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A B S T R A C T

Table structure recognition is an indispensable element for enabling machines to comprehend tables. Its
primary purpose is to identify the internal structure of a table. Nevertheless, due to the complexity and diversity
of their structure and style, it is highly challenging to parse the tabular data into a structured format that
machines can comprehend. In this work, we adhere to the principle of the split-and-merge based methods and
propose an accurate table structure recognizer, termed SEMv2 (SEM: Split, Embed and Merge). Unlike the
previous works in the ‘‘split’’ stage, we aim to address the table separation line instance-level discrimination
problem and introduce a table separation line detection strategy based on conditional convolution. Specifically,
we design the ‘‘split’’ in a top-down manner that detects the table separation line instance first and then
dynamically predicts the table separation line mask for each instance. The final table separation line shape
can be accurately obtained by processing the table separation line mask in a row-wise/column-wise manner.
To comprehensively evaluate the SEMv2, we also present a more challenging dataset for table structure
recognition, dubbed iFLYTAB, which encompasses multiple style tables in various scenarios such as photos,
scanned documents, etc. Extensive experiments on publicly available datasets (e.g. SciTSR, PubTabNet and
iFLYTAB) demonstrate the efficacy of our proposed approach. The code and iFLYTAB dataset are available at
https://github.com/ZZR8066/SEMv2
1. Introduction

In this era of knowledge and information, document is a signifi-
cant source of information for numerous cognitive processes such as
knowledge database creation, optical character recognition (OCR), doc-
ument retrieval, etc. As a particular entity, the tabular structure is very
commonly encountered in documents. These tabular structures convey
important information in a concise form. They are highly prevalent in
domains such as finance, administration, research, and even archival
documents. Table structure recognition (TSR) aims to recognize the
table internal structure to the machine readable data mainly presented
in two formats: logical structure and physical structure [1]. More
precisely, logical structure only contains every cell’s row and column
spanning information, while the physical one additionally contains
bounding box coordinates of cells. Therefore, TSR as a precursor to
contextual table understanding will be beneficial in a wide range of
applications [2,3].

Limited by the training datasets [4–7] used for TSR, most previous
works [3,8–10] focus on document images that are obtained from
digital documents (e.g., PDF files). In such a scenario, the table images
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are cropped under optimal imaging conditions and are often horizon-
tally (or vertically) aligned with a clean background and distinct table
structures. However, in some real-world applications, document images
may be captured by mobile cameras. Many camera-captured document
images are of poor image quality, and tables contained in them may be
distorted (even curved) or contain noises, which makes TSR even more
challenging. Although the WTW dataset proposed recently [11] con-
tains table images from natural scenes, it only focuses on wired tables.
Parsing wireless tables is a relatively more difficult task due to the lack
of visual cues to delimit cells, columns and rows. To comprehensively
evaluate the performance of TSR, we present a large-scale dataset in
this paper, dubbed iFLYTAB. As shown in Fig. 1, the table images in
the iFLYTAB dataset are collected from various scenarios, and contain
both wired and wireless tables.

Considering that a table is composed of a set of table cells and each
table cell is composed of one or more basic table grids, the recently
proposed split-and-merge based methods [8,10,12] consider table grids
as the fundamental processing units. These methods recognize the table
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Fig. 1. Some table samples in the iFLYTAB dataset. (a)–(b) are wired tables. (c)–(e) are wireless tables.
structure as the following pipeline: (1) split table into basic table grid
pattern (2) merge grid elements to recover table cells that span multiple
rows or columns. When the TSR is performed in this way, once the
‘‘split’’ stage predicts erroneous results, it is difficult for the ‘‘merge’’
stage to rectify them. Therefore, it is essential to make the model detect
table grids more accurately. The previous methods [8,10,12] complete
the first stage in a bottom-up manner. Specifically, they first apply se-
mantic segmentation [13] to predict table row/column separation lines,
and then represent the intersection of detected row/column separation
lines as table grids. However, segmenting table row/column separation
lines in a pixel-wise manner is imprecise due to the limited receptive
field. In addition, it necessitates complex mask-to-line algorithms to
extract the table separation lines from the predicted segmentation
results.

In this work, we follow the split-and-merge based method SEM [10],
and introduce an accurate table structure recognizer, termed SEMv2.
Distinct from previous segmentation-based methods [3,8,10,12] in the
‘‘split’’ stage, we aim to distinguish each table separation line and for-
mulate table separation line detection as an instance segmentation task.
Specifically, the table separation line mask generation is decoupled
into a mask kernel prediction and a mask feature learning, which are
responsible for generating convolution kernels and the feature maps to
be convolved with respectively. Accurate table row/column separation
lines can be easily obtained by processing table row/column separation
line masks in a column-wise/row-wise manner. Moreover, compared
to the sequence decoder in the ‘‘merge’’ stage in [10], we propose
a parallel decoder based on conditional convolution to process the
merging of basic table grids, which increases the decoding speed. To
comprehensively evaluate the SEMv2, we also introduce a new large-
scale TSR dataset iFLYTAB, which contains multiple style tables in
several scenes like photos, scanned documents, etc.

The main contributions of this paper are as follows:
2

• Following the split-and-merge based methods, we propose the
SEMv2, which introduces a novel instance segmentation frame-
work for the table separation line detection in the ‘‘split’’ stage,
making the ‘‘split’’ more robust in various scenes.

• We release the iFLYTAB dataset, which is collected from various
scenarios and manually annotated carefully, to the community for
advancing related research.

• Based on our proposed method, we achieve state-of-the-art per-
formance on publicly available datasets SciTSR, PubTabNet and
iFLYTAB.

2. Related work

2.1. Existing datasets

Early datasets for addressing TSR include UW-3 [14], UNLV [15],
ICDAR-2013 [4], ICDAR-2019 [16] and TabStructDB [17]. However,
the magnitude of these datasets is limited. To meet the requirement
of data-driven approaches for TSR, large-scale datasets such as Ta-
ble2Latex [18], TableBank [19] and PubTabNet [6] are proposed, but
incomplete annotations still impede their development. For instance,
TableBank collects 145,463 training tables from the Word and Latex
documents. Each table in TableBank solely presents its corresponding
HTML tag sequence, devoid of any physical coordinate information.
Recently, FinTabNet [7], SciTSR [5] and PubTables-1M [20] add the
cell coordinates and row-column information to become relatively com-
prehensive datasets for TSR. Of particular significance is PubTables-1M,
which collects nearly a million fully annotated tables sourced from
scientific articles. These encompass comprehensive information for
table detection, recognition and functional analysis (such as column
headers, projected rows and table cells). Due to the inconsistency in
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annotations among these datasets, the efficacy of the model is com-
promised. [21] also aligns these benchmark datasets through removing
both errors and inconsistency between them, which improves model
performance. Although dataset scale has been significantly increased,
these datasets solely focus on digital documents (e.g., PDF files). Re-
cently, the WTW [11] dataset is introduced, which contains tables in
multiple real scenes. However, it mainly focuses on wired tables, ignor-
ing the more challenging wireless ones. To comprehensively evaluate
the TSR performance, we present a new large-scale dataset iFLYTAB.
Different from WTW, tables in iFLYTAB encompass both wired and
wireless tables in various scenarios.

