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Abstract
In this paper, we propose a Kullback-Leibler divergence (KLD)
regularized approach to adapting speaker-independent (SI)
speech enhancement model based on regression deep neural
networks (DNNs) to another speaker-dependent (SD) model
using a tiny amount of speaker-specific adaptation data. This
algorithm adapts the DNN model conservatively by forcing the
conditional target distribution estimated from the SD model to
be close to that from the SI model. The constraint is realized
by adding KLD regularization to our previously proposed
maximum likelihood objective function. Experimental results
demonstrate that, even with only 10 seconds of SD adaptation
data, the proposed framework consistently achieves speech
intelligibility improvements under all 15 unseen noise types
evaluated and at all signal-to-noise ratio levels for all 8 test
speakers from the WSJ0 evaluation set.
Index Terms: speaker-dependent speech enhancement, deep
neural network, maximum likelihood, conditional target
distribution, Kullback-Leibler divergence regularization

1. Introduction
Considering the various complicated situation, the speech
enhancement performance in real acoustic environments is still
unsatisfactory and many problems should be solved. The
traditional speech enhancement algorithms, such as spectral
subtraction [1–3], Wiener filtering [4, 5], a minimum mean
squared error (MMSE) estimator [6, 7] and an optimally-
modified log-spectral amplitude speech estimator [8], were
developed during the past several decades. However, they
often fail to track non-stationary noise for real-world scenarios
in unexpected acoustic conditions and are often ineffective in
improving speech intelligibility [9, 10].

Recently, deep learning-based speech enhancement has
shown considerable success. Xu et al. proposed a regression
deep neural network (DNN)-based speech enhancement
framework [11, 12] which was adopted to model the
complicated relationship between the noisy speech and clean
speech features via training a deep and wide neural network
architecture using a large collection of heterogeneous training
data and the abundant acoustic context information. In addition
to direct mapping, masking techniques have been used to
enhance speech by making classifications of time-frequency
units, such as estimating the ideal binary mask or smoothed
ideal ratio mask [13, 14]. In [15], Erdogan et al developed
a phase-sensitive mask that incorporates the phase difference
between noisy speech and clean speech. To jointly enhance
the magnitude and phase spectra, a complex ideal ratio mask
was proposed in [16]. However, these DNN-based speech

enhancement algorithms still suffer performance degradation
under mismatch conditions. In real-world scenarios, the
acoustic environment where we deploy our enhancement model
can be vastly different from our training examples, and unseen
noises and speakers can degrade the quality of processed signal.

For DNN-based speech enhancement, generalization to
unseen noises and speakers is a critical issue. Although the
generalization capability can be increased by collecting as many
types of noises and speakers as possible, it is not practical to
cover potentially infinite noise and speaker types that may occur
in real acoustic conditions. Personalized services are needed
and feasible today. Therefore, it is meaningful to investigate
the speaker-dependent (SD) speech enhancement. In [17, 18],
a unified DNN-based SD speech separation and enhancement
system was proposed to jointly handle both background noise
and interfering speech, where the speaker-specific data used for
DNN training is about 2 hours. In [19], a two-stage approach
was proposed for SD enhancement of far-field microphone
array speech collected in reverberant conditions corrupted by
interfering speakers and noises, where 5 minutes of speaker-
specific data is used. [20] adopted more than 5 minutes of
speaker-specific data to train a two-stage single-channel SD
speech separation system. However, in many cases, a large
amount of speech data is hard to collect for a certain specific
speaker in real-world conditions. Accordingly, in this paper,
we investigate how to adapt a well-trained speaker-independent
(SI) model towards a SD model using a tiny amount of speaker-
specific data for DNN-based speech enhancement.

In [21], we proposed a probabilistic learning framework to
parameter optimization for DNN-based speech enhancement,
where a new objective function is derived according to the
maximum likelihood (ML) criterion by characterizing the
prediction error vector as a multivariate Gaussian density.
Motivated by [22], we propose a Kullback-Leibler divergence
(KLD) regularized technique based on the probabilistic learning
framework to adapt a well-trained SI model to a SD model using
a tiny amount of speaker-specific adaptation data for DNN-
based speech enhancement. This technique adapts the model by
forcing the conditional target distribution (CTD) [23] estimated
from the SD model to be close to that estimated from the SI
model. The constraint is realized by adding KLD regularization
to the ML optimization criterion.

