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Writing style is an abstract attribute in handwritten text. It plays an important role in recognition
systems and is not easy to define explicitly. Considering the effect of writing style, a writer adaptation
method is proposed to transform a writer-independent recognizer toward a particular writer. This
transformation has the potential to significantly increase accuracy. In this paper, under the deep
learning framework, we propose a general fast writer adaptation solution. Specifically, without de-
pending on other complex skills, a well designed style extractor network (SEN) trained by identification
loss (IDL) is introduced to explicitly extract personalized writer information. The architecture of SEN
consists of a stack of convolutional layers followed by a recurrent neural network with gated recurrent
units to remove semantic context and retain writer information. Then, the outputs of the GRU are
further integrated into a one-dimensional vector that is adopted to represent writing style. Finally,
the extracted style information is fed into the writer-independent recognizer to achieve adaptation.
Validated on offline handwritten text recognition tasks, the proposed fast sentence-level adaptation
achieves remarkable improvements in Chinese and English text recognition tasks. Specifically, in the
HETR task, a multi-information fusion network that is equipped with a hybrid attention mechanism
and that integrates visual features, context features and writing style is proposed. In addition, under
the same condition (only one writer-specific text line used as adaptation data), the proposed solution,
without consuming extra time, can significantly outperform the previous multiple-pass decoding
method. The code is available at https://github.com/Wukong90/Handwritten-Text-Recognition.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Deep learning (LeCun, Bengio, & Hinton, 2015) methods have
ecently made notable improvements on handwritten text recog-
ition (Fujisawa, 2008). However, it remains challenging to build
robust text recognizer that can handle varying data of new
riters effectively, due to the large variability of handwriting
tyles across individuals. In addition to the morphological vari-
tions within characters, writing orientation and ligatures make
ext recognition much more challenging than character recogni-
ion. To handle this problem, a general solution is to ensure the
riter-independent recognizer has been trained with large-scale
nnotated data from many writers, which is time consuming to
ollect, label and train these data and cannot cover all diversities.
owever, in the test stage, the unlabeled writer-specific data are
lways accessed. Thus if we can fully utilize these data to extract
tyle information for guiding the writer-independent recognizer,

∗ Corresponding author.
E-mail address: wangzr@cqupt.edu.cn (Z.-R. Wang).
ttps://doi.org/10.1016/j.neunet.2021.12.002
893-6080/© 2021 Elsevier Ltd. All rights reserved.
it can help improve the recognition performance. This process can
be described as an unsupervised writer adaptation algorithm.

Writer adaptation is closely similar to speaker adaptation
(Leggetter & Woodland, 1995; Saon, Soltau, Nahamoo, & Picheny,
2013) in speech recognition (Hinton, Deng, et al., 2012), which
can be regarded as a special case of domain adaptation (Pan &
Yang, 2009) where the test data usually have a different distribu-
tion from the training data. Depending on whether the adaptation
data from each particular writer are labeled or unlabeled, the
adaptation algorithms can be divided into supervised, unsuper-
vised and semi-supervised adaptation. In most cases, there are
no labeled data available in the test stage. From this perspec-
tive, unsupervised writer adaptation seems to be more difficult
but practically useful. Previous unsupervised writer adaptation
methods usually depend on extra complex procedures, such as
multiple-pass decoding to obtain pseudo labels (Wang, Du, &
Wang, 2020) for adaptation and style transfer mapping (Zhang
& Liu, 2012) to transform writer-specific features into style-
free space. In Zhang and Liu (2012), style transfer mapping
(STM) based on least squares regression is employed to project
source domain data (writer-specific space) into the target domain

https://doi.org/10.1016/j.neunet.2021.12.002
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.12.002&domain=pdf
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Fig. 1. Comparison of the typical paradigm of unsupervised writer adaptation and the proposed fast writer adaptation. The abbreviations L,W1,W2,W3,W4 denote
he loss function and the weights in different neural networks, respectively.
writer-independent space). However, due to the difficulty of
efining source domain and target domain in the text recognition
ask, it is not easy to extend this method to text recognition tasks.
n a recent work (Bhunia et al., 2021), Bhunia et al. employed
odel-agnostic meta-learning (MAML) (Finn, Abbeel, & Levine,
017) to achieve the purpose of writer adaptation.
From an alternative perspective, the research on writer adap-

ation can be divided into feature-space and model-space
pproaches based on the parts to which the adaptation parame-
ers are being applied. The former one focuses on transforming
riter-dependent features into writer-independent features. In
his approach, typical algorithms include incremental linear dis-
riminant analysis (ILDA) (Huang, Ding, Jin, & Gao, 2009), incre-
ental modified quadratic discriminant function (IMQDF) (Ding
Jin, 2010) and the already mentioned STM. The ILDA tries to

earch for the optimal linear projection matrix to maximize the
istance between classes and minimizing the distance within
he same class. The IMQDF can be regarded as the further de-
elopment of the ILDA. The data of each class are assumed to
e sampled from Gaussian distributions. The latter solution ad-
usts the writer-independent model toward the writer-dependent
odel by using specific writer data. The most common strategy is