2.2. Table structure recognition

Due to the rapid development of deep learning in documents, many
deep learning-based TSR approaches [6,10,22,23] have been presented.
These methods can be roughly divided into three categories: bottom-up
methods, image-to-markup based methods and split-and-merge based
methods.

One group of bottom-up methods [22,24–27] treat words or cell
contents as nodes in a graph and use graph neural networks to predict
whether each sampled node pair is in the same cell, row, or column.
These methods rely on the assumption that the bounding boxes of
words or cell contents are available as additional inputs, which are not
easy to obtain from table images directly. To eliminate this assumption,
another group of methods [9,23,28–31] proposed to detect the bound-
ing boxes of table cells directly. After cell detection, they designed some
rules to cluster cells into rows and columns. However, these methods
regard the cells as bounding box, which is difficult to handle the cells in
distorted tables. Other methods [32–34] detect cells through detecting
the corner points of cells. They can more suitable for distorted cells,
but they suffer from tables containing a lot of empty cells and wireless
tables.

The image-to-markup based methods [6,18,35–37] treat table struc-
ture recognition as a task similar to image-to-markup generation and
directly generate the markup tags that define the structure of the table
through an attention-based structure decoder. These methods rely on a
large amount of training data and are inefficient as the number of table
cells increases.

The split-and-merge based methods [8,10] first split a table into the
basic table grid pattern, and then merge grid elements to recover table
cells. Previous methods [8,10] utilize semantic segmentation [13] for
identifying rows, columns within tables in the ‘‘split’’ stage. However,
segmenting table row/column separation lines in a pixel-wise manner is
inaccurate due to the limited receptive field, and heuristic mask-to-line
modules designed with strong assumptions in split stage make these
methods work only on tables in digital documents. To more accurately
split table grids even in distorted tables, RobustTabNet [12] uses a
spatial CNN-based separation line predictor to propagate contextual
information across the entire table image in both horizontal and ver-
tical directions. TSRFormer with SepRETR [38] formulates the table
separation line prediction as a line regression problem and regresses
separation line by DETR, but it cannot regress too long separation line
well. TSRFormer with DQ-DETR [39] progressively regresses separation
lines, which further enhances localization accuracy for distorted tables.
GrabTab [40] flexibly fuses multiple components to robustly predicate
cell edges. TRACE [41] first segments the cell corners, explicit lines
and implicit lines, then obtains the grid lines from the segmentation
result by post-processing, but it needs detailed labels to supervise
the train progress which are not available in public datasets. In our
work, we formulate the table separation line detection as the instance
segmentation task. The table separation line can be accurately obtained
by processing the table separation line mask in a row-wise/column-wise
manner.
3

Table 1
The comparison between our iFLYTAB dataset and the existing datasets for table
structure recognition. In the last column, we report the total number of samples for
all those datasets.

Dataset Digital Camera-captured Num

Wired Wireless Wired Wireless

ICDAR-2013 [4] ✓ ✓ ✗ ✗ 156
SciTSR [5] ✓ ✓ ✗ ✗ 15,000
TableBank [19] ✓ ✓ ✗ ✗ 145,000
PubTabNet [6] ✓ ✓ ✗ ✗ 568,000
FinTabNet [7] ✓ ✓ ✗ ✗ 113,000
PubTables-1M [20] ✓ ✓ ✗ ✗ 948,000
WTW [49] ✓ ✗ ✓ ✗ 14,581

iFLYTAB ✓ ✓ ✓ ✓ 17,291

Fig. 2. Statistics of the iFLYTAB datasets.

2.3. Instance segmentation

Instance segmentation is a challenging task, as it necessitates inst-
ance-level and pixel-level predictions simultaneously. The dominant
framework for instance segmentation is Mask R-CNN [42], which first
detects the bounding boxes of objects and then segments the object
in the box. Many works [43–45] with top performance are built on
Mask R-CNN. Due to the slender shape of table separation lines, this
widely utilized box-anchor based instance segmentation methods can-
not be employed directly. Another approach to instance segmentation is
based on dynamic filter network [46]. For example, SOLOv2 [47] and
CondInst [48] learn instance-dependent convolutional kernels, which
are applied to generate instance masks. Inspired by CondInst, we aim
to resolve the table row/column instance-level discrimination problem,
and propose the conditional table separation line detection strategy.

3. iFLYTAB

iFLYTAB collects table images of various styles from different sce-
narios. Specifically, as shown in Fig. 2, we collect both wired and
wireless tables from digital documents, and camera-captured photos.
As shown in Table 1, compared with existing datasets (e.g. SciTSR,
PubTabNet, etc.) that are mainly derived from digital PDF files. the
iFLYTAB includes table images captured by cameras, which contain
complex image backgrounds and non-rigid image deformation. Al-
though WTW provides table images in the photographic scenario, it
ignores the more challenging wireless tables.

In terms of data labeling, we provide comprehensive annotation
for each table image including physical coordinates and row/column
information. Subsequently, we will present a detailed exposition on the
annotation of physical coordinates and row/column information.

Physical Coordinates As illustrated in Fig. 3, the physical coor-
dinates we have annotated comprise of both table cell and text line
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Fig. 3. The visualization of annotated physical coordinates. (a) refers to table cell polygons. (b) refers to text line polygons. Best view in zoom in.
Fig. 4. The visualization of annotated row/column information. Then green polygons are the annotated row/column information. (a) refers to row information. (b) refers to column
information. Best view in zoom in.
polygons. Each polygon is labeled as {𝑥lt, 𝑦lt, 𝑥rt, 𝑦rt, 𝑥rb, 𝑦rb, 𝑥lb, 𝑦lb},
representing the coordinates of the four vertices.

Row/column Information The row/column information is em-
ployed to ascertain which text lines are attributed to the same row/
column in a table. Therefore, we additionally provide a series of poly-
gons that envelop text lines belonging to the same row or column. As
depicted in Fig. 4, the text lines enclosed in the green polygon indicate
that they locate at the same row/column in a table.

