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ABSTRACT
A new hierarchical convolutional neural network-based autoencoder
architecture called SEHAE (Speech Enhancement Hierarchical Au-
toEncoder) is introduced, in which the latent representation is de-
composed into several parts that correspond to different scales. The
model consists of three functionally different components. First, a
stack of encoders generates a set of latent vectors that contain in-
formation from an increasingly larger receptive field. Second, the
decoders construct the clean speech in a stage-wise and additive
fashion, starting from a learned initial vector. The third component,
which we call funnel networks, is tasked with “knitting” together
the outputs of the previous decoder and the encoder to compute la-
tent vectors for the next decoder. Several options for initial vectors
are explored. Experiments show that SEHAE achieves significant
improvements for the considered speech quality and intelligibility
measures, outperforming a denoising autoencoder and other step-
wise models. Furthermore, its internal workings are investigated us-
ing the intermediate results from the decoders.

Index Terms— Speech enhancement, Hierarchical autoencoder,
Convolutional layers, SEHAE

1. INTRODUCTION

In speech enhancement the objective is to increase the speech qual-
ity and intelligibility of utterances corrupted by background noise.
More precisely, one seeks to reduce the strength of the background
noise while preserving the quality of the speech. This has applica-
tions in telecommunications [1] and hearing aids such as cochlear
implants [2–4].

Popular methods from before the advent of the deep learn-
ing paradigm include classical methods such as Wiener filtering [5],
spectral subtraction [6], minimum-mean square error (MMSE) based
spectral amplitude estimator [7], Karhunen-Loéve transformation
(KLT) [8], non-negative matrix factorization (NMF) [9].

The earliest applications of deep learning to speech enhance-
ment made use of feedforward neural networks (FNN), i.e. multi-
layer perceptrons (MLP) [10–12]. These methods worked by ex-
tracting log-power spectra (LPS) features and used a sliding window
to estimate the clean speech frame by frame. One drawback of
this method was that the only information available to the net-
work came from the features from within the window. This was
solved by recurrent neural networks (RNN), which, per construc-
tion, have access to information from all previous frames [13–15].
A third type of network that later gained traction is convolutional
neural networks (CNN) [16]. Compared to FNNs their field of
reception scales better with the size of the model and compared
to RNNs they are easier to parallelize. They commonly have a
cone-shaped autoencoder structure [16–18] in which the input is

brought down to a latent representation by the encoder and is sub-
sequently reconstructed by the decoder, while removing the noise.
Often, residual connections [19] are added between the encoder and
decoder layers to improve the flow of information and gradients.
Historically, CNN-based methods have been known to suffer from
over-smoothing [12, 20, 21]. Several methods have been proposed
to address this, such as (Frequency domain) Speech Enhancement
Generative Adversarial Network, (F)SEGAN for short [22, 23] and
loss function-based methods [24, 25]. The former uses a generative
adversarial network (GAN) to make the output of the autoencoder
more like real speech samples, while the latter focus on enhanced
loss functions to make the network better able to represent the nu-
ances of speech.

In this paper, we introduce a new way to deal with this by means
of a novel hierarchical speech enhancement architecture called
SEHAE (Speech Enhancement Hierarchical AutoEncoder). It is in-
spired by the recent Nouveau Variational Autoencoder (NVAE) [26],
which uses a structure reminiscent of ours: it uses series of encoders
and decoders and starts from an initial vector. However, it is intrin-
sically different as it does not make use of funnel networks and is
made for image generation rather than denoising.

2. ARCHITECTURE

In this paper we introduce a novel speech enhancement architecture
called SEHAE that operates on LPS features in the time-frequency
domain. As its name implies, its defining feature is its multi-stage
hierarchical structure. Instead of a single latent representation, SE-
HAE uses a series of encoders that output latent vectors that at each
step contain increasingly more coarse-grained and global informa-
tion. Because of this decomposition, the network is explicitly adept
to handle the different scale structures that are present in the log-
spectrogram data.

