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A Tree-Structure Analysis Network on Handwritten
Chinese Character Error Correction
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Abstract—Existing researches on handwritten Chinese
characters are mainly based on recognition network designed to
solve the complex structure and numerous amount characteristics
of Chinese characters. In this paper, we investigate Chinese
characters from the perspective of error correction, which is
to diagnose a handwritten character to be right or wrong and
provide a feedback on error analysis. For this handwritten
Chinese character error correction task, we define a benchmark
by unifying both the evaluation metrics and data splits for the
first time. Then we design a diagnosis system that includes
decomposition, judgement and correction stages. Specifically, a
novel tree-structure analysis network (TAN) is proposed to model
a Chinese character as a tree layout, which mainly consists of a
CNN-based encoder and a tree-structure based decoder. Using
the predicted tree layout for judgement, correction operation is
performed for the wrongly written characters to do error analysis.
The correction stage is composed of three steps: fetch the ideal
character, correct the errors and locate the errors. Additionally,
we propose a novel bucketing mining strategy to apply triplet
loss at radical level to alleviate feature dispersion. Experiments
on handwritten character dataset demonstrate that our proposed
TAN shows great superiority on all three metrics comparing with
other state-of-the-art recognition models. Through quantitative
analysis, TAN is proved to capture more accurate spatial position
information than regular encoder-decoder models, showing better
generalization ability.

Index Terms—Handwritten Chinese character error correction,
CNN, tree-structure analysis network, triplet loss, quantitative
analysis.

I. INTRODUCTION

L EARNING Chinese characters is a difficult task for chil-
dren, due to the huge variety of existing Chinese characters

and the complex internal structure of them. Thus mistakes are
easy to make when elementary school students learn to write.
In response to this scenario, the task of handwritten Chinese
character error correction (HCCEC) came into being. We define
the wrongly written characters as misspelled characters and the
rightly written ones as right characters. The goal of HCCEC
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is twofold: to assess the correctness of the handwritten charac-
ters and to correct the misspelled ones, which we call Assess-
ment and Correction for short. The Assessment subtask means
to determine whether a given handwritten isolated character is
correctly written. The Correction subtask means to locate the
specific errors in character and correct them, which requires so-
phisticated analysis ability of models.

The misspelled characters are quite similar to the right ones,
only differing in some details. Since the misspelled characters
can be various and countless, we roughly summarize the charac-
ter errors into three categories: stroke-level error, radical-level
error and structure disorder. Stroke-level error means addition,
deletion or misuse of one stroke; radical-level error means ad-
dition, deletion or misuse of some radicals; structure disorder
means correct radicals composed in the wrong structural order.
As shown in Fig. 1, we list a few examples of three kinds of
misspelled characters. Considering the errors can occur in rad-
ical or structure, the diagnosis model needs to have the ability
of modeling the internal primitives of Chinese characters, not
treating the character as a whole.

Unlike the commonly used characters, the misspelled char-
acters samples are extremely rare and the categories are unpre-
dictable and countless. We assume the samples in training set
to be right characters and expect the transfer learning ability of
model to handle unseen misspelled characters. Moreover, the
characters to be diagnosed can be correct-spelled or misspelled,
so the task of HCCEC can be attributed to a generalized zero-shot
learning problem (GZSL). GZSL is an extension of zero-shot
learning, extending the test set labels to both seen and unseen
classes, which makes it more challenging and realistic [1].

Compared with the handwritten Chinese character recogni-
tion (HCCR) task [2][3], the challenges of HCCEC are mainly
reflected in the following three aspects: 1. The test set simulta-
neously contains seen and unseen classes, which sets a higher
demand on the generalization ability of models. 2. The mis-
spelled characters could be quite similar to the right ones and
the training set only contains the right characters, which can
cause strong bias [4] problem i.e., instances of misspelled char-
acters (unseen classes) are more likely to be misclassified as one
of the seen classes. 3. Other than assessing the correctness, the
HCCEC task has a follow-up subtask, that is to correct errors,
which has never been discussed in HCCR.

In this paper, we present a diagnosis system to solve the HC-
CEC task, which is composed of decomposition, judgement
and correction stages. Given an image of Chinese character,
the decomposition stage produces its radical expression. With
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Fig. 1. Examples of three misspelled error types. The right one of each pair is
the misspelled character and the left one is the corresponding right character.

the decomposition result, the correctness of character can be
judged. For the misspelled chars, the following correction stage
can provide detailed feedback on error locations and guidance
on how to rectify the errors. Specifically, we propose a novel
tree-structure analysis network (TAN) to decompose a character
into radical-tree layout. The proposed TAN mainly consists of
a CNN-based encoder and a tree-structure based decoder (TD),
which can reduce the high dependence on contextual informa-
tion of string decoder and alleviates the bias problem to a certain
extent, showing better model generalization on misspelled char-
acters. For more discriminative radical feature representation,
we adopt bucketing triplet mining strategy and successfully ap-
ply triplet loss to Chinese character task in radical level. More-
over, probability-based decoding is employed, which is more
flexible.

Considering the lack of literatures dedicated to HCCEC task,
we also design three metrics to thoroughly measure model per-
formance, i.e.F1-score, accuracy and correction rate. Observing
that there is no publicly dataset available for HCCEC task, we
collect a large dataset that contains 401,400 handwritten sam-
ples for 5,500 common characters and 570 misspelled characters
and annotate their character-level and radical-level labels. Since
that we hope the diagnosis system can generate a feedback for
error locations and corrections, the radical-level labels can be
helpful.

The main contributions of this study are as follows:
1. We propose an integrated diagnosis system specifically for

HCCEC task, which mainly consists of decomposition,
judgement and correction stages.

2. We present a novel tree-structure analysis network for the
task to alleviate the high dependance on contextual infor-
mation and prove TAN captures better spatial information
through quantitative analysis.

3. We propose a new bucketing mining strategy to apply
triplet loss on radical for more discriminative feature. Ad-
ditionally a new probability decoding method is also intro-
duced to combine the strength of sequence decoding and
metric learning.