o re-estimate parameters of recognition systems, such as Gaus-
ian Mixture Model-Hidden Markov Model (GMM–HMM) (Young
t al., 2002) and deep neural network (DNN) (Wang, Du, Wang,
hai, & Hu, 2018). In the presence of large amount of available
ata and GPU resources, DNN based methods have outperformed
ther models in many fields including image recognition (Deng
t al., 2009), speech verification (Lin, Mak, Li, Su, & Yu, 2020),
ext recognition (Wu, Yin, & Liu, 2017), object detection (Carion
t al., 2020) etc. Considering the flexible and changeable structure
f DNNs, it is easy to design specific layers and losses to achieve
odel transformation.
In this paper, we propose a fast writer adaptation based on

well-designed style extractor network (SEN). Guided by identi-
ication loss (IDL), the SEN explicitly extracts style information.
hen, the extracted style information is integrated into a one-
imensional vector and fed into the writer-independent recog-
izer (a typical recognition network) to achieve adaptation. The
ain features of this approach are described as follow:
43
• The SEN is a relatively independent module and can be
embedded seamlessly into any recognition networks.

• Using the SEN to extract style information is an end-to-end
approach without requiring other extra complex procedures
and assumptions.

• The SEN is not related to character classes, which makes it
suitable for any large-category problems, where the writer-
specific data are insufficient to cover all classes.

• The adaptation depending on SEN is an unsupervised writer
adaptation and can achieve sentence-level adaption.

In general, the comparison between the typical paradigm of
unsupervised writer adaptation and the proposed fast writer
adaptation is shown in Fig. 1. For typical paradigm, to re-optimize
the parameters of the writer-dependent system well, a large
amount of writer-specific data are needed. In addition, consid-
ering that the decoding time usually becomes bottleneck of the
total running time, in systems that use the multiple-pass de-
coding methods, the time consumption increases accordingly.
We validate the SEN-based adaptation on two different offline
handwritten text databases in two different languages, i.e., the
ICDAR2013 competition of CASIA-HWDB and the IAM. The pro-
posed algorithm can achieve remarkable improvement. In addi-
tion, under the same condition (only one writer-specific text line
used as adaptation data), the proposed solution can significantly
outperform the previous multiple-pass decoding method without
increased time consumption.

The contributions of this paper are described as follows:

(1) Under the deep learning framework, we propose a general
writer adaptation solution, which can achieve fast sentence-
level unsupervised adaptation.

(2) We propose the well-designed SEN to explicitly extract
writer information. Through visualization of experimen-
tal analysis, we can observe how the extracted codes can
accurately represent writing styles.

(3) We validate the capabilities of SEN on different offline hand-
written text recognition tasks. The recognizer equipped with
SEN can obtain obvious performance improvement and it far
outperforms the multiple-pass decoding method (Wang, Du,
et al., 2020) under the same comparable condition.
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able 1
he comparison of different segmentation-free methods.
Method Solution Network Input Network Output

HMM p(C|X) =
p(X|C)p(C)

p(X)

=
[
∑

S π (s0)
∏

i=1 asi−1si
∏

i=0 p(xi|si)]P(C)
p(X)

=
[
∑

S π (s0)
∏

i=1 asi−1si
∏

i=0 (p(si|xi)p(xi)/p(si))]P(C)
p(X)

Frame-level Image State Posterior Probability
p(si|xi)

CTC p(C|X) =

=

U∑
u=1

α(t, u)β(t, u)

Text Image Character Posterior Probability
p(C

′

u|xt )
in Forward Probability α(t, u) and Back Probability β(t, u)

ED p(C|X) =

∏
i

p(Cu|xi) Text Image Character Posterior Probability
p(Cu|xt )
Θ
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(4) A multi-information fusion network that is equipped with
a hybrid attention mechanism and that integrates visual
features, context features and writing style is proposed.

The remainder of this paper is organized as follows: Section 2
eviews the related work. Section 3 elaborates the details of the
roposed method. Section 4 reports the experimental results and
nalyses. Finally, Section 5 concludes the paper.

. Related works

In this section, we review related works, including handwrit-
en text recognition, traditional writer adaptation and neural
etwork based approaches for writer adaptation.

.1. Handwritten text recognition

Handwritten text recognition (HTR) is a typical sequence-to-
equence problem. Offline HCTR can be formulated as a Bayesian
ecision problem:

C = argmax
C

p(C|X) (1)

here X is the feature sequence of a given text line image and
= {C1, C2, . . . , Cn} is the underlying n-character sequence.

he key problem is how to compute the posterior probabil-
ty p(C|X). The research efforts for addressing such sequence
odeling tasks can be divided into four categories: overseg-
entation (Wang, Wang, Yin, & Liu, 2020; Wu et al., 2017),
onnectionist temporal classification (CTC) (Graves, Fernández,
omez, & Schmidhuber, 2006; Messina & Louradour, 2015; Zhang
t al., 2021), hidden Markov model (HMM) (Wang et al., 2018)
nd encoder–decoder (ED) method (Zhang, Liang, & Jin, 2020;
hang, Zhu, Du, & Dai, 2018). Almost all these approaches benefit
rom the recent progresses in deep learning. The outputs of neural
etworks in different modeling methods correspond to differ-
nt concepts. For example, in oversegmentation approaches, the
utputs of the neural network are related to segmentation iden-
ification or character classes. The outputs of the network used
n HMM-based approaches are posterior probabilities of states,
hile the outputs of the network in CTC, ED-based approaches
orrespond to character classes. In general, oversegmentation and
MM-based approaches have more complex steps. On the other
and, CTC and ED-based networks are end-to-end frameworks,
hich are relatively easier to follow and have faster decoding
peed. However, the latter two approaches are also highly depen-
ent on large amounts of text data for training. The HMM-based
pproach can make full use of isolated characters and text data
n datasets.