We have manually annotated 735,781 polygons for table cells,
1,207,709 polygons for text lines, 207,972 polygons for row infor-
mation, and 112,820 polygons for column information. We randomly
select approximately 70% of the table images as the training set, and
the rest data samples are used for testing. Finally, our iFLYTAB dataset
has 12,104 training samples and 5187 testing ones.

4. Method

The schematic of our approach is depicted in Fig. 5. SEMv2 adheres
to the split-and-merge based methodology of its predecessor, SEM, and
is primarily comprised of three components: the splitter, the embedder,
and the merger. The splitter takes the table image as input and predicts
the fine grid structure of the table. The embedder extracts the grid-level
feature representation of each basic table grid. The merger predicts
which grids should be merged to recover the whole table structure. In
the following sections, we will elucidate each component.
4

4.1. Splitter

Given an input table image 𝑰 ∈ R𝐻×𝑊 ×3, as illustrated in Fig. 5,
the objective of the splitter is to predict the table grid structure with
a set of grid bounding boxes 𝑩 ∈ R𝑀×𝑁×4, where 𝑀 , 𝑁 are the
number of rows and columns occupied by the table grid structure
respectively. Previous split-and-merge based methods apply the se-
mantic segmentation to predict all table row/column separation lines
in one mask and subsequently represent the intersection of detected
row/column separation lines as grid bounding boxes 𝑩. In contrast
to prior methods, we formulate table separation line detection as an
instance segmentation task and endeavor to predict an individual mask
for each table row/column separation line.

The overall architecture of our splitter is depicted in Fig. 5. The
ResNet-34 [50] with FPN [51] is utilized to generate a feature pyra-
mid with four feature maps {𝑷 2,𝑷 3,𝑷 4,𝑷 5}, whose scales are 1/4,
1/8, 1/16, 1/32 respectively. To amalgamate the information from all
levels of the FPN pyramid into a single output 𝑭 , we also propose a
straightforward fuse operation as follows:

𝑭 = 𝑷 2 + Up1×
(

𝑷 3
)

+ Up2×
(

𝑷 4
)

+ Up3×
(

𝑷 5
)

(1)

where Up𝑛× denotes the 𝑛 times bilinear upsample operation. 𝑭 ∈
R

𝐻
4 ×𝑊

4 ×𝐶 , where 𝐶 denotes the number of feature channels.
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Fig. 5. The overall architecture of SEMv2. 𝑭 is the feature map generated by fusing the FPN feature maps (𝑃2 to 𝑃5). The Splitter module consists of Kernel Branch and Feature
Branch, and predicts table separation lines between different columns or rows, which can be further processed to obtain the Table Grid Structure. The Merger module predicts the
table cell to which each table grid belongs. We omit the Embedder module for simplicity.
Fig. 6. Illustration of the Gather architecture. The upper part is the Column Gather. The lower part is the Row Gather.
Fig. 7. The illustration of Post-processing.

Inspired by CondInst [48], we decouple the table separation line
mask generation into a feature branch and a kernel branch. The fea-
ture branch contains two 1 × 1 convolution layers for generating
𝑭 col/𝑭 row ∈ R

𝐻
4 ×𝑊

4 ×𝐶 , which will be convoluted with convolution
kernels from kernel branches to predict separation line masks. Since
the table separation lines are usually slender and traverse the entire
table image, it is necessary to design a kernel branch that has a broader
receptive field. To address this issue, we propose the Gather module to
capture the horizontal/vertical visual clues as shown in Fig. 6.

Taking the Column Gather as an example, we first conduct three
repeated down-sampling operations on 𝑭 , and each operation is com-
posed of a sequence of a 2 × 1 max-pooling layer, a 3 × 3 con-
volutional layer and a ReLU activation function. The down-sampled
feature map �̃� col ∈ R

𝐻
32 ×

𝑊
4 ×𝐶 will be taken as the input of two
5

following spatial CNN modules [52]. The first spatial CNN module
divides the feature map into 𝐻∕32 slices, which are denoted as 𝑺td =
{

𝒔td
𝑖 ∈ R1×𝑊

4 ×𝐶 |
|

|

|

𝑖 = 1, 2,… , 𝐻32

}

. Specifically, the topmost slice 𝒔td
1 is

convolved by a 1 × 5 convolution layer, and its output feature map is
merged with the next slice 𝒔td

2 by element-wise addition. This procedure
is done iteratively so that the information can be propagated from the
topmost to the bottommost effectively. The second spatial CNN module
transmits information in a reversed direction. In this way, each pixel
in the output feature map can leverage the structural information from
both sides to enhance its feature representation ability. 𝑮col ∈ R1×𝑊

4 ×𝐶

is obtained by taking the row mean of the enhanced feature map. We
add a linear transformation following the 𝑮col to predict 𝐶-dimensional
output 𝜃𝜃𝜃col ∈ R1×𝑊

4 ×𝐶 . 𝜃𝜃𝜃col will be used as the weights of a 1 × 1
convolution layer to predict table column separation line masks. We
also detect table column separation line instance by predicting �̂�col ∈
R1×𝑊

4 ×1 through a linear transformation. The loss function on �̂�col is
formulated as follows:

ℒ col
inst =

𝑊 ∕4
∑

𝑖=1

𝐿bce
(

�̂�col
𝑖 , �̃�col

𝑖
)

𝑊 ∕4
(2)

where 𝐿bce is the binary cross-entropy loss, �̃�col denotes the ground-
truth distribution of starting points of table column separation lines on
the 𝑥-axis. �̃�col

𝑖 is 1 if the start point of a table column separation line
is located in the 𝑖th column, otherwise 0. To eliminate the duplicated
predictions of the starting point of a table column separation line in
�̃�col, as shown in Fig. 7(a), we perform non-maximum suppression as
follows: (1) binarize the �̂�col into 𝒑col, (2) for the continuous pixels
whose value equals 1 in 𝒑col, the pixel with maximum score in �̂�col will
be selected to represent a table column separation line instance.
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Fig. 8. The illustration of the embedder. The embedder extracts the gird-level features from 𝑭 according to table grid boxes 𝑩. Then the transformer module is applied to the
grid-level feature to obtain the final grid-level feature 𝑬. ‘‘TransF’’ denotes the transformer module.
Fig. 9. The illustration of the merger. The merger first generates the feature maps 𝑬𝑓 and kernel parameters 𝑬𝑘 through a feature branch and a kernel branch, respectively. Then
we convolute the feature map 𝑬𝑓 with kernel parameter 𝒆𝑘𝑖,𝑗 , which is utilized as the weights of a 1 × 1 convolution layer, to obtain the merged map 𝒎𝑖,𝑗 of the 𝑖th row, 𝑗th
column grid.
According to the detected table separation line instance, we select
convolution kernels from 𝜃𝜃𝜃col to conduct dynamic convolution with
𝑭 col to predict table column separation line masks �̂� col ∈ R