The decoding stage is done by a series of decoders that construct
the clean target speech in an additive fashion, starting from an initial
vector. Each individual decoder outputs a log-spectrogram, which
grants us the ability to gain insight into how the algorithm performs
the different stages of construction. The initial vector is in general a
learnable parameter that functions as a canvas on which the rest of
the reconstruction is added. The length of the vector is equal to the
number of frequency bins. For each sample the vector is tiled in the
time direction to make it the same size as the sample. This can be
roughly interpreted as a frequency-dependent bias term.

Finally, a third type of network, referred to as a funnel network,
is introduced that is tasked with knitting together the encoder and
decoder outputs. There is one for each step in the encoding and de-
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Fig. 1: SEHAE architecture. The components E, F and D denote the encoders, funnels and decoders, respectively. C1 and C2 are the initial
vectors

coding process. At each step, the latent vector of the encoder and the
output of the decoder of the previous step are concatenated and fed
into the funnel network to obtain a new latent representation for the
next decoder. This gets concatenated with the output of the previous
decoder and used as input for the next decoder. The first funnel uses
an initial vector that is in general not equal to the canvas vector of the
first decoder. Fig. 1 shows the SEHAE architecture in more detail.

3. CONVOLUTIONAL LAYERS

Convolutional layers are a type of neural network layer in which
the output is computed by convolving a kernel over the input data.
Generally, the input and the output have a height, width and num-
ber of channels. Consider an input X ∈ RC×H×W , where C, H
and W denote the number of channels, the height and the width, re-
spectively, and a kernel K ∈ RC×C×HK×WK , where the first two
dimensions describe the connection strength between the different
channels and the latter two are the height and width of the kernel,
respectively. Furthermore, a bias term B ∈ RC is added to each
channel:

Yc,l,k = Bc +
∑
j,m,n

Xj,l+m−1,k+n−1Kc,j,m,n. (1)

To prevent the output image from being smaller than the input, the
outer edges of the input are padded with zeros. This is particularly
useful for residual connections.

3.1. Depthwise Convolutions

For depthwise convolutions [27], there are no connections between
different channels:

Ki,j,m,n = 0 ∀ i 6= j. (2)

Hence the number of input and output channels is required to be the
same. This reduces number of parameters considerably and has been
shown to be effective in, for example, [28].

3.2. Squeeze-and-Excite

For squeeze-and-excite layers [29], before adding the input, the in-
termediate result is averaged over the height and width dimensions
of the image. This results in a vector with size equal to the number of
channels. This vector is then fed into two FNN layers, and squeezed
by a sigmoid function to lie in the range [0, 1]. These are weights
ωi, i = 1, . . . , C with which the channels are multiplied. This oper-
ation allows global properties of the picture to be communicated to

the next layers:

ωi = (σ ◦ f2 ◦ ReLU ◦ f1)

(
1

HW

∑
m,n

Xi,m,n

)
, (3)

where the fk(x) ≡Wkx+ bk are fully connected layers with linear
activation function, and σ(x) = 1/(1 + exp(−x)) and ReLU(x) =
max(0, x) are the sigmoid and rectified linear unit (ReLU) func-
tions, respectively.

4. MODEL SPECIFICATIONS

All convolutional layers in our model are preceded by a batch nor-
malization (BN) layer and a Leaky ReLU activation function with
negative slope 0.05. The specific architectures of each of the com-
ponents were optimized by a component-wise greedy grid search.

4.1. Encoders

As previously explained, the stack of encoders generates an increas-
ingly more long-range latent representation. The first encoder per-
ceives a relatively small area and each consecutive encoder increases
the receptive field, i.e. the area the network has access to information
from. This is further increased by the funnel networks. In addition,
at the end a squeeze-and-excite layer is added so as to access global
averaged information. Each encoder consists of three convolutional
layers, the middle one of which is of the depthwise kind. They make
use of (3 × 3) sized kernels. Furthermore, a residual connection is
added to improve information flow. The encoder unit is illustrated in
Fig. 4.

4.2. Funnels

The funnel networks consist of two (3× 3) convolutional layers, as
shown in Fig. 3. Together with the encoders, this results in recep-
tive fields of size (11, 17, 23) ≈ (0.35, 0.55, 0.74) seconds for each
step, respectively.