As shown in Table 1, we list the mathematical solutions of cur-
ent segmentation-free methods (HMM, CTC, ED) and the corre-
ponding inputs and outputs of recognition networks in different
 t
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methods. In the HMM-based method (Wang et al., 2018), each
character is modeled by an HMM and a text line can be repre-
sented by cascaded HMMs. At time i − 1, the frame-level image
xi−1 extracted from the original image by a left-to-right sliding
window is assigned to one underlying state si−1. The next frame
xi moves to the state si with the transition probability asi−1si .
After obtaining the probability p(ci|xi) from a neural network,
the formula p(X|C) is computable by using the forward–backward
algorithm. The training loss in HMM based network is:

LHMM(Θ) = −

∑
i

log p(ci|xi,Θ) (2)

denotes all the parameters of the weight matrices and bias vec-
ors in the network. The frame-level minibatch training dataset
ith the state labels can be prepared by using the GMM–HMM
Wang et al., 2018). P(C) is the so-called language model that
an be modeled by traditional N-gram algorithm (Katz, 1987) or
ecurrent neural network (Mikolov, Karafiát, Burget, Cernockỳ, &
hudanpur, 2010). Since we only focus on writing style adapta-
ion in this paper, the language model is not elaborated and not
sed in experiments. Considering that the main purpose is to find
he most suitable Ĉ, the prior probability P(X) can be ignored.
ifferent from the HMM, the CTC (Graves et al., 2006) adds a
ew class termed ‘blank’ and defines a sequence-to-sequence
unction ϕ to eliminate explicit segmentation. After a sentence
s fed into the function ϕ, only one of the consecutive adjacent
epeating characters is retained and the ‘blank’ characters are
emoved. Firstly, a new sentence C′ is generated by adding ‘blank’
haracters in the first and last locations and between each two
haracters of the sentence C. Then, to effectively compute the
robability of p(C′

|X), the forward probability α(t, u) and back
robability β(t, u) are defined. The α(t, u) denotes the probability
um of all paths that arrive at the location u in the sentence
′ at time t , in addition, these paths should get through all u/2
haracters in the sentence C. The β(t, u) is used to compute the
robability sum of the left corresponding paths that can form
ompleted paths by combining with the paths in α(t, u). For the
nput image X, the probability of C ′

u at time t is estimated via a
eural network. Thus the CTC can be regarded as a loss function
f neural networks:

CTC(Θ) = − log(
∑

π:ϕ(π)=C

p(π|X,Θ)) (3)

The input is a completed image X with the sequence label C,
nd π is the predicted character sequence under the constraint of
(π) = C. Again, we did not use a language model and lexicon in
ur experiments. For the ED system, the network directly outputs

he probability p(Cu|xt ).
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.2. Traditional writer adaptation

In the HTR task, most of the early works are based on the Gaus-
ian Mixture Model-Hidden Markov Model (GMM–HMM) (Senior
Nathan, 1997). Naturally, writer adaptation can be achieved

y using writer-specific data to adjust the means and variances
n the Gaussian distributions. In Vinciarelli and Bengio (2002),
aximum likelihood linear regression (MLLR) is employed to
eek linear transformations between original parameters and re-
stimated parameters. Furthermore, Brakensiek, Kosmala, and
igoll (2001) compare different adaptation techniques of GMM–
MM for cursive German script, i.e., retraining models according
o the maximum likelihood (ML) criterion using the Baum–Welch
lgorithm (Rabiner & Juang, 1986), the MLLR algorithm and the
aximum a posterior (MAP) adaptation. Almost simultaneously,
inciarelli and Bengio (2002) introduce similar algorithms for
ursive English script recognition. Different from the above adap-
ation methods, Cao and Tan (2000) first perform page style
lustering by using style features (such as contour slope, pen
ressure, writing velocity) and then the authors build indepen-
ent HMMs for each cluster. This approach can be regarded
s an instance of unsupervised writer adaptation. Unlike the
odeling way in the GMM–HMM system, inspired by the hu-
an perceptive psychology, segmentation based methods can
chieve unsupervised adaptation or self-supervised adaptation
hrough graphemes analysis. However, these methods only work
n small datasets due to limited ability of traditional classifiers.
n addition, style features introduced by artificial designs do not
ccurately represent complex writing variants.