𝐻
4 ×𝑊

4 ×𝑁col
,

where 𝑁col represents the number of detected table column separation
line instances. The loss function on �̂� col is defined as follow:

ℒ col
𝑠 = 1

𝑁col

𝑁col
∑

𝑘=1

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1

𝐿f

(

𝐹 col
𝑖,𝑗,𝑘, 𝐹

col
𝑖,𝑗,𝑘

)

∑𝐻
𝑖=1

∑𝑊
𝑗=1 𝐹

col
𝑖,𝑗,𝑘

(3)

in which

𝐿f (𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

𝛼 (1 − 𝜎 (𝑥))𝛾 log
(

1
𝜎(𝑥)

)

, 𝑖𝑓 𝑦 = 1

(1 − 𝛼) 𝜎 (𝑥)𝛾 log
(

1
1−𝜎(𝑥)

)

, 𝑖𝑓 𝑦 = 0
(4)

where �̃� col denotes the ground-truth of table column separation line
masks. 𝐹 col

𝑖,𝑗,𝑘 is 1 if the pixel in 𝑖th row, 𝑗th column and 𝑘th channel
belongs to 𝑘th table column line, otherwise 0. The function 𝐿f is
actually the sigmoid focal loss [53] and the 𝜎 is the sigmoid function.

Considering the table column separation lines are typically spread
through vertical direction, we process �̂� col in a row-wise manner to
obtain the final table column separation line. Specifically, as shown in
Fig. 7(b), given a table column separation line mask, we first find the
maximum score of each row, which is presented as a set of red dots as
shown in Fig. 7(b). The table column separation line can be obtained
by connecting these red dots together. The grid bounding boxes 𝑩 can
be derived from the intersection of table row/column separation lines.

4.2. Embedder

The embedder aims to extract the grid-level feature representa-
tions 𝑬 ∈ R𝑀×𝑁×𝐷, where 𝐷 is the number of feature channels. As
6

shown in Fig. 8, we take the image-level feature map 𝑭 and the well-
divided table grids 𝑩 obtained from the splitter as input, and apply the
RoIAlign [42] to extract a fixed size 𝑅 × 𝑅 feature map �̂�𝑖,𝑗 ∈ R𝑅×𝑅×𝐶

for each grid.

�̂�𝑖,𝑗 = RoIAlign𝑅×𝑅
(

𝑭 , 𝒃𝑖,𝑗
)

(5)

Then two linear transformations with a ReLU function are conducted
on �̂�𝑖,𝑗 to obtain the 𝐷-dimension output:

𝒆𝑖,𝑗 = max
(

0, �̂�𝑖,𝑗𝑾 1 + 𝒃1
)

𝑾 2 + 𝒃2 (6)

where 𝑾 1 and 𝑾 2 are learned projection matrices, 𝒃1 and 𝒃2 are
learned biases. So far, the features of each basic table grid are still in-
dependent of each other. Therefore, we introduce the transformer [54]
to capture long-range dependencies on table grid elements and utilize
its output as the final grid-level features 𝑬.

4.3. Merger

The merger takes the grid-level features 𝑬 as input and yields a set
of merged maps, which can be formulated as: 𝑴 =

{

𝒎1,1,… ,𝒎𝑀,𝑁
}

,
𝒎𝑖,𝑗 ∈ {0, 1}𝑀×𝑁 , 𝑖 ∈ {1,… ,𝑀} , 𝑗 ∈ {1,… , 𝑁}. Following the ap-
proach of the splitter, as illustrated in Fig. 9, we use a feature branch
and a kernel branch to predict 𝑴 jointly. Each branch contains only
one 1 × 1 convolution layer to generate feature maps 𝑬𝑓 ∈ R𝑀×𝑁×𝐷

and kernel parameters 𝑬𝑘 ∈ R𝑀×𝑁×𝐷. We first convolute the feature
map 𝑬𝑓 with kernel parameter 𝒆𝑘𝑖,𝑗 , which is utilized as the weights of
a 1 × 1 convolution layer, to predict the merged map �̂�𝑖,𝑗 ∈ [0, 1]𝑀×𝑁 .
The loss function is formulated as follows:

ℒ𝑚 = 1
𝑀 ×𝑁

𝑀
∑

𝑁
∑ 𝐿f

(

�̂�𝑖,𝑗 , �̃�𝑖,𝑗
)

‖�̃� ‖

(7)

𝑖=1 𝑗=1 𝑖,𝑗 1
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where ‖ ⋅‖1 is the L1 norm, the function 𝐿f has been defined in Eq. (4),
̃ 𝑖,𝑗 ∈ {0, 1}𝑀×𝑁 denotes the merged map ground-truth of the 𝑖-th row,
-th column table grid. If the value of �̃�𝑖,𝑗 is equal to 1, then it indicates
hat the corresponding grid is associated with the identical table cell;
therwise, 0. The final merged map 𝒎𝑖,𝑗 can be obtained by binarizing
̂ 𝑖,𝑗 .

. Experiment

In this section, we perform comprehensive experiments on the
ciTSR [5], PubTabNet [6], cTDaR [16], WTW [11] and the proposed
FLYTAB dataset to verify the effectiveness of SEMv2. We first introduce
he relevant datasets and metrics, and then demonstrate the label
eneration and implementation details of our method. Additionally,
e visualize the predicted results of our model and conduct ablation

tudies to analyze the effectiveness of our proposed splitter, gather and
erger. Our model is compared with state-of-the-art methods on public

enchmark datasets.

