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Abstract

One challenging problem of robust automatic speech
recognition (ASR) is how to measure the goodness of a
speech enhancement algorithm without calculating word error
rate (WER) due to the high costs of manual transcriptions,
language modeling and decoding process. In this study, a novel
cross-entropy-guided (CEG) measure is proposed for assessing
if enhanced speech predicted by a speech enhancement
algorithm would produce a good performance for robust
ASR. CEG consists of three consecutive steps, namely the
low-level representations via the feature extraction, high-level
representations via the nonlinear mapping with the acoustic
model, and the final CEG calculation between the high-level
representations of clean and enhanced speech. Specifically,
state posterior probabilities from the output of the neural
network for the acoustic model are adopted as the high-level
representations and a cross-entropy criterion is used to calculate
CEG. Experimental results show that CEG could consistently
yield the highest correlations with WER and achieve the most
accurate assessment of the ASR performance when compared
to distortion measures based on human auditory perception and
an acoustic confidence measure. Potentially, CEG could be
adopted to guide the parameter optimization of deep learning
based speech enhancement algorithms to further improve the
ASR performance.

Index Terms: acoustic model, state posterior probabilities,
cross entropy, speech enhancement, robust speech recognition

1. Introduction

Noise robustness is one of the critical issues to make automatic
speech recognition (ASR) system widely used in real world
today [1]. Various approaches have been proposed to tackle
the problem to make ASR systems robust against environmental
distortions. One approach is to use speech enhancement as a
pre-processor to ASR, whose objective is to convert an observed
speech signal to a set of input features of the ASR system that
are insensitive to environmental distortion while simultaneously
containing a sufficient amount of discriminant information [2].

Quality evaluation of the resulting enhanced signals is a
very complex problem that depends on the application field.
In many cases, the main objective of speech enhancement is
preserving some characteristics that are required for the task
concerned [3]. For example, a good listening quality and
intelligibility in terms of human perception is a highest priority
for speech communication systems while for ASR systems
human auditory perception is not as important as preserving
some acoustic cues that are used by the ASR systems to perform
the recognition. Quality evaluation for speech enhancement is a
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very important step in the development of advanced algorithms.
When speech enhancement is used as a pre-processing stage for
ASR, the quality measure of speech enhancement applied for
assessment should be related to the word error rate (WER) of
the ASR system.

So far, few works have been presented with specific
proposals for quality evaluation of the resulting enhanced
signals. Particularly, in the context of ASR, one direct way to
evaluate the performance of speech enhancement algorithms is
to calculate the WER. Nevertheless, it requires a large amount
of computation and manual transcription costs. Therefore,
more easily computed instrumental measures are desired for
assessing performance of speech enhancement algorithms for
robust ASR without using reference transcriptions. They
are beneficial to the research and development of speech
enhancement algorithms for robust ASR.

In the past few decades, several methods have been
proposed to assess ASR performance without using reference
transcriptions. The idea has emerged, of using a distortion
measure based on human auditory perception that was
originally developed for the objective evaluation of perceptual
performance and represents the difference between degraded
speech and its original clean version, to assess ASR
performance of speech enhancement algorithms for robust
ASR. In [4-7], a very good correlation between WER and
the perceptual evaluation of speech quality (PESQ) [8] for
measuring speech quality has been verified. Recently, it has
been shown that the correlation coefficient between WER and
the short-time objective intelligibility (STOI) [9] for measuring
speech intelligibility is higher than other distortion measures
[10, 11]. Besides, in [12, 13], an acoustic confidence measure
usually defined as the entropy of the posterior distribution
from the output of the artificial neural network (ANN) for
the acoustic model was proposed and shown a high degree of
correlation with WER, where the discriminatory power of the
ANN decreases and the posterior probabilities tend to become
more uniform with a higher entropy.

In this paper, we propose a cross-entropy-guided (CEG)
measure defined as the cross entropy of the state posterior
probabilities between the enhanced speech and clean speech
from the ANN output for the ANN-HMM (hidden Markov
model) based acoustic model. Experiments demonstrate a
consistently highest degree of correlation between the CEG and
WER compared with the acoustic confidence measure, STOI
and PESQ from different aspects including acoustic models,
language models, speech enhancement algorithms, signal-
to-noise-ratio (SNR) levels and noise types. Furthermore,
CEG achieves the most accurate assessment of recognition
performance of speech enhancement algorithms for noise-
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robust ASR. Accordingly, it provides a more accuracy guide at
the time of choosing a suitable speech enhancement algorithm
as a mean to introduce robustness into the recognizer.
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Figure 1: The overall framework of CEG.