.3. Neural network based approaches for writer adaptation

The generality of neural networks indicates that they should
e suitable for large-scale HTR tasks. An early attempt to use neu-
al networks in this context is made in Frinken and Bunke (2009).
n particular, a bidirectional long short-term memory (LSTM)
eural network (Hochreiter & Schmidhuber, 1997) is used as a
lassifier for cursive word recognition in which the neural net-
ork is iteratively retrained on its own outputs of new unlabeled
ata. With the success of deep learning in a wide range of applica-
ions, many neural networks based writer adaptation approaches
ave been proposed recently. Nair et al. (2018) simply fine-tune
retrained networks on a new dataset to achieve writer adapta-
ion. Due to large differences in writing styles between datasets,
his simple operation can yield a remarkable improvement. This
echnique is also widely used in speaker adaptation (Huang, Lu,
ei, & Yan, 2018) and domain adaptation (Wang & Deng, 2018).
urthermore, Soullard, Swaileh, Tranouez, Paquet, and Chatelain
2019) adopt both the optical model and the language model
LM) to a particular writer. Specially, a linear interpolation of
writer-independent LM and a writer-specific LM is proposed.
ore recently, Zhang et al. (2019) employ a gated attention
imilarity unit in the network to adaptively find character-level
riter-invariant features. The whole framework is an ED model.
alidated on the same task of this paper, Wang, Du, et al. (2020)
ntegrate each convolutional layer with one adaptive layer fed by
writer- dependent vector to extract the irrelevant variability

n writer information to improve recognition performance. The
uthors first define the writer code with random initialization for
ach writer. Then the first-pass decoding results obtained from
he writer-independent model are used to optimize these codes
or the adaptation purpose. The above process can be repeated.
owever, this method highly depends on a large amount of
riter-specific data and needs multiple-pass decoding, which is
ime consuming.
45
3. The proposed method

Given a baseline writer-independent neural networkWINN(Θ)
and an SEN(Γ), let Θ and Γ represent the weight sets of the WINN
nd the SEN, respectively. The writer adaptation method aims
o guide the WINN toward the corresponding writer-dependent
eural network WDNN(Θ, Γ, Λ) by using particular writer data.
ere, the symbol Λ represents the parameters connecting the
INN and the SEN. In our method, we employ the SEN to explic-

tly extract writer style for sentence-level fast writer adaptation.
t should be noted that the SEN is a plug-and-play module that
an be directly embedded into any handwritten text recognition
etworks. The whole training procedure has been summarized in
lgorithm 1. As shown in Algorithm 2, in the testing stage, the
orresponding style representation is first extracted based on the
nput text line. Then, the input text line and style representation
re fed into the stem recognition network to obtain the decoding
esult. In the following subsections, we will elaborate on the
etails of the different networks.

Algorithm 1 The training procedure of the fast writer adaptation.
Require:

The randomly initialized parameter sets {Θ , Γ , Λ};
The learning rates ϵWI, ϵSEN, ϵWD and loss functions LWI, LSEN,
LWD in the training stage of networks WINN, SEN and WDNN,
respectively.

1: Optimize the WINN parameter set Θ by using back-
propagation and stochastic gradient descent (SGD).
Θ = Θ − ϵWI

∂LWI
∂Θ

2: Train the SEN parameter set Γ based on the identification loss
(IDL).
Γ = Γ − ϵSEN

∂LSEN
∂Θ

3: Jointly update {Γ , Λ} during the training stage of the WDNN.
Γ = Γ − ϵWD

∂LWD
∂Θ

Λ = Λ − ϵWD
∂LWD
∂Θ

4: return The WDNN(Θ , Γ , Λ).

Algorithm 2 In the testing stage of the proposed system.

Require:
The text line X;
Prepare the WDNN parameter set {Θ , Γ , Λ};

1: Extract the writer style representation Y.
Y = NN(X|Γ , Λ)

2: Obtain the final network output O.
O = NN(X,Y|Θ)

3: return Decoding result based on O.

3.1. The backbone recognition networks

Regardless of the differences between the sequence algorithms
mentioned in Section 2, the backbone recognition networks in the
algorithms are similar. All of them are constructed by a stack of
convolutional layers, fully-connected layers and recurrent neural
units, and their training loss functions are typical cross entropy
(CE). As shown in Fig. 2, three typical neural units are compared.
For a one-dimensional input vector It fed into a fully-connected
layer at time t , the corresponding output Ot is the linear trans-
formation of It based on the weight matrix WFC and the bias
vector bFC, and followed by a nonlinear activation function (ReLu).
Different from the fully-connected layer, the output of the recur-
rent unit (GRU [39] or LSTM) is not only related to the current
input, but it also employs the historical information ht−1. Here,
we use the generic function f instead of a specific expression.
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Fig. 2. Three typical neural units: fully-connected layer, recurrent unit and convolutional layer.
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Fig. 3. The proposed hybrid attention module (HAM). The input I is a typical
3-D tensor in which the number of channels is C, height is H and width is W.

The transmission signal of the 2D convolutional layer is a three-
dimensional tensor organized by a set of planes called feature
maps. For the unit Ii,j,k in the feature map k at row i and column
j, it is constrained to connect a local region (M × N) across all
channels (L) in the previous layer, called the local receptive field.
Two contiguous local receptive fields are usually s pixels (referred
to as stride) shifted in a certain direction. Usually, all units in
the same feature map k of a convolutional layer share a set of
weights Wk and add the same bias value Bk, each computing a dot
product between its weights and the local receptive field in the
previous layer. In addition, convolutional layers can be followed
by attention blocks to further improve network performance.
In this paper, we also investigate two attention mechanisms,
i.e., squeeze-and-excitation block (SEB) (Hu, Shen, & Sun, 2018)
and parameter-free attention module (PFM) (Yang, Zhang, Li, &
Xie, 2021). From Fig. 3, we can clearly observe that the SEB
can achieve channel-wise attention by assigning to each channel
a different weight. In PFM, based on neuroscience theories, 3-
D attention weights are inferred for each pixel without adding
new parameters to the original network. Benefitting from their
observations, we combine both to form a finer attention, i.e., hy-
brid attention module (HAM). Intuitively, considering that the
HAM consists of double attention modules, our attention module
should improve the accuracy of the assigned weight of each pixel
and promote the learning and recognition of the whole network.