2. Prior Art: MMSE and ML Approaches
2.1. Conventional MMSE criterion

As shown in [12], the prediction error between the target and
output could be defined as

en,d = xn,d − x̂n,d(yn+τn−τ ,W ), (1)

Copyright © 2019 ISCA

INTERSPEECH 2019

September 15–19, 2019, Graz, Austria

http://dx.doi.org/10.21437/Interspeech.2019-24261806



where W is the DNN parameter set to be learned, x̂n,d and
xn,d denote the d-th dimension of output and target feature at
sample index n respectively, yn+τn−τ is the input feature vector
with an acoustic context of 2τ + 1. For DNN-based speech
enhancement optimized by the conventional MMSE criterion,
a mini-batch stochastic gradient descent algorithm is used to
minimize the following mean squared error

EMSE =
1

N

N∑
n=1

D∑
d=1

(xn,d − x̂n,d(yn+τn−τ ,W ))2, (2)

where D is the size of the target feature vector and N is the
mini-batch size.

2.2. ML optimization criterion

In [21], an ML approach to DNN parameter learning by
characterizing the prediction error vector as a multivariate
Gaussian density with a zero mean vector and an unknown
covariance matrix is presented, where the covariance matrix
is forced to a diagonal matrix to avoid the instability of
the optimization process caused by calculating the inverse
of it. This implies that the assumption is made that the
prediction error distribution in each dimension independently
follows a univariate Gaussian density with a zero mean and
an unrestricted variance. Accordingly, we re-derive the ML
optimization criterion below. The prediction error shown in
Eq. (1) is characterized as a univariate Gaussian density with
a zero mean and an unknown variance σ2:

p(en,d|σd) = N (en,d|0, σ2
d) =

exp(− e
2
n,d

2σ2
d
)√

2πσ2
d

. (3)

If the target is also a random variable, then the CTD as a
function of the input is derived:

p(xn,d|yn+τn−τ ,W , σd) = N (xn,d|x̂n,d(yn+τn−τ ,W ), σ2
d). (4)

We assume that the CTDs in all dimensions are independently
and identically distributed. Hence we can get the joint CTDs
for all dimensions at sample index n:

p(xn|yn+τn−τ ,W ,Σ) =

D∏
d=1

N (xn,d|x̂n,d(yn+τn−τ ,W ), σ2
d),

(5)
where Σ = {σ2

d|d = 1, 2, ..., D}. Given a training set
with N data pairs (Y ,X) = {(yn+τn−τ ,xn)|n = 1, 2, ...N}
and assuming that they are drawn independently from the
distribution in Eq. (5), we can define the log-likelihood function
as:

ln p(X|Y ,W ,Σ) = ln

N∏
n=1

D∏
d=1

N (xn,d|x̂n,d(yn+τn−τ ,W ), σ2
d).

(6)

Accordingly, the objective function under the probabilistic
learning framework is to maximize Eq. (6), which is equivalent
to minimizing the following function:

E(W ,Σ) = N

D∑
d=1

lnσd+

N∑
n=1

D∑
d=1

(xn,d − x̂n,d(yn+τn−τ ,W ))2

2σ2
d

.

(7)
Note that the ML criterion shown in Eq. (7) is regressed
to the conventional MMSE criterion shown in Eq. (2) when

making a strong assumption that the CTD in each dimension
independently follows a univariate Gaussian distribution with
equal variances.