4. We successfully apply several radical-based recognition
models in this error correction task with designed post-
processing. Experiment results show that our proposed
system achieves the best performance on three metrics
with an extra ability of correcting errors.

5. The source codes of our proposed TAN are available at
https://github.com/yqingli123/TAN.

II. RELATED WORKS

The application requirement for HCCEC task has existed for a
long time, but it has not attracted enough attention of academia,
and we have not yet found any targeted model. So in this sec-
tion, we describe the closely-related topics, including handwrit-
ten Chinese character recognition, Chinese grammatical error
correction and generalized zero-shot learning.

A. Handwritten Chinese Character Recognition

Handwritten Chinese character recognition has received in-
tensive attention since 1980s [5] considering the great diversity
of handwriting styles and large number of character classes.
Early works based on traditional methods mainly involves three
procedures: pre-processing [6]–[9], feature extracting [10] and
classifying [11], [12]. With the development of deep learn-
ing, mainly researches based on neural networks can be di-
vided into character-based models and radical-based models.
Character-based models treat recognition task as a classifica-
tion problem. Ciresan [13], [14] proposed Multi-column deep
neural networks, which was the first successful application of
CNN on offline HCCR. Later, [15] proposed to combine tradi-
tional feature and GoogleNet [16] and achieved high accuracy
that exceeded human performance. Since then, researches on
character-based modeling have turned to other ideas, such as
writer adaptation [17] and low computational cost [18], [19].
Different from character-based models, radical-based models
treat a character into a combination of radicals. [20] first sepa-
rated radicals in a recursive hierarchical scheme and proposed
hierarchical radical matching to identify character. [21] detected
position-dependent radicals with deep residual network. Since
the proposal of encoder-decoder based models, there have been
many applications, such as machine translation [22], mathemat-
ical expression recognition [23], [24], image captioning [25],
[26], etc. At that time, Zhang et al. [27] proposed encoder-
decoder based model RAN to decompose a Chinese character
into a sequence of radicals and structures, which also achieved
great success in HCCR [2]. This radical-level modeling methods
have the ability of zero-shot learning, which is necessary to HC-
CEC task. FewshotRAN [28] further combined deep prototype
learning for more robust feature extraction, but needed support
samples of test set. Otherwise, RCN [29] treated a character
as a vector of radical probability and radical numbers. Recently
Cao et al. [3] proposed a hierarchical decomposition embedding
method to represent a Chinese character with a semantic vector.

B. Chinese Grammatical Error Correction

Chinese grammatical error correction (CGEC) is an impor-
tant task in natural language processing (NLP), aiming to detect
and correct grammatical errors in Chinese texts. The errors dis-
cussed in CGEC task are ‘real-word’ error [30] appearing in texts
or arrays, not ‘non-word’ error in handwritten splitted charac-
ters. Traditional works were mainly based on statistical language
models and rules [31], [32] due to the lack of corpus. Since
Yu et al. [33] organized a shared task on Chinese Grammatical
Error Diagnosis (CGED), methods based on machine learning
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have received more attention. They mainly categorized the er-
rors into four types, including redundant words, missing words,
bad word selection, disordered words. Huang and Wang [34]
treated CGEC task as a sequence labeling problem and proposed
a Bi-LSTM based model. For different errors, they simultane-
ously trained three Bi-LSTM models sharing word embeddings
to solve them. Li et al. [35] proposed a two-stage hybrid system
to not only detect but also correct the errors. The system included
a BiLSTM-CRF model of detection and three grammatical er-
ror correction models to generate correction. Ren et al. [36]
treated CGEC as a translation task that translated from “bad”
Chinese texts to “good” texts by presenting a convolutional
sequence-to-sequence model with attention mechanism. Re-
cently, Liang et al. [37] applied BERT-fused Neural Machine
Translation model on CGEC and achieved great performance.

C. Zsl and Gzsl

Zero-shot learning aims to recognize objects whose instances
may not have been seen during training, thus tackles challenging
problems: tedious human annotations and unseen testing cate-
gories. A strong restriction that the test samples only come from
unseen classes makes ZSL task be criticized [1], [4], since the
test set is unlimited in the realistic scenario. Comparing with
ZSL, GZSL demonstrates to be more practical by including
training classes in the search space [1]. GZSL aims at recog-
nizing both seen and unseen classes, which is greatly consistent
with our HCCEC task. Accordingly, Xian et al. [1] proposed a
unified benchmark, including dataset splits and evaluation pro-
tocol, to provide a scientific standard for this area. The key to
GZSL is to establish relations between seen and unseen classes
through auxiliary information, such as attributes [38], word em-
beddings [39]. [40] proposed to learn latent representations for
images and classes and convert sparse labels to continuous la-
bel embeddings. [41] proposed a co-representation network to
learn a more uniform visual embedding space. Another research
line is to solve the problem of training data imbalance by gen-
erating feature of unseen class. [42] proposed f-CLSWGAN to
generate unseen feature conditioned on class-level semantic in-
formation. [43] utilizes meta-representation of each class for
more authentic synthesized feature.

Considering the difference between HCCEC and HCCR
task, radical-based recognition models can be transferred to
this error correction task with post-processing but perform
poorly (discussed in Section V). Encoder-decoder based model
RAN has high dependance problem on contextual information,
which causes severe bias on training classes. Metrics-based
models [3] [29] directly encode an image of character into elab-
orate embedding and the intermediate steps of model lack in-
terpretability, which cannot provide detailed information for
correction stage. Inspired by the proposal of tree-structured
decoder [24] in handwritten mathematical expression recogni-
tion, we model the Chinese character into radical-tree layout and
combine the characteristics of characters to simplify the tree de-
coder. Our proposed TAN also combines the strength of encoder-
decoder based models and metrics-based models, which has
impressive performance and good model interpretability.

III. SYSTEM DESCRIPTION

Here in this section, we propose a novel diagnosis system,
which consists of three stages: decomposition, judgement and
correction. The illustration of proposed system is shown in
Fig. 2. In the decomposition stage, given a picture of a Chi-
nese character (can be right or misspelled), the model generates
a predicted tree layout. Through judgement, the decomposed
tree will be sent to correction module if it is misspelled. Then
a feedback of error location and candidate corrections will be
produced.