In the offline handwritten Chinese text recognition (HCTR)
task, we directly employ the CNN–PHMM system (Wang, Du,
et al., 2020) as our baseline. The corresponding backbone recog-
nition network is a simple convolutional neural network. For the
offline handwritten English text recognition (HETR), we build a
CRNN based on the CTC loss (Graves et al., 2006). Instead of
simply combining common CNN and RNN, we equip the convo-
lutional layers with the HAM. Further, the outputs of CNN noted
 g

46
as visual features are connected to the outputs of RNN (context
feature) for the final prediction. The details of different backbone
recognition networks are illustrated in Fig. 4.

3.2. The style extractor network

As shown in Fig. 5, on the left is the stem recognition network,
which can be constructed for character modeling by using any
type of network units in Fig. 2. For a given text image X =

x1, x2, . . . , xt , . . . , xN , where each xt represents the feature vec-
tor at frame t . For the input feature xt , the corresponding network
output is yt . The hidden layers of the stem recognition network
are denoted as H1,H2, . . . ,Hl,Hl+1. The structure of the SEN is
described on the right of Fig. 5. The front part of the network is
a cascade of CNN and RNN. CNN extracts deep representation of
the current frame, and the extracted feature is then sent to RNN.
There are two typical units in RNN, namely, LSTM and GRU. The
details of LSTM and GRU are shown in Fig. 6. The LSTM consists of
forget, input and output gates for maintaining its state over time
to handle the problem of long-term dependencies well:

ft = sigm(Wf xt + Uf ht−1 + bf ) (4)

t = sigm(Wixt + Uiht−1 + bi) (5)

˜t = tanh(Wc̃xt + Ũcht−1 + b̃c) (6)

t = ft ⊙ ct−1 + it ⊙ c̃t (7)

t = sigm(Woxt + Uoht−1 + bo) (8)

t = ot ⊙ tanh(ct ) (9)

here xt represents the input at time t and ht is the correspond-
ng output, i, f, o and c are the input gate, forget gate, output
ate and cell vectors, respectively. The weight matrix subscripts
ave the meaning suggested by their names. The GRU can be
egarded as a simplified version of the LSTM. It consists of an
pdate gate and a forget gate. The update gate selects whether
he hidden state is to be updated with a state candidate. The reset
ate decides whether the previous hidden state is ignored. They
re computed as follows:

t = sigm(Wrxt + Urht−1 + bt ) (10)

t = sigm(Wzxt + Uzht−1 + bz) (11)

t = tanh(Wxt + U(rt ⊙ ht−1) + b) (12)

t = zt ⊙ ht−1 + (1 − zt ) ⊙ h̃t (13)

here h̃t is the so-called state candidate. rt and zt are the values
f the reset gate and the update gate, respectively. We can ob-
erve that the current state candidate is controlled by the reset
ate, which decides how much history information flows into the
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Fig. 4. The backbone recognition networks used in HCTR and HETR tasks. All convolutional layers are followed by the ReLU and the stride is 1. In addition, the BN
operation is equipped for the outputs before nonlinearity in every convolutional layer.
Fig. 5. The network structure of the proposed fast writer adaptation.
T

urrent state candidate. When the value of the reset gate’s output
pproaches 0, the current state candidate only depends on the
urrent input. It can be observed that the value of the update gate
ontrols how much information comes from the state value of the
revious moment and the current state candidate, so as to realize
he long-term memory function.

By using the gating mechanism, we expect the content infor-
ation of the text X is gradually filtered out and the writer style

nformation can be retained. A mean pooling layer is added to
47
obtain the average value of all time points:

h =
1
T

∑
t

ht (14)

he vector h is the representation of the global style of the sen-
tence. In the decoding stage, the system recognizes the text time
by time, so we add the style information representation of the
current time and its neighborhood to better guide the recognition
network. In order to better fuse global style features with local
style features, the extracted style information is first transformed.
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his transformation is constructed by using two fully-connected
ayers:

h
′

= ReLu((ReLu(hW11 + b11))W12 + b12) (15)

h
′

t±τ = ReLu((ReLu(ht±τW21 + b21))W22 + b22) (16)

he transformed global style representation and local style rep-
esentation are then connected together:

= h
′

⊕ h′
t±τ (17)

hen, the vector c is sent into the stem recognition network to
chieve writer adaptation. In principle, the style information can
e integrated into any type layers. To better guide the stem recog-
ition network, the style information is projected into the feature
pace of the recognition network through adaptation layer:
′
= f (cWada + bada) (18)

The transformed vector is added into the convolution layer:

Oi,j,k = ReLu(
∑
m,n,l

I(i−1)×s+m,(j−1)×s+n,jWm,n,k,l + c′′

k ) (19)

′′

k = Bk + c′

k (20)

hus, the writing style plays a role of bias vector to guide the stem
ecognition network. In the actual implementation, we make the
imension of the vector c′ the same as the channel number of

the corresponding convolution layer. Then, each element in the
vector c′, is expanded into a two-dimensional plane by repeating
the same value for addition into channels.