4.3. Decoders

The decoders have a relatively small receptive field; they consist of
four convolutional layers with kernel sizes (3× 3), (1× 1), (3× 3)
and (1 × 1), respectively. The second one is depthwise. Like the
encoders, they also have a skip connection, see Fig. 2.
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Fig. 2: Decoder unit

Fig. 3: Funnel unit

4.4. Canvas Vectors

In this paper we explore several options for the canvas vectors C1

and C2. The most general case is where they are both independent
learnable parameters: C1 6= C2. Another option is to set them equal:
C1 = C2. Furthermore, we consider the case where they are both
equal to the input: C1 = C2 = X . These constitute the different
versions of SEHAE.

5. EXPERIMENTAL RESULTS

Our models were trained and tested on subsets of WSJ0 [30] for
speech and DEMAND for noise [31], with mutually exclusive speak-
ers and noise types, respectively. The former consisted of 82 speak-
ers for the train set and 9 speakers for the test set. Data was generated
with a 50% overlap, which yielded a 13 hour and 42 minute dataset,
respectively. The noise was divided into a train set consisting of the
Metro, Square, Café, Station, Restaurant, Meeting, Hallway, Park,
Field and Washing noises and a test set containing the River, Cafe-
teria and Traffic noise types. We chose this test set such that the
noise types belonged to different groups, e.g. Restaurant, Café and
Cafeteria are in the same group, namely eating and drinking venues.
Each noise type had a total duration of 5 minutes.

At the start of each epoch noise was shuffled and sampled anew
and combined with the speech to reduce overfitting. The speech-to-
noise ratios (SNRs) we trained and tested at are SNR = -5, 0, 5 dB.
Sampling was done at 16 kHz after which a short-time Fourier trans-
form was applied with step size 256 and frame length 512, resulting
in 32 ms frames with 257 frequency bins, ranging from 0 to 8 kHz.
These were converted to LPS features and were split into time slices
of size 40 ≈ 1.3 seconds.

We used a Radam optimiser [32] and an E2STOI loss func-
tion [33], which is an ESTOI-based loss function [34] that has been
shown to perform better than the mean squared error loss function.
For comparison we employed two objective measures, namely the
Short-Time Objective Intelligibility (STOI) [35] and the Perceptual
Evaluation of Speech Quality (PESQ) [36].

The different versions of SEHAE are compared against a nine-
layer PL-LSTM (Progressive Learning LSTM) [37], another step-
wise architecture, which uses intermediate targets to boost learning
performance. Moreover, to investigate the effect of the hierarchical
nature of SEHAE we have constructed an autoencoder using the
encoders and decoders as described in the previous chapter. This
model uses a sequence of three encoders and three decoders and has
been scaled up to match the parameter count of our SEHAE models,
about 4.5 · 104.

Fig. 4: Encoder unit

The STOI and PESQ results of the different systems across the
three test noise types are listed in the Table 1, Table 2 and Table 3
below. Numbers in bold font indicate the column-wise best results.
In each table the first row refers to the STOI and PESQ values of
the noisy speech, i.e. the input. The second and third row are the
benchmarks PL-LSTM and the autoencoder as described above.
The final three rows correspond to the different versions of SEHAE,
which were described in section 4.4.

It can be seen that SEHAE outperforms the benchmark mod-
els across all noise types and SNR levels for both STOI and PESQ.
Although there are large improvement over PL-LSTM, the differ-
ence between the autoencoder and SEHAE is relatively small but
significant: an improvement of 2.7% STOI and 0.11 PESQ at -5 dB
SNR averaged over the three noise types. Therefore, even though the
improvements provided by the use of the hierarchical structure are
significant, this suggests that a large part of the improvements come
from the units themselves.

Out of all the SEHAE versions, the one in which the initial vec-
tors C1 and C2 have been set equal to the input X yielded the best
results for all STOI tasks and for all but one PESQ tasks for the
River and Traffic noise types. This can perhaps be explained by the
fact that the input contains more information compared to the smaller
and static vector, and is closer to the clean speech target.

For the Cafeteria noise the versions with learnable initial vec-
tor take the crown, albeit by a small margin. Comparing the two
versions C1 6= C2 with C1 = C2, we see that the former yields su-
perior results on seven out of nine STOI and PESQ tasks. This might
be simply due to the fact that having two vectors instead of one gives
the model more degrees of freedom.