.1. Datasets

SciTSR comprises of 12,000 training samples and 3,000 testing
amples of axis-aligned tables extracted from the scientific literature.
urthermore, to reflect the model’s ability of recognizing complex ta-
les, it also selects all the 716 complex tables from the test set as a more
hallenging test subset, called SciTSR-COMP. It is worth noting that
he test set of SciTSR encompasses the presence of annotation errors.
o ensure a more accurate evaluation of the model’s performance,
e follow the RobusTabNet [12] and rectify the annotation errors
resent within the test set. Thus, it is pertinent to acknowledge that
comparison with other methods on the SciTSR dataset may entail a

egree of unfairness, while the comparison on PubTabNet will emerge
s a more equitable benchmark.
PubTabNet is a large-scale table recognition dataset, which con-

ains 500,777 training samples and 9,115 validating samples. Pub-
abNet annotates each table image with information about both the
tructure of table and the text content with position of each non-empty
able cell. All tables are also axis-aligned and collected from scientific
rticles.
cTDaR TrackB1-Historical [16] contains 600 training samples and

50 testing samples. It is worth noting that the table images utilized
n this dataset are historical documents with handwritten. This dataset
rovides the physical coordinates and structure information for each
able cell.
WTW contains 10,970 training images and 3,611 testing images

ollected from wild complex scenes. This dataset focuses on wired
abular objects only and provides the annotated information of tabular
ell coordinates, and row/column information.
iFLYTAB is the proposed dataset in this paper, which contains

2,104 training samples and 5,187 testing samples. We provide com-
rehensive annotation for each table image including physical coor-
inates and structure information. However, it is worth noting that
FLYTAB does not provide annotations for the textual content within
able images. In addition to the axis-aligned digital documents, the
ollected table images also include images taken by cameras, which
re more challenging due to the complicated background and non-rigid
mage deformation.

.2. Metric

We use F1-Measure [55], Tree-Edit-Distance-based Similarity (TEDS)
6], WAvg.F1 [16] and GriTS [56] metric, which are commonly adopted
n table structure recognition literature and competitions, to evaluate
he performance of our model for recognition of the table structure.

In order to use the F1-Measure, the adjacency relationships among
he table cells need to be detected. F1-Measure measures the percentage
7

f correctly detected pairs of adjacent cells, where both cells are
egmented correctly and identified as neighbors. When evaluating on
he WTW dataset, we use the cell adjacent relationship metric [57].
his metric is a variant of F1-Measure that maps a groundtruth cell
ith a predicted cell according to the Intersection over Union (IoU).
ere we use IoU=0.6.

TEDS measures the similarity of the tree structure of tables. While
sing the TEDS metric, we need to present tables as a tree structure in
he HTML format. Finally, TEDS between two trees is computed as:

EDS(𝑇𝑎, 𝑇𝑏) = 1 −
EditDist(𝑇𝑎, 𝑇𝑏)
max(|𝑇𝑎|, |𝑇𝑏|)

(8)

where 𝑇𝑎 and 𝑇𝑏 are the tree structure of tables in the HTML formats.
EditDist represents the tree-edit distance [58], and |𝑇 | is the number
of nodes in 𝑇 .

Since taking OCR errors into account may lead to an unfair com-
parison due to the different OCR models used by various TSR methods,
we also employ a modified version of TEDS, called TEDS-Struct. The
TEDS-Struct assesses the accuracy of table structure recognition, while
disregarding the specific outcomes generated by OCR.

While using the WAvg.F1, the precision, recall and F1 value of cell
detection and cell pair relation prediction need to be calculated at IoU
thresholds of [0.6, 0.7, 0.8, 0.9]. The weighted average F1 (WAvg.F1)
value of all IoU thresholds is defined as:

WAvg.F1 =
∑4

𝑖=1 IoU𝑖 ⋅ F1@IoU𝑖
∑4

𝑖=1 IoU𝑖

(9)

The recently proposed GriTS metric compares predicted tables and
ground truth directly in matrix form and can be interpreted as an F-
score over the correctness of predicted cells. Exact match accuracy
considers the percentage of tables for which all cells, including blank
cells, are matched exactly.

In our experiments, we align the official provided text contents to
the predicted table cells according to the IOU metric. Ultimately, the
output for each table image encompasses the physical coordinates of
predicted cell bounding boxes, accompanied by spanning information
its corresponding content. It is worth noting that the iFLYTAB dataset
does not provide text content annotation. Consequently, during the
evaluation of iFLYTAB, we assign a distinctive marker to each text line,
signifying its individual content. The evaluation code has been made
available to the public and can be accessed at the following link:.1

5.3. Label generation

Label of Splitter Distinct from previous methods, we formulate
table separation line detection as an instance segmentation task and
endeavor to predict an individual mask for each table row/column
separation line. Two labels necessitate generation to guide the training
of the splitter, namely the table row/column separation line masks
�̃� row/�̃� col and table row/column line instance �̃�row/�̃�col.

Following the SEM [10], the table separation line mask �̃� row/�̃� col

re designed to maximize the size of the separator regions without
ntersecting any non-spanning cell content, as shown in Fig. 10.

The �̃�row/�̃�col is utilized to distinguish different table row/column
separation lines. As depicted in Fig. 11, we define �̃�row/�̃�col as the
rojection of the start points of table row/column separation lines on
he y-axis/x-axis.
Label of Merger Since we obtain the label of the splitter, we can

artition the table into a series of basic table grids. According to
he row/column information provided by the original table structure
nnotation, we can parse which table grids belong to the same table
ell.

1 https://github.com/ZZR8066/SEMv2

https://github.com/ZZR8066/SEMv2


Pattern Recognition 149 (2024) 110279Z. Zhang et al.
Fig. 10. The visualization of generated table row/column separation line mask labels �̃� row/�̃� col.
Fig. 11. The visualization of generated table row/column line instance labels �̃�row/�̃�col.
5.4. Implementation details

The ResNet-34 [50] as our backbone is pre-trained on ImageNet
[59]. The number of feature channels 𝐶 and 𝐷 is set to 256 and 512
respectively. The pool size 𝑅 ×𝑅 of RoIAlign in the embedder is set to
3 × 3. The hyperparameters 𝛼 and 𝛾 of sigmoid focal loss 𝐿f are set to
0.25 and 2. The threshold for binarization operations is set to 0.5.

The training objective of our model is to minimize the table row/
column separation line segmentation loss (ℒ row

𝑠 /ℒ col
𝑠 ), the table row/

column separation line instance classification loss (ℒ row
inst /ℒ col

inst), and the
cell merge loss (ℒ𝑚). The objective function for optimization is shown
as follows:

𝑂 = ℒ row
𝑠 +ℒ col

𝑠 +ℒ row
inst +ℒ col

inst +ℒ𝑚 (10)

We employ the ADADELTA algorithm [60] for optimization, with
the following hyper parameters: 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜀 = 10−9.
We set the learning rate using the cosine annealing schedule [61] as
follows:

𝜂𝑡 = 𝜂𝑚𝑖𝑛 +
1
2
(𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛)(1 + cos(

𝑇𝑐𝑢𝑟
𝑇𝑚𝑎𝑥

𝜋)) (11)

where 𝜂𝑡 is the updated learning rate. 𝜂𝑚𝑖𝑛 and 𝜂𝑚𝑎𝑥 are the minimum
learning rate and the initial learning rate, respectively. 𝑇𝑐𝑢𝑟 and 𝑇𝑚𝑎𝑥
are the current number of iterations and the maximum number of
iterations, respectively. Here we set 𝜂𝑚𝑖𝑛 = 10−6 and 𝜂𝑚𝑎𝑥 = 10−4.