3. KLD Regularized Adaptation
Experiments using a multi-condition training set built by
a large collection of clean data and noise types in [21]
have demonstrated the effectiveness of the objective function
shown in Eq. (7). Accordingly, the SI model in this paper
was optimized by the ML optimization criterion in [21],
namely Eq. (7). Based on above-mentioned probabilistic
learning framework, we propose a KLD regularized adaptation
technique to do adaptation conservatively. The intuition behind
this technique is that the CTD estimated from the adapted model
should not deviate too far away from that estimated from the
unadapted model, especially when the amount of adaptation set
is tiny. By adding the KLD as a regularization term to the
ML optimization criterion shown in Eq. (7) and removing the
terms unrelated to the parameter set (W ,Σ) we can get the
regularized optimization criterion

Er(W ,Σ) = (1− ρ)E(W ,Σ)−

ρ

N∑
n=1

D∑
d=1

p(xn,d|yn+τn−τ ,W
SI, σSI

d ) ln p(xn,d|yn+τn−τ ,W , σd),

(8)

where p(xn,d|yn+τn−τ ,W
SI, σSI

d ) is the CTD from the SI model
and computed using the pre-optimized parameters W SI and
ΣSI, and ρ is the regularization weight which takes a value
between 0 and 1. Taking Eq. (7) into Eq. (8), Eq. (8) can be
reorganized to

Er(W ,Σ) = N(1− ρ)
D∑
d=1

lnσd+

N∑
n=1

D∑
d=1

(
ρpSI
n,d lnσd +

(1− ρ+ ρpSI
n,d)(xn,d − x̂n,d)2

2σ2
d

)
,

(9)

where pSI
n,d is a shorthand notation of p(xn,d|yn+τn−τ ,W

SI, σSI
d )

and x̂n,d is a shorthand notation of x̂n,d(yn+τn−τ ,W ).
An alternating two-step optimization scheme in mini-batch

mode is used to optimize W and Σ in Eq. (9). First, a closed-
form solution of Σ can be derived by fixingW and minimizing
Er(W ,Σ) in Eq. (9):

σd =

(∑N
n=1(1− ρ+ ρpSI

n,d)(xn,d − x̂n,d)2

N(1− ρ) +
∑N
n=1 ρp

SI
n,d

) 1
2

. (10)

Second, by fixing α, W can be optimized by minimizing the
following expression:

L(W ) =

N∑
n=1

D∑
d=1

(1− ρ+ ρpSI
n,d)(xn,d − x̂n,d)2

2σ2
d

. (11)

The back-propagation procedure is used to optimize W . The
gradient of W is usually obtained by using the chain rule,
where only the gradient of the objective function with respect
to the DNN output needs to be modified accordingly as shown
in Eq. (12), whereas all other derivatives are unaffected.

∂L(W )

∂x̂n,d
=

1

σ2
d

(1− ρ+ ρpSI
n,d)(x̂n,d − xn,d). (12)
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Table 1: Duration statistics of the utterances of each WSJ0 test speaker for constructing the training and test sets of SD models.

Speaker ID 440 441 442 443 444 445 446 447
Gender Male Female Female Male Female Female Male Male

Total duration (s) 711 694 652 692 675 567 676 673

Note that when the regularization weight ρ is set to 0, the
regularized criterion shown in Eq. (9) is regressed to the
ML criterion shown in Eq. (7) and the alternating two-step
optimization procedure derived above corresponds to those used
in [21].

4. Experiments
4.1. Experimental conditions

The 115 noise types which included 100 noise types [24]
and 15 home-made noise types were adopted for training to
improve the robustness to the unseen noise types. Clean speech
utterances were derived from the WSJ0 corpus [25]. The 7138
utterances from 83 speakers denoted as the SI-84 training set
were corrupted with the above-mentioned 115 noise types at
six levels of SNRs (-5dB, 0dB, 5dB, 10dB, 15dB and 20dB) to
build a 12-hour training set for the SI model, consisting of pairs
of clean and noisy speech utterances. To make our conclusion
more reliable, adaptation experiments were conducted on 8
speakers from the standard Nov92 5K evaluation set, whose
detailed duration statistics are given in Table 1. In making
the training sets for the 8 SD models, a tiny amount of clean
speech utterances from each speaker were fully corrupted with
the above-mentioned 115 noise types at above-mentioned six
levels of SNRs to build a multi-condition training set for each
SD model. The remaining clean speech utterances from each
speaker were used to construct the test set for each combination
of 15 unseen noise types and SNR levels (-6dB, 0dB, 6dB) for
each SD model. The 15 unseen noises 1 from the NOISEX-92
corpus [26] were adopted for testing in this study.