A. Motivation

It is well-known that the primitives of characters include
stroke, radical and structure. One or a few strokes can com-
pose of a radical. One or a few radicals and structures listed
in a certain order can compose of a character. As discussed in
Section I, the character errors can be divided into three types.
And the addition or deletion of strokes can be transformed into
difference between similar radicals. Therefore, we model Chi-
nese characters at radical level and utilize the shared radicals
to transfer learning from right characters (seen classes) to mis-
spelled characters (unseen classes).

Unlike English or Arabic characters, Chinese characters have
intern structures. There are ten ways to decompose characters,
leading to 10 structures [44]. In Fig. 3(a), the 10 structures
are listed: (1) above-below, (2) top-left-surround, (3) left-right,
(4) top-right-surround, (5) bottom-surround, (6) bottom-left-
surround, (7) top-surround, (8) full surround, (9) left-surround,
(10) overlaid. Thanks to these structures, all Chinese characters
can be hierarchically decomposed to corresponding tree layout
composed of radicals and structures [3][44]. As examples shown
in Fig. 3(b), following the principle of decomposition from the
whole to the part, character ‘tiao’ firstly belongs to a left-right
structure. We set the structure as parent node and the left and
right parts as two child nodes. Then the two substructures can be
recursively decomposed until the child node is an indecompos-
able radical. As a result, each Chinese character can be decom-
posed into hierarchical tree layout composing of radicals and
structures.

Through observation, we conclude three laws of the tree lay-
outs:

1. All tree layouts are binary tree so that the relations between
each parent-child pair are only left and right. That can
greatly simplify the decoding process since the relations
can be determined without special modeling.

2. All the parent nodes are structures and all leaf nodes are
radicals. This rule makes it easy to determine when cur-
rent branch ends during decoding. If current node belongs
to structures, it has more child nodes and this tree branch
needs following decoding. If current node belongs to radi-
cals, it is the leaf node of tree, indicating the end of current
branch.

3. The parent node can express the spatial relationship of its
child nodes. For example, if the parent node is up-down
structure, its two child nodes are spatially located above
and below in the character. This gives us the inspiration to
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Fig. 2. The flow chart of our proposed diagnosis system, which contains three parts: decomposition, judgement and correction.

Fig. 3. (a) Graphical representation of ten radical structures. (b) Hierarchical
tree layout of Chinese character ‘tiao’. (c) The generated tree-structure label of
character ‘tiao’.

add spatial location guidance for attention of each parent-
child pair.

Inspired by the above three laws, we innovatively pro-
pose to model each character into an exclusive tree layout
directly, unlike [27], which serialized the tree structure into
one-dimensional sequence. We fully exploit the location infor-
mation that structures can provide and model Chinese characters
from the perspective of two-dimensional structure, which have
been ignored in previous studies [27]–[29].

B. Decomposition Model

Given an image of handwritten Chinese character, our pro-
posed TAN decomposes the char into a tree layout. TAN mainly
consists of a CNN-based encoder for feature extraction and a
tree-structure decoder for character modeling. A guidance on

spatial relation between parent and child nodes is proposed for
better attention. Additionally, we propose bucketing triplet min-
ing strategy to apply triplet loss on radical for more distinctive
feature. Probability-based decoding is proposed which is more
flexible than match decoding.

1) Tree-Structure Label: Each character can be represented
into radical-tree layout like Fig. 3(b). Following the depth-first
traversing order, the tree structure can be disassembled into
an ordered sequence of parent-child node pairs, consisting of
two nodes with their edge. As shown in Fig. 3(c), we list the
transformed tree-structure label of character ‘tiao’. The aux-
iliary symbol ‘root’ and relation ‘start’ are added for unified
expression. The relation is the relative position of parent-child
pair in the tree. Left-child node corresponds to relation ‘left’
and right-child node corresponds to relation ‘right’. Each rad-
ical/structure in the radical-tree layout is treated as child node
once and can be decoded at one step. From the tree-structure
label table in Fig. 3(c), we can see all parent nodes except auxil-
iary symbol ‘root’ are structures, which are consistent with the
law 2.

Hence the object of tree-structure decoder is converted to pro-
duce the ordered sequence of parent-child pairs. Among each
pair, there are three elements needed to produce: parent, child,
relation. Thanks to the first two laws, we can neatly model the
tree-structure decoder into node prediction module and a stack.
The stack is novelly utilized to store the decoded nodes and pop
the accurate parent node with the help of the stack operation at
each step. In parent-child pair, once the parent node is given,
the relation can be easily surmised through law 1. So there is no
need to model the relations specifically. In each time step, given
the parent node and corresponding relation, we design a node
prediction module for child node decoding.

2) CNN Encoder: Given an image I of character (right
or misspelled), we first use a CNN-based encoder composed
of densely connected convolutional layers in DenseNet [45]
to extract high-level visual feature. We introduce the three-
dimensional feature obtained from encoder as B, whose size is
H ×W ×D, whereH denotes the height,W denotes the width,
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Fig. 4. The illustration of node prediction module.

D denotes the channels. The feature map B contains visual in-
formation of input, which contributes to latter decoding. Mor-
ever, three-dimensional featureB can be flatten into the variable
length of grid with size of L×D, in which L = H ×W .

B = CNN(I) (1)

B = {b1, b2, . . .bL}, bi ∈ RD (2)

3) Node Prediction Module: As discussed in Section III-B1,
suppose we now have current parent node op

t and relation ore
t ,

current child node is decoded by node prediction module. As
shown in Fig. 4, the module mainly consists of a gated recurrent
unit (GRU) [46] of two layers, attention module and a classifier.
Through two embedding layers, high dimensional vectors of
parent node oP

t and the relation ore
t are represented as vp

t and vre
t .