2. CEG

The overall framework of CEG is illustrated in Fig. 1.
Generally, it is a measure function of high-level representations
of the clean speech and enhanced speech calculated by the
nonlinear operations between the acoustic model of the ASR
system and the raw time signals or input features of the ASR
system. The CEG calculation process mainly includes three
steps. The first step is the extraction of low-level representations
which could be from the raw time signals or input features of
the ASR system such as mel-frequency cepstral coefficients
(MFCCs), log-mel-filterbank (FBANK) features and feature-
space maximum likelihood linear regression (fMLLR) [14].
Due to the lack of ASR acoustic information in low-level
representations, in the second step, the acoustic model of the
ASR system is adopted to map the low-level representations
to high-level representations which could provide useful
acoustic knowledge for better assessment of ASR performance.
Specifically, state posterior probabilities from the ANN output
for the ANN-HMM based acoustic model are adopted as the
high-level representations. Therefore, CEG currently aims to
work with the ANN-HMM based ASR system which is also
one of the main streams. In future, we will explore other high-
level representations learned from low-level representations for
generic acoustic models including both the mainstream ANN-
HMM based acoustic model and the acoustic models with end-
to-end optimization [15]. The last step is the calculation of
CEG which measures the difference between the high-level
representations of the clean speech and enhanced speech via
a criterion, e.g. cross entropy, Kullback-Leibler divergence
and minimum mean squared error (MMSE). Motivated by the
training criterion of ANN-HMM based acoustic models, cross
entropy is adopted in this study. Accordingly, CEG is defined
as follows:

N I
1 c E
m=-—= }Zl ;:1 Pc(si|xy, ,0)log Pe(si|lz,,0) (1)

where Pc and P are the state posterior probabilities between
the clean speech and enhanced speech from the ANN output
for the ANN-HMM based acoustic model, respectively, I is
the number of output classes or phonemes, /N is the number
of frames, x5 and @2 are the raw time signal or input feature
vector of the clean speech and enhanced speech for the n-th
frame, respectively and 6 is a set of parameters of the ANN-
HMM based acoustic model of ASR system.

In many cases, speech enhancement algorithms for
noisy ASR is tuned according to the distortion measures
based on human auditory perception such as PESQ and
STOIL. However, some researches have shown that speech
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enhancement algorithms which achieve a better distortion value
may result in worse ASR performance especially for multi-
condition training [16—18] because they inevitably introduce
distortions that could not be captured by the distortion
measures. Distortion measures were originally developed to
assess the perceptual performance and not directly correlated
with ASR performance. In contrast, CEG considers the
ASR acoustic information by the introduction of high-level
representations, which is directly correlated with ASR system.
Furthermore, the difference of the acoustic characteristics
between the clean speech and enhanced speech is accurately
measured by the cross entropy. CEG can capture the changes of
the ASR performance caused by different acoustic models while
distortion measures are invariant to the back-end. Distortion
measures which are usually calculated by waveforms of the
enhanced speech and clean speech are not easily applicable
to the speech enhancement algorithms which directly output
the speech features for ASR [19,20], while CEG can be used
to evaluate the ASR performance on both the signal level and
feature level. Although CEG additionally requires the acoustic
model of the ASR system compared to the distortion measures,
the acoustic model is available because the speech enhancement
algorithms is usually designed for increasing the robustness of
a existing recognizer.

In comparison to the acoustic confidence measure using
the entropy, although CEG requires parallel speech pairs, it
achieves a more accurate assessment of the ASR performance.
Moreover the original clean speech is available since an
assumption is made in the process of research and development
of speech enhancement algorithms that the noisy speech
is generated by recording the noise in different noisy
environments and artificially adding it to the clean speech. This
assumption is reasonable from the viewpoint of reducing the
recording cost.

It is worth mentioning that CEG is differentiable and thus
can replace the MMSE as the optimization criterion for ANN-
based speech enhancement algorithms aiming at better ASR
performance. Although many advanced objective functions
have been investigated recently [21,22], they are not correlated
well with the WER and thus can not guarantee better ASR
performance. We will disclose more details in our future work
due to the space limitation here.

3. Evaluation procedure
3.1. Correlation coefficients

There are three kinds of commonly used correlation coefficients
, namely the Pearson correlation coefficient, the Spearman rank
correlation coefficient and the Kendall Tau rank correlation
coefficient, while the Pearson correlation coefficient is the most
common one [23]. Hence Pearson correlation coefficient is
adopted in our study, which is a measure of the linear correlation
between two data sets and can be calculated as follows.