Experiments were conducted on waveforms with 16kHz.
The corresponding frame length was set to 512 samples
(32msec) with a frame shift of 256 samples. A short-time
Fourier transform was used to compute the spectra of each
overlapping windowed frame. Then, the 257-dimensional log-
power spectra (LPS) features normalized by global mean and
variance were employed as the inputs and outputs of the DNNs.
In this paper, the feed-forward DNNs were adopted because
more powerful DNNs such as recurrent neural networks more
easily cause over-fitting for the SD models when the speaker
data is little. The network configurations were fixed at three
hidden layers, 2048 units for each hidden layer, and 7-frame
input (τ = 3). The learning rate for the supervised fine-
tuning was set to 0.1 for the first 10 epochs and declined at a
rate of 90% after every epoch in the next 40 epochs with the
mini-batch size of 128 (N = 128). Original phase of noisy
speech was adopted with the enhanced LPS for the waveform
reconstruction. Short-term objective intelligibility (STOI) [27]
and the perceptual evaluation of speech quality (PESQ) [28]
were employed to assess the speech intelligibility and quality
of processed speech respectively.

Because [21] has demonstrated the effectiveness of the ML

1N1-N15 noise types: Jet cockpit 1, Jet cockpit 2, Destroyer engine,
Destroyer operations, F-16 cockpit, Factory 1, Factory 2, HF channel,
Military vehicle, M109 tank, Machine gun, Pink, Volvo, Speech babble
and White noise

optimization criterion shown in Eq. (7) on the multi-condition
training set built by a large amount of clean data, the SI model
was optimized by the ML optimization criterion rather than the
conventional MMSE criterion. Moreover, all the SD models
were initialized using the well-trained SI model because the
well initialized model can alleviate over-fitting problems with
little adaptation data. In addition, the transfer learning approach
in [29] is adopted for training all the SD models to further
alleviate the over-fitting and mismatch problems, where the
strategy that updating the parameters of top 2 layers has been
demonstrated to be optimal when the adaptation data is little and
thus is adopted here. We select one of the 8 speakers, namely
“440” to investigate the experimental details. Finally, we
demonstrate the effectiveness of our proposed KLD regularized
adaptation technique on all the remaining 7 speakers.

4.2. Experimental results and analysis

Table 3 compares the PESQ and STOI of the SD models
optimized by the three objective functions, namely Eq. (2),
Eq. (7) and Eq. (9). Here, the regularization weight ρ in
the KLD regularized optimization criterion shown in Eq. (9)
is set to 1, 1 and 0.7 for 10s, 30s and 68s of adaptation
data respectively. Note that the KLD regularized optimization
criterion is equivalent to minimizing the KLD of the CTDs from
the SI model and the SD model when ρ is set to 1. From this
table we can make three observations. First, the conventional
MMSE criterion outperforms the ML optimization criterion
proposed in [21] when the clean data to build the training
set is less than 1 minute. After increasing the clean data to
68s, contrary conclusion is obtained that the ML optimization
criterion achieves better objective perceptual quality over the
MMSE criterion just as the conclusion drawn in [21]. These
imply that the ML optimization criterion is more suitable for
the case where clean data for training is enough because it is
easier to lead to over-fitting when the amount of clean data
is tiny. Second, by comparing the perceptual performance
of the SI model shown in Table 2 and SD models optimized
by the MMSE criterion using different sizes of adaptation
data, we observe that the SD model trained using only 10s
adaptation data outperforms the SI model at -6 dB while
contrary phenomenon occurs at higher SNRs, especially at 6
dB. After the adaptation data increases to 68s, the SD model
achieves significant performance improvements over the SI
model at all the SNRs. Third, compared to the MMSE and
ML optimization criterion for SD models, our proposed KLD
regularized optimization criterion achieves great improvements
in STOI especially for extremely little adaptation data and low
SNRs. For example, gains of more than 0.04 are achieved
in STOI for the 10s of adaptation data at -6dB. Furthermore,
the lower the SNR is or the less the adaptation data is, the
larger improvements in STOI are obtained. Besides, the
KLD adaptation technique yields slight but almost consistent
improvements in PESQ with only one exception for the 10s
of adaptation data at 6dB. Furthermore, the lower the SNR is,
the larger improvements in PESQ are obtained. For example,
gains of 0.07 are obtained in PESQ at -6dB while gains of 0.04
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Table 2: Average PESQ and STOI of the SI model on the test
set of speaker “440” across the 15 unseen noise types.