The concat of vp
t and vre

t works as the contextual information
vt. Dm denotes the dimension of embedding.

vp
t = Embp(o

p
t),v

p
t ∈ RDm (3)

vre
t = Embre(o

re
t ),v

p
t ∈ RDm (4)

vt = Concat(vp
t ,v

re
t ) (5)

Through the first GRU layer, we compute the current query
vector qt from the previous hidden state st−1 and current con-
textual information vt. Let Dn denotes the dimension of GRU
decoder.

qt = GRU1(st−1,vt) (6)

Then we employ the coverage-based attention mechanism fatt

[27], in which the visual feature B as the key and value and qt

as the query, to locate the related region of current step.

cc
t = fatt(qt,B) (7)

Specifically, in addition to visual feature B and query vec-
tor vt, the summation of former attention probabilities are also
taken into consideration. The coverage vector F is employed to
avoid problems with over-parsing (some radicals are decoded

more than once) and under-parsing (some radicals are never de-
coded) [27].

F = Q ∗
t−1∑
l=1

αl (8)

eti = V �tanh(W attqt +U attbi +U ff i) (9)

αti =
exp(eti)∑
k exp(etk)

(10)

LetDa denotes the attention dimension, Df denotes the number
of feature maps of filter Q. Then V ∈ RDa , W att ∈ RDa×Dn ,
U att ∈ RDa×D, U f ∈ RDa×Df .

Thus we can obtain the attention coefficients αti, which de-
notes the attention score of feature vector bi at step t. Then cur-
rent context vector cc

t is computed by the weighted summation
of all feature vectors.

cc
t =

L∑
i=1

αtibi (11)

With the context vector cc
t and query vector qt, we can com-

pute the current hidden state st:

st = GRU2(qt, c
c
t) (12)

Finally, a classifier is utilized for node prediction :

gt = W ev
p
t +W sst +W cc

c
t (13)

pt = softmax(W out(maxout(gt))) (14)

Let Dr and M denotes the dimension of radical representa-
tion and the size of radical dictionary. Then W e ∈ RDr×Dm ,
W s ∈ RDr×Dn , W c ∈ RDr×D, W out ∈ RM×Dr . gt denotes
the feature vector of t-th node ot, which contains the most rep-
resentive information of current radical.pt denotes the predicted
probability distribution of step t.

Suppose the one-hot label of t-th step is yt, the child node
classification loss is computed as :

Lc = −
∑
t

logpt yt (15)

4) Spatial Relation Guidance: As the third law discussed in
Section III-A, the parent nodes are all structures and express
the spatial relationship between parent and child nodes. For ex-
ample, the parent node is an above-below structure, meaning
that its left child node is above it in space, and its right child
node is below it. Considering this rule, we propose a spatial re-
lation guidance on parent-child node pair. As the context vector
ct contains both the contextual information and spatial infor-
mation, we utilize them to predict the spatial relation between
parent and child nodes.

pre
t = softmax(W re[c

c
t, c

p
t ]) (16)

Let Mre denotes the size of spatial relation dictionary, then
W re ∈ RMre×2D. cp

t denotes the context vector of parent node.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 26,2024 at 14:00:48 UTC from IEEE Xplore.  Restrictions apply. 



3620 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

Given the ground-truth spatial relationsysre
t , the guidance loss

can be computed as:

Lg = −
∑
t

logpre
t ysre

t (17)

5) Radical Triplet Loss: During decoding, the feature vector
gt of radical r is calculated in Eq.(13). Ideally, the distance be-
tween features of the same radical should be smaller than those
of different radicals. However, influenced by writing styles and
radical positions (detailed discussed in Section VI-A), the fea-
ture space is relatively chaotic. So in this section, we introduce
triple loss on Chinese characters at the radical level for the first
time. We impose constraints on the feature vector to make the
intra-class distance closer than the inter-class distance. The tar-
get is as follows:

||Ex − Ep||+m < ||Ex − En|| (18)

(x, p, n) masks a triplet. Ex is the anchor feature of one rad-
ical. Ep is the positive feature from the same radical and En is
the negative feature from other radical. m denotes a margin that
increases the intra-class distance.

We apply online mining method [47] to generate triplets in
each mini-batch N . Considering each Chinese character c is
composed of several radicals (r1, r2, . . ., rn), it is a problem to
ensure each radical sample rki (i ∈ [1, N ]) has at least one posi-
tive and one negative sample. Moreover, the inter-class distance
is caused by both radical positions and writing styles. Accord-
ingly we propose a novel bucketing mining strategy.

We first pack all Chinese characters containing a certain rad-
ical r into a bucket and there will be M radical buckets (M de-
notes the size of radical dictionary). Note that one character can
appear in several buckets at the same time. In each mini-batch,
we randomly select P characters in a random bucket, then ran-
domly select K samples of each character. In this way, we can
ensure the same radical from different characters and different
writers can be both considered. There will beK

∑P
i=1 Ri radical

samples in each batch. Ri denotes the radical number of the i-th
character. Hence, for each radical sample, there will always be at
least PK positive samples and at most K

∑P
i=1 Ri − PK neg-

ative ones. We use batch-hard [48] method, choosing the hardest
positive sample and the hardest negative one to compose a triplet
for each radical sample. The triplet loss is calculated as :

Lt =

K
∑P

j=1 Rj∑
i=1

[
max

p
D(Ei, Ep) +m−min

n
D(Ei, En)

]
(19)

where D(x, y) = (x− y)2, which denotes the Euclidean dis-
tance between x and y.

6) Probability-Based Decoding: Instead of matching the
output sequence/tree with character-radical lexicon, we propose
a probability-based decoding method since matching decoding
requires strict consistence between prediction and groundtruth.
Our proposed probability-based decoding method is based on
metric learning and relaxes the requirements.

Through node prediction module, we can get the predicted
child node sequence (o1, o2, . . ., oT ) and the corresponding

probabilities (p1,p2, . . .,pT ). Since pi represents the probabil-
ity distribution of all radicals at current i-th step, together with
the depth information of current node, we perform a weighted
summation on T probability vectors, yielding the probability
embedding w of predicted character.

w =

T∑
i=1

pi ∗ αdi (20)

where α denotes the weight decay with the increase of depth.
We restrict α < 1.0 since as the depth gets larger, the influence
on the whole character gets smaller. di denotes the depth of i-th
node.