In training the SEN, the loss function LSEN is defined as follows:

SEN(Γ) = −

∑
u

log p(IDu|Xu,Γ) (21)

For a text line u, the variable IDu denotes the corresponding
riter (identification). Therefore, the loss function LSEN is noted
s identification loss (IDL). After completing the training of the
EN, we jointly optimize the parameters Θ, Γ :

WD(Γ,Λ) = −

∑
u

∑
t

log p(st |xt ,Xu,Γ,Λ) (22)

. Experiments and result analysis

.1. Datasets and metric

The proposed fast writer adaptation algorithm is validated on
wo tasks: offline HCTR and offline HETR. In HCTR, we use the CA-
IA database (Liu, Yin, Wang, & Wang, 2011). Both offline isolated
andwritten Chinese character datasets (HWDB1.0, HWDB1.1 and
WDB1.2) and the training sets of offline handwritten Chinese
ext datasets (HWDB2.0, HWDB2.1 and HWDB2.2) are used. The
48
Table 2
The statistics of the datasets CASIA1.0-1.2, 2.0-2.2.
Dataset Writers Lines Character/class

HWDB1.0 420 – 1,680,258/3,866
HWDB1.1 300 – 1,172,907/3,755
HWDB1.2 300 – 1,041,970/3,319
HWDB2.0 419 20,495 538,868/1,222
HWDB2.1 300 17,292 429,553/2,310
HWDB2.2 300 14,443 380,993/1,331

Table 3
The partition of the dataset IAM.
Set name Text lines Writers

Train 6,161 283
Validation1 900 46
Validation2 940 43
Test 1,861 128
Total 9,862 500

details of the CASIA database are listed in Table 2. Because the
offline text databases are produced by the same writers of the
isolated character datasets and each person writes five pages of
given texts, the total number of writers is counted according to
the datasets HWDB1.0-1.2. In our experiments, there are 7,360
classes (Chinese characters, symbols, garbage) in total. The IC-
DAR2013 competition set including 3,432 text lines and written
by 60 persons, who do not contribute to the training dataset is
adopted as the evaluation set (Yin, Wang, Zhang, & Liu, 2013).
In HETR, we evaluate the performance of our method on the
IAM dataset (Marti & Bunke, 2002). The IAM dataset contains
a total number of 9,862 text lines written by 500 writers. As
shown in Table 3, it provides one training set, one testing set
and two validation sets. The text lines of all datasets are mutually
exclusive, thus, each writer has contributed to one set only.

The evaluation criterion is defined as follows:
Ns + Ni + Nd

N
(23)

here N is the total number of samples in the evaluation set.
s, Ni and Nd denote the number of substitution errors, insertion
rrors and deletion errors, respectively. All experiments were
mplemented by using the Kaldi (Povey et al., 2011) and Py-
orch (Paszke et al., 2019) toolkits. PyTorch was used as a deep
earning platform in all experiments.

.2. Experiments on CASIA

We directly employ the state-of-the-art writer-independent
etwork and the same training strategy (Wang, Du, et al., 2020)
s our stem recognition network. Because the optimal system
as constructed based on the so-called parsimonious HMM,
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able 4
he structure details of the SEN. The abbreviations F, K, S, P in CNN represent
he number of features, kernel size, stride length and padding size, respectively
Notation Layer Configurations Output size

Output FC 200 × 1836 [1836,1,1]

Mean Pooling

GRU
State Candidate W : 250 × 200,U : 250 × 200 [200,1,1]
Reset Door Wr : 250 × 200,Ur : 250 × 200 [200,1,1]
Update Door Wz : 250 × 200,Uz : 250 × 200 [200,1,1]

CNN

Conv F : 250,K : 1, S : 1, P : 0 [250,1,1]
Max Pooling K : 3, S : 2 [200,1,1]
Conv F : 200,K : 3, S : 1, P : 1 [200,4,4]
Max Pooling K : 3, S : 2 [150,4,4]
Conv F : 150,K : 3, S : 1, P : 1 [150,10,10]
Max Pooling K:3, S:2 [100,10,10]
Conv F : 100,K : 3, S : 1, P : 1 [100,22,22]
Max Pooling K : 3, S : 2 [50,22,22]
Conv F : 50,K : 3, S : 1, P : 0 [50,46,46]

Input Frame-level image – [1,48,48]

each character was modeled by 3 tied HMM states on average.
Therefore, the input was a normalized frame-level image of size
40 × 40 extracted from original images, and then each frame size
as extended to 48 × 48 by adding the margin. The output nodes
f the DCNN was 7360 × 3 = 22,080. Table 4 lists the details of
he main part of the style extraction network (dashed box on the
ight of Fig. 5). The structure was a CNN followed by an RNN.
he CNN consisted of alternately stacked convolution layers and
ax pooling layers. The configuration of CNN referred to the stem