-6 dB 0 dB 6 dB
PESQ STOI PESQ STOI PESQ STOI
1.629 0.605 2.100 0.765 2.554 0.880

Table 3: Average PESQ and STOI comparison for SD models
on the test set across the 15 unseen noise types.

Input SNR: -6 dB
10s 30s 68s

Obj PESQ STOI PESQ STOI PESQ STOI
MMSE 1.651 0.611 1.629 0.633 1.665 0.638

ML 1.638 0.613 1.642 0.631 1.694 0.649
ML+KLD 1.720 0.658 1.699 0.651 1.712 0.655

Input SNR: 0 dB
10s 30s 68s

Obj PESQ STOI PESQ STOI PESQ STOI
MMSE 2.063 0.761 2.123 0.784 2.168 0.790

ML 1.998 0.750 2.114 0.777 2.180 0.794
ML+KLD 2.095 0.794 2.177 0.804 2.215 0.803

Input SNR: 6 dB
10s 30s 68s

Obj PESQ STOI PESQ STOI PESQ STOI
MMSE 2.436 0.858 2.545 0.881 2.615 0.888

ML 2.287 0.834 2.500 0.868 2.604 0.885
ML+KLD 2.394 0.872 2.581 0.898 2.651 0.897

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15
Noise types

0.72

0.74

0.76

0.78

0.8

ST
O

I

SI
SD:MMSE
SD:ML
SD:ML+KLD

Figure 1: Averaged STOI of the SD models using 30s of data
and the SI model on the test set across all the SNRs .

are achieved at 6dB for the 30s of adaptation data. Figure 1
presents the effects of different noise scenarios, where it can
be observed that our proposed KLD regularized optimization
criterion achieves best speech intelligibility performance for all
SNR levels and 15 unseen noise types. Moreover, Figure 2
shows a spectrogram comparison, where we observe that the SD
models perform better in noise reduction over the SI model and
the proposed KLD regularized optimization criterion achieves
less speech distortions.

Figure 3 presents average performance comparison among
SI model and SD models for the other 7 speakers, where 30s of
clean data is adopted for each speaker. It can be observed that
the KLD regularized optimization criterion achieves consistent
improvements in STOI and PESQ over the MMSE and ML
optimization criterion for each SD model. Moreover, compared
to the SI model, it yields consistent much better STOI and
a little better PESQ with only one exception for the speaker
“443”.

Figure 2: Spectrograms of an utterance tested with Speech
babble noise at SNR=0 dB for 30s of adaptation data (from left
to right and from up to down): clean speech, noisy speech, SI,
SD:MMSE, SD:ML, SD:ML+KLD.

441 442 443 444 445 446 447
Speaker ID

1.3

1.4

1.5

1.6

1.7

1.8

PE
SQ

441 442 443 444 445 446 447
Speaker ID

0.56

0.58

0.6

0.62

0.64

0.66

ST
O

I

SI SD:MMSE SD:ML SD:ML+KLD

Figure 3: Averaged PESQ and STOI comparison across the 15
unseen noise types for the remaining seven speakers on their
respective test sets at -6dB.

5. Conclusion
Based on our previously developed maximum likelihood
learning framework for parameter optimization in DNN-
based speech enhancement, we propose a KLD regularized
adaptation approach to adapting a well-trained SI model
to another speaker-specific SD model using a tiny amount
of adaptation data. The regularized optimization criterion
is derived, by adding to the ML optimization criterion
the KLD between the conditional target densities estimated
from the SI and SD model. Experiments demonstrate that
the proposed KLD framework achieves consistent speech
intelligibility performance improvements over the MMSE and
ML optimization criteria under all the SNR levels and 15 unseen
noise types evaluated for all eight tested speakers. In future, we
will combine it with other advanced transfer learning techniques
to achieve much better performance of the SD model over the
SI model using much less adaptation data.
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