2 0 371 0 5 0

0 17 0 387 17 0

4 6 0 2 385 1

0 0 9 0 0 186

Prediction

G
ro
un
d
Tr
ut
h

Airport

Bus

Metro

Metro station

Park

Public square

Shopping mall

Street pedestrian

Street traffic

Tram

A
irp
or
t

B
us

M
et
ro

M
et
ro
st
at
io
n

Pa
rk

Pu
bl
ic
sq
ua
re

Sh
op
pi
ng
m
al
l

St
re
et
pe
de
st
ria
n

St
re
et
tra
ffi
c

Tr
am

(b) VSM

Fig. 6. Confusion matrices for the Video-DL and VSM models using VGG-19 on the test set of the TAU AVS dataset.

TABLE II
CLASS-WISE ACCURACY (%) COMPARISON FOR VIDEO-DL AND VSM

MODELS ON THE TEST SET (ACCt) OF THE TAU AVS DATASET.

Class
ACCt

Video-DL VSM
Airport 33.1 60.1

Bus 94.5 94.5
Metro 95.0 96.7

Metro station 97.7 96.6
Park 92.0 89.1

Public square 76.0 81.7
Shopping mall 95.9 95.1

Street pedestrian 91.9 90.0
Street traffic 95.8 95.8

Tram 60.4 69.8
Overall 85.0 88.0

that the visual segment model trained with a moderate number
of VSM units shows great effectiveness in scene classification.
Specifically, using 60 VSM units yields the highest accuracy of
81.6% on the validation set. It is worth noting that in system
V6, HK-means is used to generate initial VSM sequences,
where the number of clusters at the two levels is set to k1 = 20
and k2 = 3.

Ablations on segment length. The generation of VSM
sequences is based on segment-level features. To determine
the optimal segment length, we design VSM systems V6,
V8, and V9, as shown in Table I. As the segment length
increases from 2 to 3 image frames, performance improves
from 80.4% to 81.6%, which indicates that longer segments
may contain distinctive visual features beneficial for scene
classification. However, when we further increase the segment
length to 6 image frames, performance drops to 81.2%. This
suggests that segments comprising too many image frames
may include rapidly changing visual characteristics, making
them unsuitable as fundamental units for modeling.

Confusion matrix. From the experimental results in Table I,

we can see that the VSM system V6 achieves the best accuracy
on the validation set. The class-wise accuracy comparison of
V6 and the video model using VGG-19 on the test set is shown
in Table II. We can find that the VSM model outperforms the
Video-DL model in general, with an accuracy improvement
of 27.0% for the airport category and 9.4% for the tram
category. To further analyze the prediction results, we show the
confusion matrix in Fig. 6. It can be observed that the VSM
model is more suitable to handle easily confused categories,
such as airport and tram. As shown in Fig. 6, the Video-DL
model misclassifies samples of the airport category into metro
station and shopping mall, while the VSM model correctly
classifies them.

Case study. Fig. 7 shows the intermediate prediction results
of the Video-DL and VSM models for a test sample from the
airport scene (Class ‘0’). The sample is misclassified by the
Video-DL model as the shopping mall scene (Class ‘6’), but
correctly classified by the VSM model. As shown in Fig. 7(a),
nine out of ten 1-second long segments are classified by the
Video-DL model as the shopping mall category, which leads to
the wrong prediction class for this sample when using temporal
average pooling. The main reason for this misclassification
may be the existence of similar image frames in both video
scene categories. Besides, the decoded VSM sequence of this
sample with the explicit segment length is shown in Fig. 7(b).
The sample is transcribed by the visual inventory consisting of
60 VSM units, labeled from ‘s0’ to ‘s59’. Several uni-gram and
bi-gram VSM terms with high TF-IDF values of the airport
sample are shown in Fig. 7(c). It can be seen that ‘s19’, ‘s31’,
and their bi-gram terms achieve higher values, indicating their
strong indexing power. We calculated the VSM terms with the
top five highest TF-IDF values for the test samples labeled
airport and shopping mall categories, respectively. For the
airport scene, the five VSM terms are ‘s59’, ‘(s19 s19)’, ‘s38’,
‘(s59 s59)’, and ‘s19’. For the shopping mall scene, the five
VSM terms are ‘s30’, ‘s5’, ‘s15’, ‘(s5 s31)’, and ‘(s31 s30)’. It
shows that different VSM terms are used to characterize these
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(a) The posterior probability predicted by the Video-DL model.
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(b) The VSM sequence generated by the visual segment model.