ecognition network, i.e., the kernel size of the last convolution
ayer was set to 1 × 1, which was used to further integrate the
nformation between different channels extracted by the front
onvolutional layers. The kernel size of other convolution layers
as typical 3 × 3. The max pooling layers with a window size
f 3 × 3 and a stride of 2 were used to reduce the size of the
nput image, so as to integrate spatial information and overcome
oise interference. The number of channels increased from 50
o 250 so that the appropriate deep feature could be extracted
ithout consuming too much computation. Because the CNN is
nly responsible for extracting the deep feature of the original
rame-level image time by time, it does not have the function
f fusing semantic information. Therefore, we added a RNN to
use information at different time steps. In order to achieve the
oal of information fusion, filtering reductant text information
nd retaining style information under the premise of relatively
ess computation, we adopted a GRU to achieve above purpose.
he parameter configurations of the reset gate, update gate and
tate candidate in the GRU are shown in Table 4, corresponding
o formulas (3)–(5), respectively. In particular, we hoped to keep
ccurate semantic and style information by using update and
eset gates. As shown in Eq. (14), the outputs of GRU were further
ntegrated through a mean pooling layer to obtain the vector h̃,
hich can be used to characterize the style of the sentence. In
he training stage of the SEN, the vector h̃ was directly fed into a
fully-connected layer to obtain the posterior probability of writer
IDs.

Based on the above description, the pretraining of the style
extraction network is based on complete images. In order to
achieve a better training performance, we first randomized the
total training samples, and selected 3,800,000 images as the train-
ing samples and 132,197 images as the development samples.
Although text lines are written by the same writers in isolated
characters dataset, the situation of text lines is richer than that
of isolated characters. For example, the writing style of the text
is reflected not only in isolated Chinese characters, but also in

the trend of text, the compact arrangement of different characters

49
Table 5
The CER comparisons of different connection ways of global writing style and
local writing style.
τ Without G With G

Connection 1 Connection 2

0 9.10 8.86 9.22
1 9.05 8.83 8.88
2 8.97 8.80 8.73
3 8.94 8.83 8.71

baseline 9.17

and so on. Therefore, in the pretraining SEN, we set the writers
of text and isolated characters to be different, so that the output
layer had a total of 1,836 nodes that correspond to different
writer IDs. We still used the SGD algorithm to train the network.
The initial learning rate was set to 0.1, the momentum was 0.9
and the weight decay was 10-4. We adjusted the learning rate
according to time steps. For every 4 million steps, the learning
rate was multiplied by 0.92. Once the IDL loss of the network
on the development set no longer changes greatly, we stopped
training.

After the training of the individual SEN was completed, joint
optimization of the stem recognition network and the SEN was
conducted according to the connection way in Fig. 5. In the stage
of joint optimization, the output layer of the SEN can be directly
discarded. Since both the stem recognition network and the SEN
have completed pretraining, the initial learning rate should not
be set too large during the joint training to avoid destroying
the function of the pre-trained networks. In the experiments, we
found that the initial learning rate set to 0.001 is a good choice.
The parameters involved in the SGD algorithm are the same as
before, that is, the momentum was 0.9 and the weight decay was
0.5. We fixed the parameters of the stem recognition network and
only updated the parameters in the added transformation layers,
adaptation layers and style extraction network.

4.2.1. Different connection ways of global writing style and local
writing style

We first explored the influence of different connection ways of
global writing style and local writing style. As shown in Table 5,
there are three ways in experiments: (a). Do not use global
writing style information; (b). Firstly, the global and local style
information are connected. And then, the connected feature is
fed into a transformation. We label this way as Connection 1; (c).
According to Eqs. (15) and (16), the global and local styles are
fed into two independent transformations, respectively. And then
the transformed style representations are connected together and
sent to the adaptation layers to guide the corresponding convolu-
tion layers (Connection 2 in Table 5). In Table 5, we not only list
the recognition performance of different connection methods, but
also show the influence of adding different adjacent frames in the
local handwriting style representation.

First of all, we can observe that with the increase of τ in the lo-
cal writing style, the recognition performance can be consistently
improved, reaching saturation when the value of τ is 3. This result
is reasonable, because in the HMM method, the decoding result
at the current time is affected by the information of the adjacent
frames. Thus the integration of the adjacent frames in an appro-
priate range can certainly promote the recognition performance.
Secondly, from the experiments of adding or not adding global
writing style information, we can observe that the recognition
rate can be improved by adding global writing style information,
which proves that the style information extracted by the SEN
plays a writer-aware role in the backbone recognition network.
If the information extracted by the SEN is highly related to the
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Fig. 7. The different writing styles obtained by using the t-SNE algorithm.
ontent of the text after joint training, then for the handwritten
ext lines with long content, the representation after average
rocess is almost impossible to improve the decoding result of
he current time. Finally, from the results of different connection
odes (Connection1 and Connection2), 0.1% CER reduction can
e obtained by changing Connection1 to Connection2. Further-
ore, if we increase the joint training to two epochs, the final
ER can be reduced to 8.51%, thus yielding a 7% relative CER
eduction. Compared with our previous algorithms, the proposed
nsupervised adaptation algorithm at the sentence level is great
rogress.
In order to understand the effectness of the proposed fast

riter adaptation, as shown in Fig. 7, we project the style rep-
esentation extracted from each text line into a 2-dimensional
lane by using t-SNE algorithm (Van der Maaten & Hinton, 2008).
t clearly shows that points from different writers are clustered
n different locations while the representations from the same
riter are gathered together. From Fig. 8, we can observe that
lthough the text content are the same for writers No. 1 and No.
, their corresponding representations are far away due to their
tyles’ diversity. The writing representations obtained from No. 7
re close to the writing representations of No. 6. Especially, for
hese text lines No. 7-a, the style is very similar to that of No. 6.
herefore, their corresponding writing representations (the left
yan dots in Fig. 7) are also closer to the representations of No. 6.