In our experiments, we do not train the model using the training
sets of all the datasets, but rather train it on the training sets of each
dataset and test it on the test sets of each dataset. Following the
SEM [10], SEMv2 is trained with table images in original size on the
SciTSR and PubTabNet. However, in the case of the iFLYTAB dataset,
we resize the table images using a randomly selected ratio within
the range of [0.8, 1.2]. Different from the training strategy employed
by TSRFormer [38], which follows a multi-stage process, we train
the SEMv2 in an end-to-end manner. We initialize SEMv2 with the
model trained on the iFLYTAB dataset and then fine-tune it on the
cTDaR TrackB1-Historical dataset. We crop table regions from original
images in the WTW dataset for both training and testing. Our training
setup includes a single NVIDIA TESLA V100 GPU with 32 GB RAM
memory and a batch size of 8 for the SciTSR, PubTabNet and cTDaR.
For iFLYTAB and WTW, we utilize 8 NVIDIA TESLA V100 GPUs with
32 GB RAM memory and a batch size of 48. The whole framework was
implemented using PyTorch.
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Table 2
Comparison among systems from T1 to T6. ‘‘InstSeg’’ means the Instance Segmentation
method which is the proposed splitter in this paper. ‘‘SemaSeg’’ means the Semantics
Segmentation method which follows the splitter in SEM [10]. ‘‘ParaDec’’ means the
Parallel Decoder which is the proposed merger in this paper. ‘‘SeqDec’’ means the
Sequence Decoder which follows the merger in SEM [10].

System Splitter Gather Merger

InstSeg SemaSeg ParaDec SeqDec

T1 ✓ ✗ ✓ ✓ ✗

T2 ✗ ✓ ✓ ✓ ✗

T3 ✓ ✗ ✗ ✓ ✗

T4 ✓ ✗ ✓ ✗ ✗

T5 ✓ ✗ ✓ ✗ ✓

T6 ✗ ✓ ✗ ✗ ✓

5.5. Visualization

In this section, we visualize the predicted results of both the splitter
and the merger to show how SEMv2 recovers the table structure. In
our work, we formulate table separation line detection as an instance
segmentation task, as exemplified in Fig. 12(a–b), where different
colors represent SEMv2’s predictions for distinct instances of table
separation lines. By finding the maximum score on each column/row
of the table row/column separation line mask, we can obtain the table
row/column separation lines, as depicted in Fig. 12(c–d). As illustrated
in Fig. 12(e), the table grid structure can be derived by intersecting the
table row/column separation lines. Through the merger, the spanning
cells structure can be restored, ultimately obtaining the final table
structure, as shown in the red dashed boxes in Fig. 12(f).

5.6. Ablation study

To verify the effectiveness of each component, we conduct ablation
experiments through several designed systems as shown in Table 2.
The model is not modified except for the component being tested.
As depicted in Table 2, T6 represents our baseline system, essentially
representing SEM [10] without the textual branch. On the other hand,
T1 corresponds to our proposed SEMv2. As shown in Table 3, by com-
paring T1 and T6, it is evident that our approach exhibits superiority
over SEM in terms of both performance and efficiency.
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Fig. 12. The visualization of predicted results by SEMv2. The red dash boxes in (e–f) denote the difference between the table grid structure and table structure.
Fig. 13. The segmentation results from the splitters of the designed systems T1 and T2. (a) and (b) correspond to images extracted from digital documents and camera-captured
documents, respectively.
Table 3
The performance by using different splitter modules on the SciTSR and iFLYTAB
datasets. The system T6 actually is our baseline system SEM without the textual branch.
Bold indicates the best result.

System SciTSR iFLYTAB

P R F1 P R F1 TEDS-Struct

T1 99.3 99.2 99.3 93.8 93.3 93.5 92.0
T2 99.1 98.5 98.8 81.9 72.7 77.0 75.8
T6 99.0 98.0 98.5 81.7 74.5 78.0 75.9

Table 4
The performance on the employment of the gather module on the SciTSR and iFLYTAB
datasets. The system T6 actually is our baseline system SEM without the textual branch.
Bold indicates the best result.

System SciTSR iFLYTAB

P R F1 P R F1 TEDS-Struct

T1 99.3 99.2 99.3 93.8 93.3 93.5 92.0
T3 98.6 98.2 98.4 91.1 89.8 90.4 89.3
T6 99.0 98.0 98.5 81.7 74.5 78.0 75.9

The effectiveness of the splitter. In contrast to the majority of
previous ‘‘split-and-merge’’ based methods, we formulate table separa-
tion line detection in the ‘‘split’’ stage as an instance segmentation task
rather than a semantic segmentation. To evaluate the efficacy of our
proposed splitter, we devis the systems T1 and T2 as shown in Table 2.
Specifically, T1 represents our proposed SEMv2, whereas T2 replaces
the splitter with the one used in the previous state-of-the-art method,
SEM [10]. As shown in Table 3, although the performance of T1 is only
marginally better than T2 on datasets comprising axis-aligned scanned
9

Table 5
The performance and Frames Per Second (FPS) by using different merger
modules on the SciTSR dataset. The system T6 actually is our baseline
system SEM without the textual branch. Bold indicates the best result
and underline indicates the second best.

System SciTSR

P R F1 FPS

T1 99.3 99.2 99.3 7.3
T4 99.1 97.4 98.2 8.9
T5 99.3 99.2 99.2 2.9
T6 99.0 98.0 98.5 3.1

PDF documents (e.g., SciTSR), T1 exhibits a significantly superior per-
formance on the iFLYTAB dataset. This is because the iFLYTAB dataset
features camera-captured images with severe deformation, bending,
or occlusions. Additionally, we present the segmentation results from
splitters of both T1 and T2 in Fig. 13. It can be seen that both T1 and T2
can get high-quality masks on the digital document, but on the camera-
captured document, the prediction result of T2 is relatively lower. It is
very hard for the mask-to-line post-processing module to handle such
low-quality masks well. In contrast, our instance segmentation based
method can easily obtain the shape of the table separation line in a row-
wise or column-wise manner, which is more robust to such challenging
tables.

