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Abstract—In multimodal sentiment analysis, collecting text
data is often more challenging than video or audio due to higher
annotation costs and inconsistent automatic speech recognition
(ASR) quality. To address this challenge, our study has developed
a robust model that effectively integrates multimodal sentiment
information, even in the absence of text modality. Specifically,
we have developed a Double-Flow Self-Distillation Framework,
including Unified Modality Cross-Attention (UMCA) and Modal-
ity Imagination Autoencoder (MIA), which excels at processing
both scenarios with complete modalities and those with missing
text modality. In detail, when the text modality is missing,
our framework uses the LLM-based model to simulate the
text representation from the audio modality, while the MIA
module supplements information from the other two modalities
to make the simulated text representation similar to the real
text representation. To further align the simulated and real
representations, and to enable the model to capture the con-
tinuous nature of sample orders in sentiment valence regression
tasks, we have also introduced the Rank-N Contrast (RNC) loss
function. When testing on the CMU-MOSEI, our model achieved
outstanding performance on MAE and significantly outperformed
other models when text modality is missing. The code is available
at: https://github.com/WarmCongee/SDUMC.

Index Terms—Multimodal Fusion, Sentiment Analysis, Self
Distillation, Missing Modality

I. INTRODUCTION

Multimodal sentiment analysis has garnered significant at-
tention [1]–[4], with numerous studies focusing on the repre-
sentation [5]–[8], alignment [9], [10], and fusion [11]–[14] of
sentiment information from various modalities. The absence of
certain modalities during training and inference significantly
influences the alignment and fusion of multimodal informa-
tion, prompting increased research efforts [15]–[19] aimed at
enhancing robustness under these conditions. Traditionally, re-
search [15] has classified the absence of text, audio, and visual
modalities as either complete or frame-level missing, often em-
ploying partial word masks to mimic text frame-level absence.
However, this simulated absence differs markedly from typical
real-world scenarios where text is either completely missing
or substituted with low-quality ASR transcriptions. Given the
text modality’s superior performance [13] in certain tasks,
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previous studies [20], [21] have relied on manually annotated
transcriptions or the development of ASR/AVSR systems. We
contend that it is unnecessary to reconstruct the final text when
the text modality is missing. Instead, the model can simply use
the hidden states derived from the audio or visual modalities to
approximate the semantic space of the missing text modality.

Theoretically, textual information can be highly abstracted
from audio and visual modalities. With advancements in Large
Language Models (LLM), some studies [22], [23] have em-
ployed LLMs as decoders to address ASR tasks. For instance,
SLAM-ASR [22] projects audio representations and inputs
them with prompts into an LLM to generate ASR results.
Consequently, it is natural to infer that simulated text represen-
tations can be derived from the projected audio representations
via LLMs, facilitating unified multimodal sentiment analysis.

Our research proposes a Double-Flow Self-Distillation
Framework, which includes the Modality Imagination Autoen-
coder (MIA) and Unified Modality Cross-Attention (UMCA).
This unified model can address both complete and text-
missing multimodal sentiment analysis scenarios by simply
activating or deactivating the MIA during inference. The main
contributions of our work are: (1) We design UMCA for
comprehensive multimodal fusion to extract sentiment-related
information. (2) Our method uses the LLM-based model Vi-
cuna [24] to generate simulated text representations from audio
representations’ projection when text modality is missing, with
MIA complementing the missing information. (3) We train
a unified multimodal sentiment analysis network using self-
distillation combined with MIA activation and deactivation
while achieving distance-space alignment of complete and
missing modality representations through MKD Loss and RNC
Loss [25]. (4) Our method achieves optimal performance on
the CMU-MOSEI [26] across multiple metrics for complete
modality inference, and significantly improving performance
in text-missing scenarios compared to other methods.

II. METHOD

In this section, we discuss our proposed Double-Flow Self-
Distillation Framework for the multimodal sentiment analysis.
The overall architecture of our system is depicted in Fig. 1.IC
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Fig. 1. Overall architecture of Double-Flow Self-Distillation Framework for modality missing. In the figure, the middle part of the upper row shows the
training process of the framework. The lower row shows the specific network structure of each module.