s!" (s#! s!") (s!" s#!) s#! (s!" s!") (s$% s!")s$%

(c) The TF-IDF value of several VSM terms.

Fig. 7. Intermediate prediction results of a test sample from the airport scene
by the Video-DL and VSM models based on VGG-19.

two types of video scenes. The VSM terms with high indexing
power for this sample better match the airport scene category,
leading to the correct prediction. This proves the effectiveness
of the VSM-based approach in video scene classification.

Generalization of VSM. To compare with other state-of-
the-art models and demonstrate the generalization ability of the
VSM-based method, we conducted several experiments using
two ViT variants, namely TimeSformer [71] and UniformerV2
[24]. Experimental results are shown in Table III. Compared
to VGG-19, the Video-DL models achieve significant im-
provements when using TimeSformer and UniFormerV2 as
backbone networks, mainly because they can learn temporal
dependencies. Based on the visual features extracted by the
best UniFormerV2-DL, applying the VSM-based hybrid clas-
sification method (as shown in the fifth row) results in further
accuracy improvement, demonstrating the generalizability of
our VSM approach. Additionally, when training the model by
combining both the deep features extracted by Video-DL and
the fuzzy semantic features extracted by VSM, as shown in
Fig. 5 without the acoustic encoder, we observe an accuracy
of 92.7%. This indicates the strong complementarity between
deep features and the term-document matrix.

Visualization of VSM units. To enhance comprehension of
the proposed method, we provide visualization of representa-
tive video frames from several VSM units, as shown in Fig. 8.
Fig. 8.(a) represents a video frame from a park scene clustered
as VSM unit ‘s4’. Fig. 8.(b) and Fig. 8.(c) show two video
frames from the VSM units ‘s19’ and ‘s30’, respectively. These

TABLE III
AN ACCURACY (%) COMPARISON FOR VSC AMONG SEVERAL VISUAL

SYSTEMS ON THE TEST SET OF THE TAU AVS DATASET.

System Network
Visual Semantic

ACCt
Encoder Encoder

Video-DL VGG-19 ✓ - 85.0
Video-DL TimeSformer ✓ - 89.5
Video-DL UniformerV2 ✓ - 91.7

VSM VGG-19 - ✓ 88.0
VSM UniformerV2 - ✓ 92.1

Video-DL + VSM UniformerV2 ✓ ✓ 92.7

(a) s4 (b) s19

(c) s30 (d) s47

Fig. 8. Visualization of representative video frames from several VSM units.

two video frames are from airport and shopping mall scenes,
respectively, which is consistent with the related analysis in
Fig. 7. The fourth figure denotes a representative video frame
from the VSM unit ‘s47’ labeled as the bus scene class.

C. Effectiveness of AVSM-Based Approach

Ablations on AVSM. By exploiting the synergy of audio
and video modalities, we extend the proposed VSM-based
hybrid classification to an AVSM-based approach. Different
from the VSM model that needs an iterative training proce-
dure, the AVSM model only uses an initial clustering method
GMM-HMM to build the audio-visual inventory. Table IV
shows the experimental results of AVSM systems trained with
different settings. To select the number of AVSM units, we
design systems S1 to S4. We find that the audio-visual segment
model performs better when using 40 AVSM units, which is
fewer than the number of VSM units. To evaluate the effect
of segment length, we design systems S1, S5, and S6. It is
observed that a moderate-long segment consisting of 2 image
frames and 4 acoustic frames is more appropriate for modeling
as an audio-visual fundamental unit. By comparing Table II
and IV, we find that the AVSM system improves performance
by 3.2% (from 88.0% to 91.2%) on the test set with fewer
fundamental units and a shorter segment length, which may
benefit from the audio modality.