The effectiveness of the Gather. To illustrate the effectiveness
of the Gather module, as shown in Table 2, we designed a system
T3, which eliminates RowGather/ColGather, and obtains 𝑮row/𝑮col by
calculating the column/row mean value of 𝑭 . As shown in Table 4,
T1 outperforms T3 by a large margin on both SciTSR and iFLYTAB
datasets, which demonstrates the effectiveness of the Gather module
for capturing horizontal/vertical visual clues.
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Table 6
Comparison with state-of-the-art methods. Bold indicates the SOTA and underline indicates the second best.

Method SciTSR SciTSR-COMP PubTabNet

P R F1 P R F1 TEDS TEDS-Struct

EDD [6] – – – – – – 88.3 –
TabStructNet [23] 92.7 91.3 92.0 90.9 88.2 89.5 – 90.1
GraphTSR [5] 95.9 94.8 95.3 96.4 94.5 95.5 – –
SEM [10] 97.7 96.5 97.1 96.8 94.7 95.7 93.7 96.3
LGPMA [9] 98.2 99.3 98.8 97.3 98.7 98.0 94.6 96.7
RobusTabNet [12] 99.4 99.1 99.3 99.0 98.4 98.7 – 97.0
TSRFormer [38] 99.5 99.4 99.4 99.1 98.7 98.9 – 97.5

SEMv2 99.3 99.2 99.3 98.7 98.6 98.7 – 97.5
Table 7
The performance comparison on the cTDaR TrackB1-Historical dataset. Bold indicates
the SOTA.

Team IoU=0.6 IoU=0.7 WAvg.F1

P R P R

HCL IDORAN 25.0 5.0 23.0 4.0 6.0
NLPR-PAL 76.0 83.0 69.0 75.0 48.0
SEMv2 89.2 82.8 88.3 79.2 67.5

Table 8
The performance comparison on the WTW dataset. Bold indicates the
SOTA.

Method P R F1

Cycle-CenterNet [11] 93.3 91.5 92.4
TSRFormer [38] 93.7 93.2 93.4
SEMv2 93.8 93.4 93.6

The efficiency of the merger. As shown in Table 2, we design the
systems T1, T4 and T5 that employ different mergers. T4 eliminates
the merger, while T5 substitutes it with the one utilized in SEM [10].
As shown in Table 5, though T4 exhibits slightly higher Frames Per
Second (FPS) than T1, its performance deteriorates significantly as it
disregards table cells that span multiple rows or columns. The com-
parison between T1 and T4 also illustrates the indispensability of the
merger. The merger in SEM predicts the merging of grids in a step-by-
step manner. As the number of table cells increases, the costed time in
the decoding stages of T5 rise, causing the FPS of T5 to be much lower
than T1 and T4.

5.7. Comparison with state-of-the-art methods

We compare our method with other state-of-the-art methods on five
TSR datasets, including SciTSR, PubTabNet, cTDaR, WTW and iFLY-
TAB. The results are shown in Tables 6–10. Furthermore, we visualize
the prediction results of our method as shown in Fig. 15. Finally, we
discuss the differences between SEMv2 and other methods that adhere
to the ‘‘split-and-merge’’ principle.

SciTSR and PubTabNet As shown in Table 6, our method achieves
competitive performance compared to state-of-the-art methods. The
test dataset of SciTSR exhibits a few annotation errors. Following
the RobusTabNet [12], we manually rectify these annotation errors.
However, it may result in an unfair comparison with other methods.
The more equitable comparison can be observed on the PubTabNet.
It is worth noting that the LGPMA [9] emerged as the winner of the
ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

cTDaR TrackB1-Historical To verify the effectiveness of our ap-
proach on tabular objects in various scenes, we conduct experiments on
the cTDaR TrackB1-Historical dataset. The table images in this dataset
are historical documents with handwritten. As shown in Table 7, we
compare the SEMv2 with the participant teams of ICDAR 2019 Compe-
tition on Table Detection and Recognition, TrackB2 [16]. Our method
outperforms other teams by a large margin.
10
Fig. 14. The performance of SEMv2 on a series of iFLYTAB subsets.

WTW To verify the effectiveness of our approach on wired dis-
torted/curved tabular objects in wild scenes, we also conduct experi-
ments on the WTW dataset. The results in Table 8 show that our method
achieves comparable performance with state-of-the-art methods. To
investigate the performance of SEMv2 in table structure recognition
across various scenarios, we conducted tests on a series of subsets
divided by WTW as shown in Table 9. For polygon detection methods
like Cycle-CenterNet [11], SEMv2 performs better in scenarios such as
curved, occluded and blurred, and extreme aspect ratio. However, in
overlaid scenes, we found that SEMv2’s performance was inferior. In
the overlaid subset, most of the table images exhibit significant angular
rotation, which reduces the overall performance of table structure
recognition. How to enhance the performance of SEMv2 in scenarios
with obvious angle rotation is also a direction for our future research.

iFLYTAB The iFLYTAB dataset is distinct from SciTSR and PubTab-
Net in that it encompasses table images taken by cameras. These images
are typically accompanied by intricate backgrounds and non-rigid de-
formations, which makes them more challenging. It is worth noting
that detection-based methods (e.g. TabStructNet [23], LGPMA [9]) are
subject to the constraints that tables are free of visual rotation or
perspective transformation. This condition is difficult to satisfy when
table images are camera-captured. Therefore, as shown in Table 10, we
reimplement the closest method, SEM [10], for a fair comparison on the
iFLYTAB dataset. Since the iFLYTAB does not provide the text content
annotation, we remove the textual feature in our reimplemented SEM.
It can be seen that SEMv2 outperforms SEM by a large margin. As
depicted in Fig. 14, we also evaluate the performance of SEMv2 on
different subsets of the iFLYTAB dataset. Notably, the model’s perfor-
mance is comparatively lower in the camera-captured scenarios due to
the suboptimal image qualities. Furthermore, the model performance
is less satisfactory on wireless tables than on wired ones, as the former
lacks crucial visual information.

Split-and-merge Previous works such as TSRFormer [38], SEM
[10], SPLERGE [8] and RobusTabNet [12] all follow the ‘‘split-and-
merge’’ principle. The main difference between these methods is found
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Table 9
The F1 score comparison on different categories of the WTW dataset. Bold indicates the SOTA.