A. Unified Modality Cross-Attention

As shown in the bottom right corner of the Fig. 1, the
UMCA model is divided into two main stages. And we set up
the cross-attention module, which is applied in both stages.
The formulas are as follows:

Km = Tanh(WVm + b) (1)

Rm = Softmax(
QKT

m

τ
)Vm (2)

m ∈ {a, v, t}, where a, v, and t refer to the three modalities
of audio, vision, and text. τ denotes the scaling parameter
that ensures the stability of the gradient of softmax. Km and
Vm are the key and value sequences from the m modality,
Q is the query involved in the cross-attention, and Rm is the
representation of the m modality in the same dimension as Q.

The first stage is used to obtain the query embedding of
the multi-view modalities combinations. First, each modality
representation is mapped to the same dimension Em ∈ RS×D

by MLP, where S represents the sequence length and D
denotes the dimension determined by a hyperparameter. We
initialize the Gaussian-distributed learnable query (Qm) for
each modality during model initialization, where Qm ∈
RS1×D, with S1 set to 1. For each modality, the original
modal representations are mapped to the key (Km) and value
(Vm). According to the equation, we use the cross-attention
module to obtain the representations Rm for each modality.
The Attention-guided Feature Gathering (AFG) module [27]
concatenates the three modal representations and feeds them
into an MLP to obtain attention weights. These weights are
used to compute the weighted sums of unimodal, bimodal,

and trimodal representations, producing a multi-view query
(Qmultv) with seven combinations. For instance, in a bimodal
scenario, we set the unused modality’s weight to zero while
maintaining the weights of the other two modalities. This
results in a weighted sum that forms the bimodal query.

In the second stage, the multi-view query obtained in the
previous stage is used as the query (Qmultv). The original
modal representations are mapped as key (Km) and value
(Vm). The modal representations Rseq

m are obtained by cross-
attention, and the final representation r is obtained by attention
weighted summing Rseq

m by AFG module, and regression is
performed to obtain the sentiment valence.

B. Missing Modality Imagination
1) LLM-based Text Representation Simulation: SLAM-

ASR [22] uses WavLM as an audio encoder and LLM-based
model Vicuna [24] as a decoder. Then the method trained
the projector between them and generated ASR results from
the audio encoder representations directly using the generative
power of the LLM. Based on this, we work on unifying
the representation of text modality presence and missing.
Definitions are as follows:

Et = LLMf(tokenizer(T )) (3)

Êt = LLMg(cat(proj(Ea), tokenizer(P ))) (4)

In the definitions, T denotes the text transcribed from video
content. The symbol Et refers to the real text representation
obtained from the text modality. The function LLMf(·) is
employed for the direct forward pass to obtain the hidden state.
Additionally, the symbol Êt denotes the simulated text repre-
sentation generated by the LLM in scenarios where the text

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 13,2025 at 16:24:19 UTC from IEEE Xplore.  Restrictions apply. 



modality is missing. Ea refers to the representation obtained
from the audio modality and P refers to the input prompt
for LLM. The notation proj(·) is used to refer to the pre-
trained projector network within the SLAM-ASR framework.
As shown in the middle of the left side of Fig. 1, LLMg(·)
refers to the hidden state derived from the generated results.

2) Modality Imagination Autoencoder: We use the pre-
trained projector and Vicuna to obtain real text representations
when text modality is present and generate simulated ones
when text modality is missing. However, the gap between real
and simulated representations can negatively impact perfor-
mance if used directly for training. To address this, we use the
Residual Autoencoder [28] to construct the missing modality
imagination autoencoder, which activates only when the text
modality is missing. The structure of MIA is depicted in the
bottom left corner of Fig. 1. The definition is as follows:

Ht = f(W (1)cat(Rv, Ra, R̂t) + b(1)) (5)

R̂t = R̂t + f(W (2)Ht + b(2)) (6)

Rv, Ra, R̂t ∈ RS×D, where S is the sequence length and D
is the unified dimension of modality representations. Ht ∈
RS×D′

, where D′ is the dimension of the intermediate hidden
state. We replace the original R̂t with the reconstructed R̂t. As
shown in Fig. 1, since there are two MIA modules, the input
is Rm in the MIA-1 module and Rseq

m in the MIA-2 module.

C. Modality Missing Self-Distillation

We design a self-distillation framework to handle cases
where all modalities are present and cases where the text
modality is missing. The network has two data flows: one
with full modalities input (visual, audio, text) and one with
only visual and audio modalities input.