T-SNE visualization of hidden embedding. In Fig. 9,
we show the t-SNE visualization [76] of the hidden layer
embedding for scene classification on the test set of VSM
and AVSM models. Generally, the embedding of both VSM
and AVSM models are clustered for different video scene
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TABLE IV
AN ACCURACY (%) COMPARISON FOR AVSC AMONG AVSM SYSTEMS

FROM S1 TO S6 ON THE VALIDATION (ACCd) AND TEST (ACCt) SETS OF
THE TAU AVS DATASET, RESPECTIVELY. ATTRIBUTES FOR COMPARISON

INCLUDE: 1) NUMBER OF AVSM UNITS; 2) SEGMENT LENGTH.

System
Number of AVSM Units Segment Length

ACCd ACCt
40 60 80 100 1 2 3

S1 ✓ - - - ✓ - - 87.4 91.0
S2 - ✓ - - ✓ - - 87.4 90.7
S3 - - ✓ - ✓ - - 85.3 90.9
S4 - - - ✓ ✓ - - 85.9 90.8
S5 ✓ - - - - ✓ - 87.9 91.2
S6 ✓ - - - - - ✓ 86.1 90.0

Fig. 9. Embedding visualization of the VSM (left) and AVSM (right) models
for scene classification.

categories. However, the classification accuracy of VSM model
is unsatisfactory for scene categories with similar video fea-
tures. For example, ‘airport’ and ‘metro station’ categories
are clustered together, as are ‘airport’ and ‘shopping mall’
categories. This clustering results in a low accuracy of 60.1%
for the airport class in Table II. Considering that there may
be differences in the sounds recorded in these video scene
recordings, we propose using the audio modality to differ-
entiate between various scene categories, thus forming an
AVSM system. As illustrated in Fig. 9, the embedding of the
‘airport’ class is more distinctly separated from that of the
‘metro station’ and ‘shopping mall’ classes in AVSM system,
resulting in a improved accuracy of 84.7% for the airport class.

Comparison of uni-modal and multi-modal systems.
Table V lists the accuracy comparison for scene classification
among several uni-modal and multi-modal systems on the
TAU AVS dataset. ‘Audio-DL’ denotes the deep learning-based
audio model using FCNN as the acoustic encoder. ‘Video-DL’
denotes the deep learning-based video model using VGG-19 as
the visual encoder. ‘AV-DL’ combines Audio-DL with Video-
DL, corresponding to the model in Fig. 5 with the semantic
encoder removed. Several observations can be made. Firstly,
the Video-DL outperforms the Audio-DL by a large margin,
benefiting from the well pre-trained image encoder. We also
experimented with pre-trained audio encoders on Audioset
[74], such as PANN [77] and CNN [78]. However, neither
of them performs better than the FCNN model trained from
scratch. One possible reason is the pre-trained models do not
perform well enough on AudioSet currently. The mean average
precision (mAP) of PANN and CNN on AudioSet are 0.439
and 0.314 respectively, while the classification accuracy of

TABLE V
AN ACCURACY (%) COMPARISON FOR SCENE CLASSIFICATION AMONG
SEVERAL UNI-MODAL AND MULTI-MODAL SYSTEMS ON THE TEST SET

(ACCt) OF THE TAU AVS DATASET.

System
Acoustic Visual Semantic

ACCt
Encoder Encoder Encoder

Audio-DL FCNN - - 74.3
Video-DL - VGG-19 - 85.0

AV-DL FCNN VGG-19 - 92.2
MAViL ViT-B ViT-B - 91.3
MAViL* ViT-B ViT-B - 86.4
AVSM - - ✓ 91.2

AVSFM FCNN VGG-19 ✓ 93.0
* Fixing pre-trained weights of MAViL.