Similarly, we can preprocess labels of all characters into em-
beddings W gt once given the radical-level label. We can adopt
one-hot embedding yoh for each radical. Thus the label embed-
ding of character c can be computed as follows:

wgt
c =

T∑
i=1

yoh
i ∗ αdi (21)

Through calculating the Euclidean distance between the pre-
dicted w and all label embeddings W gt, we choose the one with
the minimum distance as the predicted character cp.

d(w,wgt
c ) = (w −wgt

c )
2 (22)

cp = argmin
c∈C

d(w,wgt
c ) (23)

where C denotes the set of all possible characters (including all
right characters and misspelled characters).

C. Correction

HCCEC task is not only to assess whether the character is
written correctly, but also to correct the errors. Next we introduce
the error correction process of system, which mainly includes
three steps.

Step I. Fetch the ideal char. After character decomposition,
we need to figure out the candidate ideal characters first, i.e.
which character the user intended to write. Considering that
the characters are written without context, we select the top-5
characters as candidate ideal set. Given the output probability
embedding w and the embeddings of all right characters set
W gt

r = {wgt
1, . . .,w

gt
n}, we can calculate the Euclidean dis-

tanced among them using (22). Then the ideal chars are specified
as the ones with 5 shortest distances.

Step II. Correct the errors. With the candidate ideal chars as
reference, we can correct the misspelled char into the right one
through edit distance computing. Specifically, the radical tree
layout can be first serialized into a radical sequence by travers-
ing in a depth-first order, as shown in Fig. 5. Then edit distance
algorithm [49] is employed to transform the predicted sequence
into ideal one with the shortest edit times. The computed edit
operations can guide us to correct the errors. For example, as
shown in Fig. 5, by deleting the two selected radicals, the pre-
dicted sequence can be corrected into right one.
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Fig. 5. (a) Illustration of correction operation. Left part in blue denotes pre-
dicted layout of misspelled char ‘E03 A’. Right part in yellow denotes ideal
layout of right char ‘xiang’. (b) The illustration of error location.

Step III. Locate the errors. For writers, the errors can be diffi-
cult to detect since they have written wrongly. Thus the approx-
imate location of error will be helpful. Thanks to the attention
mechaism, our proposed TAN can roughly locate each radical
during decoding. Combining the error radicals generated in Step
II, we can locate the errors through attention visualization. For
example, as shown in Fig. 5, with the correction operation of
deleting the two radicals in Step II, we merge the attention map
of these two steps as the error location.

IV. TASK SETTING

There are two sets of character classes: right char-
acters and misspelled characters. Let (I1, a1, y1, y

c
1, L1)

, . . ., (IN , aN , yN , yc
N , LN ) be N samples. Ii denotes the i-th

image. ai denotes the i-th assessment label, which is 0 or 1,
0 means misspelled character, 1 means right character. yi de-
notes the i-th character-level label of its exact category and
Li corresponds to its radical-level label. yc

i denotes the i-th
character-level correction label.

A. Dataset

Our dataset consists of 5,500 common characters and 570
misspelled characters, which are commonly written in primary
schools. The annotations are all manually marked, including
the correctness, character-level label and radical-level label.
For misspelled characters, we also annotate their correspond-
ing ideal characters. Among the 570 misspelled characters,
there are 234 stroke-level errors, 320 radical-level errors and
16 structure-disorder errors according to the division method
described in Section I.

Zero-shot learning assumes disjoint training and test classes.
For better model performance without breaking the assumption,
a separate validation set is prepared for tuning parameters. Fol-
lowing the dataset splits method in [1], we divide right characters
into two disjoint parts: training classes and validation classes.

TABLE I
STATISTICS OF HANDWRITING DATASET IN TERM OF NUMBER OF CLASSES IN

TRAINING, VALIDATION AND TEST AND NUMBER OF IMAGES IN THREE PHASES

Each character in training set is written by 50 writers, making
up 250,000 training samples. And each character in validation
set is written by 200 writers, making up 100,000 validation sam-
ples. Since this is a GZSL problem, the testing set consists of
right characters and misspelled characters. The 2,000 characters
of right testing set are randomly selected from training classes.
Each character in testing set is written by 20 writers, consisting
of 40,000 right samples and 11,400 misspelled samples. The spe-
cific division is shown in Table I. In summary, there are 401.4 k
samples made up of 6,070 characters.

B. Evaluation Metrics

Appropriate evaluation metrics can thoroughly and fairly re-
flect the performance of models. Next we introduce three metrics
to evaluate the quality of models on two subtasks of HCCEC.
The first one isF1-score, a measure of prejudgement ability. The
second one is accuracy, a fine measure of classification ability.
The last one is correction rate, aiming to measure the error cor-
rection ability of models.
F1 -score: In the assessment subtask, a given character needs

prejudgement of correctness, right character or misspelled char-
acter. The prejudgement result can affect the following opera-
tion: misspelled character needs to be corrected but right char-
acter needs not. To measure the performance of prejudgement,
we calculate the precision and recall of the two classes to get
F1-score respectively.

F1 =
2 ∗ precision ∗ recall
precision+ recall

(24)

Accuracy: The metric F1-score can reflect the prejudgement
ability of model, but it is not refined. There are a large number of
existing Chinese characters and misspelled characters are even
countless. The classification ability of character category is of
great significance. Additionally, the prediction of specific cate-
gory for given character is also indispensable in the follow-up
correction subtask. Therefore, we set the metric accuracy of right
characters and misspelled characters to measure the classifica-
tion performance of models.

Correction rate: After assessing stage, misspelled characters
need correction operation. A measure of correction rate can in-
tuitively reflect the the correction ability of model. To correct
the error, models need to both correctly predict the character
category and infer the ideal character (which character the user
intends to write). Suppose there are totally N samples in test
set of misspelled character. Nc denotes the samples which are
correctly classified. Ni denotes the samples whose ideal char-
acter is correctly predicted. Then the correction rate CR can be
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computed as:

CR =
Nc ∩Nr

N
(25)

The metric of correction rate puts forward higher require-
ments on the models: not only need to classify a given character,
but also need to infer the ideal character based on the model
output.