However, the results of all three were relatively close to each
other: The STOI values and PESQ values of the different SEHAE
types are within 0.4% and 0.02 of each other, respectively. In the
future more experiments with more types of noise could give insight
into what causes this difference.

Table 1: River noise; STOI(%) and PESQ comparison

SNR = -5 SNR = 0 SNR = 5
STOI PESQ STOI PESQ STOI PESQ

Noisy 63.4 1.59 78.4 1.91 88.4 2.26
PL-LSTM 68.3 1.71 81.9 2.05 90.2 2.41
Autoencoder 73.1 2.05 84.7 2.44 91.9 2.76
C1 6= C2 76.6 2.17 87.5 2.54 93.6 2.84
C1 = C2 76.9 2.10 87.3 2.49 93.3 2.82
C1 = C2 = X 77.5 2.22 87.9 2.59 93.7 2.86
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Table 2: Traffic noise; STOI(%) and PESQ comparison

SNR = -5 SNR = 0 SNR = 5
STOI PESQ STOI PESQ STOI PESQ

Noisy 71.6 1.77 84.0 2.15 92.0 2.54
PL-LSTM 78.0 1.97 88.0 2.37 93.9 2.76
Autoencoder 81.4 2.38 90.3 2.71 95.1 2.99
C1 6= C2 84.4 2.47 91.9 2.77 96.0 3.07
C1 = C2 84.0 2.42 91.7 2.75 95.9 3.05
C1 = C2 = X 84.8 2.48 92.0 2.78 96.0 3.05

Table 3: Cafeteria noise; STOI(%) and PESQ comparison

SNR = -5 SNR = 0 SNR = 5
STOI PESQ STOI PESQ STOI PESQ

Noisy 50.4 1.54 68.7 1.88 82.9 2.22
PL-LSTM 54.7 1.66 73.1 2.03 85.8 2.39
Autoencoder 57.2 1.69 75.1 2.11 86.8 2.49
C1 6= C2 57.7 1.76 75.4 2.14 87.3 2.50
C1 = C2 57.2 1.75 75.1 2.14 87.5 2.52
C1 = C2 = X 57.5 1.74 75.2 2.13 87.4 2.50

Furthermore, we note that the best performing SEHAE model
achieves greater improvements over the noisy speech on the River
and Traffic noises than on the Cafeteria noise: an average of 9.3%
STOI and 0.64 PESQ, and 8.4% STOI and 0.62 PESQ for River and
Traffic noise, respectively, compared to 6.0% STOI and 0.24 PESQ
for Cafeteria noise. Based on the examination of several samples, we
hypothesize that this is due to the fact that Cafeteria noise contains
other speech, making it harder for the model to differentiate between
noise and target speech.

Finally, we show in Fig. 5 an utterance from the test set cor-
rupted by Traffic noise at SNR = 5 dB, as well as the intermediate
and final predictions from the decoders of the C1 6= C2 SEHAE
model. At each step the prediction becomes more refined and both
STOI and PESQ increase.

6. CONCLUSION AND DISCUSSION

In this paper, we have proposed a novel speech enhancement archi-
tecture called SEHAE, consisting of encoder, funnel and decoder
units. These were combined to form a hierarchical model, which
was characterized by a scale-decomposed latent structure and the
additive construction of the output starting from a canvas vector.

The experimental results demonstrated the efficacy of SEHAE
as it yielded significant STOI and PESQ improvements over the PL-
LSTM benchmark model for all noise types and at all SNRs.

We expect that SEHAE can be improved upon. For instance, the
hierarchical structure and intermediate predictions provide an oppor-
tunity for the application of progressive learning methods.
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(a) Noisy (STOI = 75.9%, PESQ = 1.90)

(b) First prediction (STOI = 54.4%, PESQ = 0.80)

(c) Second prediction (STOI = 81.2%, PESQ = 2.15)

(d) Final prediction (STOI = 84.9%, PESQ = 2.48)

(e) Clean

Fig. 5: Spectrograms of an utterance corrupted by Traffic noise at
-5 dB SNR: (a) Noisy speech, (b) Decoder 1, (c) Decoder 2, (d)
Decoder 3, (e) Clean speech
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