During training, we distill text modality representation
knowledge from the complete multimodal flow to the scenario
where the text modality is missing. To achieve this, we have
designed the Modality Knowledge Distillation Loss (LMKD)
and Representation Similarity Loss (LRS). To capture the
continuous nature of sample orders in the sentiment valence re-
gression task, we introduced the Regression Rank-N Contrast
Loss (LRNC). Additionally, the Mean Squared Error loss is
used as the sentiment valence regression task loss (LTask) for
sentiment analysis. To ensure the model acquires these various
capabilities, we use the weighted sum of these losses as the
final loss function. The overall loss is defined as follows:

L = LTask + αLMKD1 + βLMKD2 + γLRS + δLRNC (7)

The α to δ here defines the weights of the various losses, with
specific values displayed in our open-sourced code.

1) Sentiment Valence Regression Loss: This is a regression
task for predicting sentiment valence. Thus, the most important
loss is the MSE loss between the true and predicted valence,
defined as follows:

LTask =
1

n

n∑
i=1

(yi − ŷi)
2 (8)

Here, yi is the valence label, and ŷi is the predicted valence.

2) Modality Knowledge Distillation Loss: The objective of
LMKD is to align the simulated text modality representations,
produced by the MIA, as similar as possible with the real text
modality representations to enhance the model’s robustness
when text modality is missing. Specifically, we detach the real
text modality representation and then compute the RMSE loss
between it and the simulated text modality representation from
MIA. Consequently, it should be highlighted that the gradient
of LMKD will only back-propagate through text missing data
flow. Considering the presence of two MIA modules, we
calculate two MKD losses, which are defined as follows:

LMKD =

√√√√ N∑
i=1

(Ri(detached) − R̂i)2

N
(9)

During the process, we need to calculate LMKD1 and LMKD2.
First, we detach Rt and use it along with R̂t in the formula
to calculate LMKD1. Then, we detach Rseq

t and use it along
with R̂seq

t in the formula to calculate LMKD2.
3) Representation Similarity Loss: In order to make the

representations entering the final regression head as similar as
possible when the modality is complete and the text modality
is missing, we design a representation similarity loss LRS.

LRS =

√√√√ N∑
i=1

(ri − r̂i)2

N
(10)

4) Regression Rank-N Contrast Loss: For the sentiment
valence regression task, the RNC loss has two goals. First, it
brings the representations of two data flows of the same data
similar. Second, it allows the model to learn and align the
representation distance spaces correctly for both the missing
text modality and the complete modalities. The RNC loss is
defined as follows:

Li
RNC =

2N∑
j=1,j ̸=i

log
exp(sim(ri, rj)/τ)∑

rk∈Si,j
exp(sim(ri, rk)/τ)

(11)

LRNC=
1

2N

2N∑
i=1

−1

2N − 1
Li
RNC (12)

Here, N is the batch size, and r refers to the final representa-
tion. The sim(·) function computes the L2 distance. Si,j refers
to the set of final representations of all other data in the batch
whose distance from the valence label of anchor i is greater
than or equal to the distance between the labels of i and j.

III. EXPERIMENTS

A. Dataset and Metric

We test our model on the CMU-MOSEI [26] dataset,
which includes 22,856 videos: 16,326 for training, 1,871 for
validation, and 4,659 for testing. Each sample is labeled with
a sentiment valence from -3 (strongly negative) to +3 (strongly
positive). As is common in studies using this dataset, we
primarily use Mean Absolute Error (MAE) and prediction
Accuracy (ACC) as metrics to evaluate model performance.
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B. Implementation Details

In our experiments, we use MANet [29] as the visual
encoder, WavLM-Large [30] as the audio encoder, and Vicuna-
7B [24] as the text encoder. The dimension of the visual
representation obtained from the visual encoder is 1024 frame-
level features. And we use the output of the 20th hidden layer
of WavLM-Large as the audio representation and the output of
the last hidden layer to obtain the simulated text representation.
When text is present, the sum of the last four hidden layers
of Vicuna is used as the text representation. When the text
modality is missing, the output of the last hidden layer of the
audio encoder is fed into the pre-trained Projector and Vicuna
to generate the hidden state, and the penultimate fourth layer of
this hidden state is taken as the simulated text representation.