V. EXPERIMENT SETTING

A. Training

For training, our proposed model is optimized by three losses:
child node classification loss Lc, relation guidance loss Lg and
radical triplet loss Lt. The overall loss is shown as follows:

L = λ1Lc + λ2Lg + λ3Lt (26)

In experiment, we set λ1 = 1, λ2 = 0.5, λ3 = 0.1.
To make a fair comparison, we uniformly use DenseNet as

encoder in the following models. DenseNet mainly consists of
three dense blocks and two transition layers. Each dense block
contains 22 bottlenecks. There is a 1× 1 convolution layer and a
3× 3 convolution layer in the bottleneck, which are all followed
by BatchNorm layer and Relu activation layer consecutively. To
avoid overfitting, we add dropout layer with the rate of 0.2 in
each bottleneck. The growth rate of each bottleneck is set to 24.
Then between each two blocks, a transition module is set to re-
duce the channels of feature map, with the reduction of 0.5. For
transition layer, we use 1× 1 convolution followed by 2× 2 av-
erage pooling. Before the first dense block, a 7× 7 convolution
layer with stride of 2 is performed. In decoder, the node pre-
diction module consists of two-layer unidirectional GRUs and
an attention module. Each GRU layer has 256 units. The em-
bedding dimensions for parent node and relation are all set to
256. The attention vector dim is 512. All images are resized to
64× 64. The sizes M and Mre of radical dictionary and spatial
relation dictionary we used are respectively 413 and 22.

During training, we utilize Adadelta optimizer to train the
proposed model. The learning rate is set to 1.5 and the weight-
decay is 1e-4. The experiments are all conducted on two Nvidia
Telsa V100 GPUs.

B. Inference

In inference, we novelly employ a stack to record the decoded
tuple (op

t , o
re
t ) and pop them at the right time for simplifying

the decoding process. In one step, the decoded node guides the
pushing operation. In the next step, accurate parent and relation
information are popped for child node decoding. As illustrated
in Fig. 6, we show the detailed decoding process of an example
character ‘yuan’. In the first step, given the parent node ‘<s>’
and relation ‘start,’ TAN decodes current node ‘up-down,’ which
belongs to 10 predefined structures. Thus two tuples with ‘up-
down’ as parent node are needed to push in stack. In the second
step, we pop the tuple at the top of stack to decode current node
‘left-right’. In the same way, two tuples with ‘left-right’ as parent
node are pushed in stack. We can repeat the operation utill the
stack is empty. During decoding, the radical tree can also be
built.

Fig. 6. The inference process of decoding character ‘yuan,’ along with the
change of stack and the process of building radical tree.

Given an input image x and the candidate label Y , with the
decoding of tree layout, the probability vector of each step can
be generated. Following Eqs (22) and (23), we can compute
the distance between predicted probability embedding and all
possible label embeddings, classifying the input into the one
with the closest distance.

VI. EXPERIMENTS

Following the data splits as introduced in Section IV, we con-
duct experiments of handwritten Chinese character error correc-
tion on our collected handwritten dataset.

A. Ablation Study

The high-dimensional radical representations gt can be re-
duced to 2D with LargeVis algorithm [50]. We choose 5 radi-
cals, each with 500 character samples from at least 5 characters.
The 2D-features of 2500 samples can be visualized. From the
upper figure of Fig. 7, we have two observations: 1. The dis-
tance between samples of the same radical is sometimes greater
than the distance between samples of different radicals. 2. The
unexpected large inter-class distance is mainly caused by two
factors: radical position and writing styles. Specifically, we can
see points in orange are scattered in various positions, whose
distances are even greater than distances between some blue
points and them, which leads to the first obversation. Focusing
on the samples of radical “gong,” we zoom in orange points in
the dashed box. In the zoomed figure with yellow background,
points of one color represent features of radical “gong” from
one character. It can be seen that generally points with the same
color tend to cluster together, which means features of radical
from the same character have high similarity. Besides, some pur-
ple points are far away from the center of purple points cluster,
which means the same radical from different writers also gen-
erates diverse feature representations. That confirms the second

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 26,2024 at 14:00:48 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: TREE-STRUCTURE ANALYSIS NETWORK ON HANDWRITTEN CHINESE CHARACTER ERROR CORRECTION 3623

Fig. 7. Upper: Features of 5 radicals from 500 samples without triplet loss.
Below: Features of 5 radicals from 500 samples with triplet loss. Points with the
same color represent samples of the same radical.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT COEFFICIENTS OF TRIPLET LOSS

WITH METRIC ACCURACY. VS=VALIDATION SET, RTS=RIGHT TESTING SET,
MTS=MISSPELLED TESTING SET. λ3=0. IS THE SETTING OF TAN WITHOUT

TRIPLET LOSS. λ3=0.1 IS OUR DEFAULT SETTING IN TAN

observation. Considering that, we propose radical triplet loss to
constrain the radical features to achieve the effect of clustering
the same class and increasing inter-class distance.

To show the effectiveness of radical triplet loss, we conduct
ablation experiments on the validation set and verify the effect
on the testing set. As shown in Table II, TAN outperforms its
counterpart without triplet loss on right testing set by 0.3% and
misspelled testing set by 1.5%. Additionally, the selection of hy-
perparameters has a great influence on the performance of TAN.
At first, as λ3 grows, the accuracy on three sets all increases.
With λ3 = 0.1, triplet loss works best on validation set, so that
we select 0.1 as the optimal choice. From a comprehensive view,
λ3 = 0.1 also maximizes the performance gain on two test sets.
As λ3 continuously increases, the performance of model de-
creases, which is understandable since our main purpose is to
classify and the triplet loss just works as an auxiliary role to
cluster features. We also compare the performance of different
margins as shown in Table III. With m = 0.1, the model can
achieve the best performance on validation set, which is consis-
tent with testing set.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MARGINS IN TRIPLET LOSS WITH

METRIC ACCURACY. ALL EXPERIMENTS ARE CONDUCTED WITH λ3 = 0.1.
m = 0.1 IS OUR DEFAULT SETTING IN TAN

TABLE IV
COMPARISON OF METRIC F1-SCORE AMONG DIFFERENT MODELS. ‘P’

DENOTES PRECISION AND ‘R’ DENOTES RECALL

Additionally we visualize the radical feature with radical
triplet loss. As shown in the bottom figure of Fig. 7, samples of
the same radical from different characters are obviously more
gathered and the distance between classes is also enlarged. Clas-
sification is the main purpose in our task and radical triplet loss
only works as an auxiliary classification. Thus from the per-
spective of maximizing classification accuracy, the coefficient
of triplet loss cannot be too large (as discussed in Table II),
which causes the imperfect gathering effect.