TABLE VI
AN ACCURACY (%) COMPARISON WITH STATE-OF-THE-ART METHODS

FOR THE AVSC TASK ON THE DEVELOPMENT SET (ACCt) OF THE
DCASE 2021 CHALLENGE.

System Acoustic Visual Semantic
ACCt

Idx. Encoder Encoder Encoder
0 [27] OpenL3 OpenL3 - 84.8
1 [60] ResNet ResNet - 91.6
2 [57] EfficientNet CLIP ViT - 93.3
3 [61] CNN&Transformer CvT - 93.9
4 [59] Transformer ConvNeXt - 94.1
5 [79] DCNN EfficientNetV2 - 94.6
6 Ours FCNN ResNeSt LSA 94.8

VGG-19 network on ImageNet is 82.7%.
Secondly, MAViL performs slightly worse than the AV-DL

model. The likely reason is that the large number of parameters
in MAViL leads to overfitting when training on low-resource
audio-visual scene classification task. When fixing the pre-
trained weights of MAViL, accuracy drops from 91.3% to
86.4%. Thirdly, by incorporating both audio and video modal-
ities, AVSM can further enhance performance, yielding an
accuracy only marginally lower than that of the AV-DL model.
This underscores the complementary nature of video and audio
modalities. It is observed that MAViL and AVSM achieve very
similar results, specifically 91.3% and 91.2%, respectively.
Fourthly, by integrating the AVSM model with the AV-DL
model, the resulting AVSFM model improves performance
from 92.2% to 93.0%. Notably, the AVSFM model’s accuracy
for the airport class escalates from 84.7% to 90.7% compared
to the AVSM model, demonstrating the synergistic effect of
deep learning-based and fuzzy semantics-based features.

D. A Comparison with State-of-the-art Methods

We compare our method with the state-of-the-art methods
on the audio-visual scene classification task of the DCASE
2021 Challenge. The results shown in Table VI are from
single systems without model ensemble. Note that we evaluate
this subsection on 1-second long clip instead of 10-second
long clip according to official setup. System Idx.0 is the
baseline, which uses OpenL3 network as both the acoustic and
visual encoders. Most multi-modal systems use both acoustic
and visual encoders, which are shown from system Idx.1 to
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Idx.5 in Table VI. The majority of the visual encoders use
pre-trained image models without considering the temporal
relationship in video. The state-of-the-art system [79] utilizes
long-term scalogram as the acoustic feature. Our proposed
system achieves the best performance of 94.8% by introducing
an LSA-based semantic encoder, resulting in a 0.2% accuracy
improvement over [79]. By exploiting the inherent charac-
teristics of scene transitions within video data, the proposed
VSM approach produces a sequence of segment units that are
subsequently input into the semantic encoder.

VI. CONCLUSION

This study primarily focuses on visual segment modeling for
low-resource video scene classification. The proposed VSM-
based approach is designed to translate each video recording
into a sequence of fundamental, units under the assumption
that the overall visual characteristics of all scene categories
can be represented by a universal inventory of visual units.
The inventory is generated through initial segmentation and
iterative training, followed by an LSA technique to transform
the VSM sequence into a fuzzy semantics-based feature vector.
In addition to the VSM-based approach, we further extend it to
the AVSM-based approach by leveraging the complementary
nature of audio and video modalities. Furthermore, we inte-
grate deep learning-based feature and fuzzy semantics-based
feature to propose an audio-visual-semantic fusion model
architecture. By evaluating our proposed approaches on the
data set of the DCASE 2021 Challenge, we have greatly
improved the performance of audio-visual scene classification,
achieving state-of-the-art results using a single system.