.2.2. Comparison between the proposed method and writer code
ased method
We compare the proposed fast sentence-level adaptation

cheme with the system based on writer code in paper (Wang,
u, et al., 2020). The main disadvantage of the adaptation scheme
ased on writer code is that these codes are initialized randomly
n advance and must be optimized repeatedly by using the back
ropagation algorithm with the decoding results. On the one
and, in order to optimize the specific writer code, we need to
se enough adaptation data. On the other hand, in unsupervised
daptation, the labels of adaptation data need to be obtained from
he first-pass decoding by using a writer-independent network,

hich leads to a large delay. As shown in Fig. 9, in the case of

50
using fewer than 10 sentences, the recognition rate of the system
is even worse than that of the baseline. In the case of using only
one sentence which is comparable to the proposed adaptation
scheme, the recognition performance is far less than the fast
adaptation algorithm proposed in this paper (9.53% vs 8.51%).
When using 40 lines as adaptation data, the CER can achieve
a comparable result with the proposed fast writer adaptation.
However, the time consumption of the writer code based solution
includes two parts: the adaptation time and the decoding time,
which linearly increases the recognition time. For systems with
slow decoding speed, such as HMM, this is a heavy computational
burden to bear. More importantly, in some applications, there are
no enough adaptation data to use. In contrast, the proposed fast
adaptation scheme decodes the current input sentence directly.

4.3. Experiments on IAM

In this task, we first built the CTC loss based recognition net-
work (Fig. 4). The network front end was composed of four blocks,
each of which was composed of several convolution layers, and
the max pooling layer was inserted between the blocks. The back
end consisted of two layers of bidirectional LSTM. In particular,
we added the proposed HAM (Fig. 3) to the output of the convo-
lution layer and the visual features were connected to the context
features for the final prediction. Since it was optimized by the
CTC loss, the input of the network was a complete image with a
height of 124 and a width of 1751. The dataset does not include
enough samples and the CTC training depends on a large number
of text line data. Therefore, we conducted the following data
augmentation: for a single picture, it was rotated randomly in the
range of [-0.5,−0.3,-0.1,0.1,0.3,0.5] and cut randomly in the range
of [-0.5,−0.3,-0.1,0.3,0.5]. In the training stage, the batch size
was 20, the RMSProp optimization algorithm (Hinton, Srivastava,
& Swersky, 2012) with 0.0005 as the initial learning rate was
adopted, and the total number of training epochs was set to 400.
We used the validation1 set to select the best model for testing
and subsequent joint training. Referring to the structure of the
backbone recognition network, we constructed the correspond-
ing SEN, which was still composed of four blocks. Each block
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Fig. 9. Comparison of writer code based adaptation and the proposed fast
adaptation.

contained only one single convolution layer, and the number
of channels in different convolution layers was [16,32,64,128],
respectively. The output of the last convolution layer was fed
into one single bidirectional LSTM, and the final results were
obtained through a fully connected layer. For the training of SEN
by using the IDL, the RMSProp optimization algorithm with an
initial learning rate of 0.0005 was used. The batch size was 64 and
the total number of training epochs was 400. Because the writers
of the training set and the validation set in IAM are different
from each other, we divided 500 samples from the training set
as the verification set. Similarly, we selected the best model for
subsequent joint training according to the results in the validation
set. In the stage of joint training, a similar training strategy was
used for the recognition network.

From the results in Table 6, we can observe that the proposed
usion of visual features, writing style information and the HAM
an achieve a remarkable improvement over the baseline system:
he word error rates (WERs) of the validation set and the test
et have decreased by more than 3 percentage points, and the
haracter error rates (CERs) have dropped by approximately 1
ercentage point. Each individual technology can also obviously
mprove the performance. For example, the fast writer adaptation
51
Table 6
The results of different models in IAM dataset.
Model Validation Test

CER WER CER WER

baseline 5.29 19.83 6.39 22.03

+HAM 4.72 18.02 5.64 20.39
+HAM +Vis 4.58 17.4 5.5 19.5
+HAM +Vis +SEN 4.4 16.6 5.3 18.5

can reduce the WERs of the validation set and the test set by
approximately 1 percentage point.

5. Conclusion

In this paper, under the deep learning framework, we pro-
pose a general fast writer adaptation solution. A well designed
style extractor network (SEN) is introduced to explicitly extract
personalized writer information for guiding the stem recognition
network. Validated on offline handwritten text recognition tasks,
the proposed fast sentence-level adaptation achieves remark-
able improvement in Chinese and English text recognition tasks.
Specifically, in the HETR task, a multi-information fusion network
that is equipped with a hybrid attention mechanism and that
integrates visual features, context features and writing style is
proposed. Moreover, the proposed fast writer adaptation far out-
perform the previous multiple-pass decoding method. However,
the current framework does not fully utilize all writer-specific
data to extract sentence-level style information during the decod-
ing of a text line. In future work, we will consider using a memory
mechanism to dynamically update and store style information to
further improve the recognition results.
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