B. Experiment Results of Assessment Subtask

1) Assessment With Metric F1-Score: In this Section, we
conduct experiments with the dataset introduced in Section IV
and evaluate the models with the metric F1-score. For compari-
son, we also implement a few recognition models in this subtask.

Metric-learning based models, such as RCN [29] and
HDE [3], represent a character into a radical-based embedding.
When adapting to HCCEC task, we can calculate the distance
between the output embedding with all candidate character em-
beddings to generate the predicted character. If the predicted
character belongs to the right character set, we judge it as right
character. Otherwise, it is predicted as misspelled character.

Encoder-decoder based models (referring to RAN here) de-
code a character into a radical sequence, and look up the
character-radical lexicon to determine the predicted character
in recognition task. When adapting to HCCEC task, if the pre-
dicted radical sequence belongs to the candidate right character
set, we judge it as the right character. Otherwise, it is predicted
as a misspelled character.

Following their respective assessing methods, we compare
the following four models: RCN, HDE, RAN and our proposed
TAN. Please note that all the models have the same encoder
and the image is resized to the same size for fair comparison.
As shown in Table IV, TAN achieves the best performance on
both right testing set and misspelled testing set in terms of met-
ric F1-score. Specifically, the precision on right testing set and
the recall on misspelled testing set of RAN are slightly higher
than TAN. That is because RAN decodes an unrestricted radical
sequence and looks up the sequence in fixed character-radical
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TABLE V
COMPARISON OF ACCURACY (%) AMONG DIFFERENT MODELS ON THREE

ERROR TYPES

Fig. 8. The prediction results of four models on three exampled misspelled
characters. The first character ‘E09E_1’ misses a stroke ‘pie’ and belongs to
stroke-level error. The second character ‘E10D_2’ misuses a radical and belongs
to radical-level error. The third character ‘E16E_2’ belongs to structure-disorder
error.

lexicon to judge the correctness. It tends to predict into mis-
spelled char. Accordingly, the precision on misspelled testing
set and the recall on right testing set of RAN are significantly
lower than other models. On the whole, the F1-score on two
testing sets is still lower than TAN.

2) Assessment With Metric Accuracy: Other than judging the
correctness, the classification accuracy can better reflect the abil-
ity of models, as it requires accurate judgement of character
category. Since the test set consists of two parts: right set and
misspelled set, we separately calculate accuracy on the two sets.
As shown in Table V, On right set, other three models achieve
comparable performance, while TAN significantly exceeds them
by about 2%. On misspelled set, TAN outperforms other models
with great improvement of 10% ∼ 16%, which shows its strong
generalization capacity.

Additionally, we further analyze the performance of mod-
els on three types of errors. As shown in Table V, comparing
with the best-performing recognition model HDE, our proposed
TAN achieves better performance with significant improve-
ments: 11.5% on stroke-level error, 9% on radical-level error
and 7.3% on structure disorder respectively. Among the three er-
rors, the accuracy on stroke-level error is the lowest since stroke
is the smallest unit and the most difficult to be detected. The
performance on radical-level error of TAN can reach a high per-
formance of 68%, which is closest to ordinary unseen characters.

To exploit how TAN performs best, we show some examples
of misspelled characters and the corresponding predicted results
of four models in Fig. 8. HDE directly encodes the input image
into feature embedding containing radical information, whose

TABLE VI
COMPARISON OF CORRECTION RATE (%) AMONG DIFFERENT MODELS ON

THREE ERROR TYPES

detailed modeling capability is relatively weak. We list its top-2
predicted characters and the corresponding probability. In the
first example, HDE wrongly classifies it into similar character
‘shi’ with a high probability of 0.79. In the second example,
HDE wrongly finds another misspelled char ‘E10D_1’ as the
most likely prediction. In the third example, character ‘hu’ and
character ‘E16E_2’ are confusing for HDE even though their
structures are slightly different. The string decoder of RAN re-
lies heavily on contextual information so that the decoding re-
sults of first several steps easily mislead the following decoding.
We list the decoding sequence of RAN in Fig. 8. RAN misrec-
ognizes the first image into a similar, seen character ‘er’. In the
second sample, influenced by preceding decoding, the seventh
radical is wrongly decoded into radical ‘zi’ as in seen character
‘shu’. TAN decodes the input into a radical tree layout and the
output probability of each radical is shown next to the tree. With
more refined radical modeling and less reliance on contextual
information, TAN shows better model generalization on unseen
but similar characters.

C. Experiment Results of Correction Subtask

In this section, we show the correction performance of our
system and list a few examples in detail from the perspective of
error correction and error location.

1) Correction Rate: Following the three steps introduced in
Section III-C, we will introduce the specific correction operation
of each model in detail, and compare their correction rate on
three error types.

Metric-learning based models, referring to RCN and HDE
here, output an embedding vector to represent the character. For
the sample judged as misspelled character, we can calculate the
distance between the output embedding and the embeddings of
all candidate right characters, and select the top-5 ones with
the closest distances as the candidate ideal characters. Since the
label embeddings are designed in complex rules, the specific
error can not be inferred through the output embedding vector,
not to mention locating them. RAN, basing on encoder-decoder
framework, decodes a character into Ideographic Description
Sequences (IDS). For misspelled characters, edit distance be-
tween predicted IDS and all candidate IDS of right characters
can be calculated. However, the number of the right characters
with the closest edit distance can be more than 5 so that the
comparison with other methods is unfair. Therefore, the results
of RAN are not listed in Table VI.