In future work, we intend to explore the use of GPT-
4 [80], a powerful large language model, to generate video
attributes with clear semantics. This auxiliary information can
be combined with the fuzzy semantics-based feature generated
by the proposed VSM-based approach.

VII. ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant No. 62401533, and
in part by the National Natural Science Foundation of China
under Grant No. 62171427.

REFERENCES

[1] C. Landone, J. Harrop, and J. Reiss, “Enabling access to sound archives
through integration, enrichment and retrieval: The EASAIER project,”
in Proc. Int. Soc. Music Inf. Retrieval, 2007, pp. 159–160.

[2] S. Chu, S. Narayanan, C.-C. J. Kuo, and M. J. Mataric, “Where am
I? Scene recognition for mobile robots using audio features,” in Proc.
IEEE Int. Conf. Multimedia Expo., 2006, pp. 885–888.

[3] S. Chu, S. Narayanan, and C.-C. J. Kuo, “Environmental sound recog-
nition with time–frequency audio features,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 17, no. 6, pp. 1142–1158, 2009.

[4] X. Valero and F. Alias, “Gammatone cepstral coefficients: Biologically
inspired features for non-speech audio classification,” IEEE Trans.
Multimedia, vol. 14, no. 6, pp. 1684–1689, 2012.

[5] A. Rakotomamonjy and G. Gasso, “Histogram of gradients of time-
frequency representations for audio scene classification,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 23, no. 1, pp. 142–153, 2014.

[6] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for acoustic
scene classification and sound event detection,” in Proc. IEEE Eur.
Signal Process. Conf., 2016, pp. 1128–1132.

[7] D. A. Reynolds et al., “Gaussian mixture models,” Encyclopedia of
biometrics, vol. 741, no. 659-663, 2009.

[8] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf,
“Support vector machines,” IEEE Intell. Syst. Appl., vol. 13, no. 4, pp.
18–28, 1998.

[9] V. Bisot, R. Serizel, S. Essid, and G. Richard, “Feature learning with
matrix factorization applied to acoustic scene classification,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 25, no. 6, pp. 1216–1229,
2017.

[10] A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange, T. Virtanen,
and M. D. Plumbley, “Detection and classification of acoustic scenes
and events: Outcome of the DCASE 2016 challenge,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 26, no. 2, pp. 379–393, 2017.

[11] Z. Ren, Q. Kong, J. Han, M. D. Plumbley, and B. W. Schuller, “CAA-
Net: Conditional atrous CNNs with attention for explainable device-
robust acoustic scene classification,” IEEE Trans. Multimedia, vol. 23,
pp. 4131–4142, 2020.

[12] H. Hu, C.-H. H. Yang, X. Xia, X. Bai, X. Tang, Y. Wang, S. Niu,
L. Chai, J. Li, H. Zhu et al., “A two-stage approach to device-robust
acoustic scene classification,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2021, pp. 845–849.

[13] L. Xie, F. Lee, L. Liu, K. Kotani, and Q. Chen, “Scene recognition: A
comprehensive survey,” Pattern Recognit., vol. 102, p. 107205, 2020.

[14] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42, pp.
145–175, 2001.

[15] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, pp. 91–110, 2004.

[16] Y. Jiang, J. Yuan, and G. Yu, “Randomized spatial partition for scene
recognition,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 730–743.

[17] Z. Zuo, G. Wang, B. Shuai, L. Zhao, Q. Yang, and X. Jiang, “Learning
discriminative and shareable features for scene classification,” in Proc.
Eur. Conf. Comput. Vis., 2014, pp. 552–568.

[18] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, “When deep learning
meets metric learning: Remote sensing image scene classification via
learning discriminative CNNs,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 5, pp. 2811–2821, 2018.

[19] J. Huang, Z. Liu, and Y. Wang, “Joint scene classification and segmen-
tation based on hidden Markov model,” IEEE Trans. Multimedia, vol. 7,
no. 3, pp. 538–550, 2005.
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