C. Ablation Study

To evaluate the effectiveness of the missing modality imag-
ination module, the text modality missing self-distillation, and
the loss functions, we design a series of ablation experiments
to illustrate the role of each component in the architecture.
The results are shown in Table I, where LLMg indicates that
the LLM-based model generated text representations when the
text modality is missing. When LLMg is not used, the model
does not use the text modality representations simulated by
LLM, but only uses the audio and visual representations for
modality imagination and inference.

TABLE I
ABLATION STUDIES FOR EACH MODULE

LLMg MIA LMKD LRS LRNC
w/o text w ground truth

MAE↓ ACC↑ MAE↓ ACC↑
✓ ✓ ✓ ✓ 0.584 82.47 0.522 86.57

✓ ✓ ✓ 0.572 83.81 0.521 87.45
✓ ✓ ✓ ✓ 0.560 83.73 0.515 86.95
✓ ✓ ✓ ✓ 0.563 83.90 0.513 87.72
✓ ✓ ✓ ✓ 0.552 83.84 0.510 87.53
✓ ✓ ✓ ✓ 0.550 84.25 0.508 87.25
✓ ✓ ✓ ✓ ✓ 0.550 84.28 0.506 87.64

Using the MAE metric for early stopping, we found that
self-distillation significantly improves network performance,
with or without the text modality. This demonstrates that our
network ensures strong performance even with missing text.

We visualize the similarity matrix between the complete
modality representation and the representation with the text
modality missing for the same batch of data. The left panel dis-
plays the L2 similarity matrix between the complete modality
case and the missing text case, arranged by label values. The
right panel shows the similarity matrix after removing MIA
and distillation losses. Obviously, our model effectively aligns
representations under modal integrity and absence, learning the
corresponding representation distance based on label distance.

D. Overall Comparison

We compare our method with other high-performing ap-
proaches that have achieved excellent performance or studied
modality missing. The approaches listed in Table II explore
robustness against missing modalities using various methods:

(a) complete (b) w/o MIA & LMKD

Fig. 2. Feature similarity visualization sorted by labels.

TABLE II
METHODS PERFORMANCE COMPARISON TABLE. ∆MAE AND ∆ACC

REPRESENT THE ABSOLUTE DIFFERENCE IN MODEL PERFORMANCE
BETWEEN COMPLETE MODALITIES AND WHEN THE TEXT MODALITY IS

MISSING. A SMALLER ABSOLUTE VALUE INDICATES BETTER ROBUSTNESS
TO MODALITY MISSING.

Model w text w/o text performance gap

MAE↓ ACC↑ MAE↓ ACC↑ ∆MAE↓ ∆ACC↓
UniMSE [31] 0.523 87.5 - - - -

AMB [32] 0.536 85.8 - - - -
ALMT [13] 0.526 - - - - -
MInD [33] 0.529 - 0.841 - 0.312 -
GMC [34] - 80.0 - 66.8 - 13.2
GCN [35] - 86.4 - 66.5 - 19.9

MMIN [36] - 85.5 - 70.1 - 15.4
GMD [37] - 87.1 - 72.6 - 14.5

Ours 0.506 87.6 0.550 84.2 0.044 3.4

contrastive learning (GMC), graph neural networks (GCN),
modality dependence reduction via gradient-guided decou-
pling (GMD), missing modality reconstruction (MMIN), and
modality information separation (MInD), et al. We referenced
the experimental results of these models obtained from articles
on the GMD method. The results are shown in Table II.

First, compared to studies conducted under complete modal-
ities such as UniMSE [31], AMB [32], and ALMT [13], our
model achieves significantly better MAE and ACC perfor-
mance. Second, when the text modality is missing, our model’s
MAE increases by only 0.044, and the accuracy decreases by
just 3.4%, outperforming other studies on modality-missing
robustness. Additionally, the performance decay of our model
is an order of magnitude less than that of other models when
the text modality is missing, demonstrating its superior design.

IV. CONCLUSIONS

This work addresses the challenge of high cost and heavy
reliance on the text modality. Specifically, we designed the
Double-Flow Self-Distillation Framework with Unified Modal-
ity Cross-Attention as the main network structure, combined
with Modality Imagination Autoencoder to simulate missing
text modality. Additionally, we developed a series of loss
functions to enhance the model’s performance in multimodal
sentiment analysis, ensuring robustness both when all modal-
ities are present and when the text modality is missing.
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