Since the correction subtask is a follow-up task to asessment,
the correction rate is highly related with assessment results. Fol-
lowing the corresponding correction methods, we compare the
correction rate of our proposed TAN with other models. As
shown in Table VI, the correction rate of all models is reduced
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Fig. 9. Examples of error correction and error location.

compared with the accuracy in Table V, since correction opera-
tion requires correctly find the ideal characters additionally. But
in term of overall correction rate, TAN still performs best, outper-
forming HDE by 5.8% and RCN by 16.6%. Among three error
types, structure disorder is the easiest to correct for TAN while
stroke-level error is the hardest with correction rate of 33.3%.

2) Correction Results: With the decoded tree layout, correc-
tion operation can be done following the three steps introduced
in Section III-C. Here we show a few examples of correction
results from two aspects: error correction and error location in
Fig. 9.

The first example belongs to error of stroke level and it is
actually caused by the confusion of two similar radicals “guang”
and “chang”. To correct, the user just needs to substitute “guang”
with “chang,” and the location of the mistaken raical is the error
location. The second example belongs to radical-level error. To
correct, the user needs to substitue the last three radicals with
radical “sbfw”. The summary of the three locations composes
the error location. When encountering with structure-disorder
error as shown in the third example, which is easy to identify
since their radicals are all right but in wrong order, the users only
need to follow the right order of ideal char to rewrite. And the
error location covers almost the whole image so that the location
misses its guidance function.

D. Quantitative Analysis

To deeply investigate how tree decoder shows stronger model
generalization ability in misspelled characters, we conduct quan-
titative analysis calculation. During decoding, both string de-
coder and tree decoder first take the previous hidden state and
previous output as input to produce the query vector:

st = RNN(st−1, yf) (27)

Fig. 10. Visualization of the averaged similarity matrix of characters with
layout A and layout B. The x-axis and the y-axis indicate the position index in
IDS, while the color indicates the averaged similarity. The number next to the
radical represents the index of current radical.

where yf can be yt−1 or (yp, yre) corresponding to string decoder
and tree decoder. Then the query vector is utilized to calculate
the attention map. st obviously contains contextual information,
due to the memory mechanism of RNN. We further discover
that it contains two-dimensional position information to assist
current attention map computing.

According to [51], we first conduct the linear regression be-
tween queries (st) from model RAN and its positions (t) via
fitting t = Wrst + br on characters with the same tree layout
and different tree layouts respectively (80% for training, 20%
for test). We set indicator R2 to reflect the proportion of the vari-
ance of the dependent variable that is predictable. For characters
with the same tree layout, we get R2 = 0.95. But for characters
with different tree layouts of the same length, we getR2 = 0.70.
That suggests the position information of radical is related to its
location in the tree layout. Although RAN recognizes a Chinese
character as a linear sequence during modeling, the position
information captured by RAN is no longer one-dimensional po-
sitions.

To further verify the position information contained by query
vector is consistent with the tree layout, we compute the aver-
aged cosine similarity S between the query feature vectors of
the i-th and j-th time steps on characters with layout A and B:

SAB(i, j) = cos

(∑|IA|
m=1 h

m,A
i

|IA| ,

∑|IB|
n=1 h

n,B
j

|IB|

)
(28)

where IA, IB denotes all characters with layout A and layout B
respectively. hm,A

i denotes the query vector at i-th step of the
m-th sample in IA.

As shown in Fig. 10, focusing on the diagonal, the radicals
of first two steps lie on the same position of layout A and B
so that the cosine similarities are high. From step three to five,
the similarity remains low since these radicals are in different
positions to the two layouts. From that, we can conclude that
RAN has captured the spatial information on the radical tree
since structures and radicals have different physical meanings.
But at the latter steps (>5), even though at different positions, the
cosine similarity still remains at the level of 0.3 to 0.5, which
is not low. That reflects the ability of RAN to capture spatial
location decreases as the length gets longer.
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Fig. 11. Comparison of the averaged similarity matrix of string decoder and
tree decoder. Left figure shows similarity matrix of string decoder. Right figure
shows similarity matrix of tree decoder.

To specifically compare the position information learned by
string decoder and tree decoder, we calculate the cosine simi-
larity of characters with layout C and D. As shown in Fig. 11,
in the first several steps (<5), both tree decoder and string de-
coder capture the position information that matches the position
of the radical. But at the latter step (>5), the cosine similarity
of string decoder starts to behave confusedly, while tree de-
coder still captures relatively accurate spatial position informa-
tion. More accurate visual information and less dependance on
context information results in good performance on misspelled
character for tree decoder.

VII. DISCUSSION

In this section, we discuss the challenges of HCCEC task and
summarize the limitations of existing methods.

The challenges are mainly reflected in three aspects. 1) Since
the assessment task belongs to GZSL problem and the training
set only contains samples of right chars, there is naturally bias
problem that performance on unseen classes tend to be poor.
2) The misspelled chars can be very similar with correspond-
ing right chars. So the difficulty is higher than the recognition
of regular unseen characters. Moreover, the task is based on
handwritten scenario, so the writing styles can greatly influence
the model’s judgment of subtle difference between right and
misspelled chars. 3) Without contextual information, correction
subtask is difficulty since it is not reliable to find the ideal char
only with the radical form.

Facing with the above challenges, the existing methods have
two major limitations. First, the unseen class bias problem still
remains and there is considerable room for improvement. Sec-
ond, the performance of existing methods on stroke-level er-
ror is lower than that on other two errors. We speculate that
radical-based modeling that all existing methods based is not
precise enough, which may lead to the above phenomenon.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we design a diagnosis system with the abil-
ity of correcting errors for HCCEC task. A novel tree-structure

analysis network is proposed to decompose a character into a
radical-tree layout. Experiments on our collected dataset show
our proposed method outperforms other recognition models on
three metrics. Additionally, through quantitative analysis, we
prove TAN can capture more accurate spatial information, show-
ing better generalization ability.

In the future, we plan to introduce the idea of feature-
generating paradigm in our model to further alleviate the bias
problem. Additionally, we also plan to construct a new dataset
of phrases or sentences to explore the effect of contextual infor-
mation on HCCEC task.
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