Method Simple Inclined Curved Occluded Extreme Overlaid Multi
and blurred aspect ratio color and grid

Cycle-CenterNet 99.3 97.7 76.1 77.4 91.9 84.1 93.7
SEMv2 97.9 96.0 87.1 85.7 96.1 75.1 92.1
Fig. 15. Some structure recognition results of SEMv2. a* refer to SciTSR, b* refer to PubTabNet, c* refer to cTDaR, d* refer to WTW, e* refer to iFLYTAB. (e1) refers to the
digital wired table, (e2)∼(e3) refer to camera-captured wired tables, (e4) refers to the digital wireless table, (e5)∼(e6) refer to camera-captured wireless tables.
Table 10
The performance comparison with SEM on the iFLYTAB dataset. Bold indicates the
SOTA.

Method P R F1 TEDS-Struct GriTSCon GriTSTop

SEM 81.7 74.5 78.0 75.9 79.8 82.3
SEMv2 93.8 93.3 93.5 92.0 94.2 94.6

in their individual split stages. SEM, SPLERGE and RobusTabNet design
the splitter based on the semantic segmentation, which requires a
complex mask-to-line algorithm to extract table row/column separation
lines from the predicted masks. In contrast, SEMv2 designs an instance
segmentation-based method in the split stage, which predicts a mask
for each table row/column separation line. Considering that most table
row/column separation lines are spread through horizontal/vertical
direction, we propose a simple ‘‘mask-to-line’’ algorithm, as shown in
Fig. 7, that can accurately extract table row/column separation lines.
TSRFormer formulates separation line prediction as a line regression
problem instead of an image segmentation problem. Specifically, TSR-
Former predicts reference points and using a DETR decoder to regress
line coordinates. As shown in Table 8, TSRFormer and SEMv2 are
comparable in performance.
11
6. Error analysis

WTW In this section, we present the table structure recognition re-
sults obtained by TSRFormer [38] and SEMv2 on the iFLYTAB dataset,
as shown in Fig. 16. TSRFormer follows the ‘‘split-and-merge’’ ap-
proaches [10,12] and proposes a line regression method to detect table
separation lines in the split stage. As shown in Table 8, TSRFormer
performs similarly to SEMv2 in terms of performance. As shown in
the first row of Fig. 16, both methods can handle scanned documents
well. In the second and third rows of Fig. 16, SEMv2 performs slightly
better in some natural scenes. For example, in the third row, SEMv2 can
achieve more accurate results for some curved table separation lines.

Additionally, as shown in Fig. 17, we also present three scenarios
where SEMv2 performs poorly on the WTW test set. As demonstrated in
Fig. 17(a-b), for text outside the table area, SEMv2 mistakenly judges it
as a row of the table, resulting in lower accuracy. For tables with obvi-
ous angle rotation, although SEMv2 has a certain capability to handle
it, there is still a gap compared to polygon detection methods [11].
How to improve the model’s performance in scenarios with significant
angle rotation will be a direction for our future research.

iFLYTAB In this section, we present erroneous table structure recog-
nition results obtained by SEMv2 on the iFLYTAB dataset, as depicted
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Fig. 16. Some table structure recognition results obtained by TSRFormer and SEMv2 on the WTW dataset. First Column the table structure predictions from the TSRFormer.
Second Column the table structure predictions from the SEMv2. Third Column the ground truth table structure. The red dash boxes denote the different prediction regions
between TSRFormer and SEMv2.

Fig. 17. Some table structure recognition results obtained by SEMv2 on different categories of the WTW dataset. First Row the ground truth table structure. Second Row the
table structure predictions from the SEMv2. The red dash boxes denote the different prediction regions between ground truth and SEMv2.
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Fig. 18. Some incorrect table structure recognition results by SEMv2 on the iFLYTAB dataset. First Column the predictions of the table grid structure from the splitter. Second
Column the final predictions of the table structure from the merger. Third Column the ground truth table structure. The red dash boxes denote the incorrect prediction regions.
in Fig. 18. As illustrated in the first row of Fig. 18, the iFLYTAB
dataset comprises screen-captured table images, characterized by pro-
nounced moiré patterns, which adversely affect the performance of
our approach. The second and third rows of Fig. 18 showcase table
cells within the iFLYTAB dataset that harbor multi-line content. As
explicated by SEM [10], the model necessitates a comprehensive com-
prehension of the textual elements within the table images to facilitate
more precise predictions. To enhance the efficiency of the model,
SEMv2 refrains from introducing the textual branch, in contrast to
its predecessor SEM, which consequently results in underperformance
when confronted with table cells containing multi-line content. Devis-
ing efficient strategies to enable the model to understand the textual
content in the table images and predict accurate table structure will be
our future work.

7. Conclusion and future work

In this paper, we propose a novel method for tackling the problem
of table structure recognition, SEMv2. It mainly contains three compo-
nents including splitter, embedder and merger. Distinct from previous
methods in the ‘‘split’’ stage, SEMv2 aims to distinguish each table
line and formulate the table line detection as an instance segmentation
task. The ablation experiment also demonstrates that our proposed
splitter is more robust to tables in various scenarios. Moreover, we
propose a parallel decoder based on conditional convolution for the
merger, which significantly boosting the model’s efficiency. To com-
prehensively evaluate the SEMv2, we also present a more challenging
dataset for table structure recognition, named iFLYTAB. We collect
and annotate 17,291 tables (both wired and wireless type tables) in
various scenarios such as camera-captured photos, scanned documents,
etc. Some table images in iFLYTAB have intricate backgrounds and
non-rigid deformations. The comprehensive experiments on the pub-
licly available datasets (e.g. SciTSR, PubTabNet) and the proposed
iFLYTAB dataset illustrate that the SEMv2 achieves a state-of-the-art
performance for table structure recognition. We hope our proposed
13
iFLYTAB dataset can further advance future research on table structure
recognition.

SEMv2 achieves state-of-the-art performance on table structure
recognition, but it still has some limitations. As discussed in the error
analysis section, the model’s recognition capabilities are notably com-
promised when dealing with images that not only exhibit significant
rotational distortion but also suffer from poor image quality. Addition-
ally, SEMv2 performs poorly in predicting the structure of cells with
multi-line text due to the lack of textual information. To make SEMv2
more robust, we will study an efficient multi-modal table structure
recognition scheme in our future work. This scheme will fully utilize
the textual, visual, and layout information in table images to complete
the prediction of table structure recognition. Furthermore, we will also
study the application of computer vision techniques in table structure
recognition to eliminate moiré patterns, severe image distortion, and
other challenges, thereby improving the model’s prediction accuracy.
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