Pxy = Z;V:l(xn — f)(yn _ @)
e

This equation can be considered as an expression of a ratio
of how much the two data sets € = [z122...xn5]" and y =
[y192...yn] " vary together compared to how much they vary
separately [23]. The magnitude of the correlation coefficient
indicates the strength of the correlation and the sign indicates if
the correlation is positive or negative.
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3.2. Mapping

We are interested in measuring the monotonic relation between
the CEG and WER. Accordingly, first a mapping is used in
order to account for a nonlinear relation between the CEG
and WER. The main reason for this mapping procedure is to
linearize the data such that we can use the Pearson correlation
coefficient. Motivated by [6,9,11,24], a logistic function is used

here:
100

fm) = 1+ exp(am +b)

where a and b are constants to be determined by a data-fitting
using the least-squares method, m represents the CEG score and
f(m) could be considered as an estimator of the WER which is
between 0 and 100. Please note that a logistic function is also
monotonic and will therefore not influence the monotonicity
between the CEG and WER. Then the performance of CEG
is evaluated by means of the Pearson correlation coefficient
(p), which is applied on the mapped objective scores, i.e.,
f(m). Please note that the same evaluation procedure is used
as with CEG for the acoustic confidence measure and distortion
measures. Since we are only interested in the strength of
the correlation, the results of the magnitude of the correlation
coefficient denoted as p is shown in the following experiments.

3

4. Experiments
4.1. Experimental setting

Experiments were conducted on the 1-channel CHiME-4 task
[25]. To make the calculation of the distortion measures (e.g.
PESQ and STOI) feasible, we evaluated the correlations of
WER with CEG, the acoustic confidence measure and the
distortion measures by simulated data that were generated by
artificially mixing background noises including cafe (CAF),
street junction (STR), public transport (BUS), and pedestrian
area (PED) with clean speech data from the development and
test data consisting of 410 and 330 utterances respectively.
The correlations were investigated for five situations, namely
different speech enhancement algorithms as a pre-processing
stage of ASR, different acoustic models, different language
models, different noise types, and different SNRs. Experiments
of the top four situations were conducted on the simulated
data from the official development and test sets consisting
of 1640 and 1320 utterances respectively which had been
generated by mixing the abovementioned clean speech data
with background noises. Experiments of the last situation
were conducted on the simulated data constructed by mixing
the abovementioned clean speech data with background noises
from all six channels at six levels of SNRs (-5dB, 0dB, 5dB,
10dB, 15dB and 20dB) to form 75480 utterances, respectively.
Please note that WER, STOI, PESQ and the acoustic confidence
measure were all computed per utterance. All the correlation
coefficients in this paper were computed by the procedure
in Sec. 3.2. In this study, the adopted acoustic models in
multi-condition training mode are from a deep neural network
(DNN)-based acoustic model trained on fMLLR transformed
features by cross entropy minimization, a DNNsMBR-based
acoustic model trained on fMLLR features by cross entropy
minimization followed by state-level minimum Bayes risk
(sMBR) optimization, and a deep convolutional neural network
(DCNN)-based [26] acoustic model trained on the FBANK
features by cross entropy minimization, where the first two
acoustic models are official baselines provided by Kaldi [14].
All of them were trained on the same training set, namely, the
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real and simulated noisy training set from channel 5 consisting
of 1600 and 7138 utterances respectively. Besides, the adopted
acoustic model in clean-condition training mode is DNNsMBR-
based model trained on the 7138 utterances of the clean WSJO
training set [27]. 3-gram, 5-gram and recurrent neural networks
(RNN) based official language models provided by Kaldi were
adopted.

4.2. Correlation comparison in different situations

Fig. 2 shows a consistently highest degree of correlation
between CEG and WER compared with the acoustic confidence
measure denoted as Entropy and distortion measures (PESQ
and STOI) in acoustic models using different input features,
ANN structures and optimization criterions and in language
models including 3-gram, 5-gram and RNN for multi-condition
training. Moreover, the correlation is robust to both acoustic
models and language models. The DNNsMBR-3gram based
recognition system was adopted in the following experiments.
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Figure 2: Pearson correlation coefficients in multi-condition
training mode.

Fig. 3 shows the scatter plots of the relation between
WER and the Entropy, PESQ, STOI and CEG, respectively,
where the red lines represent the applied mapping functions
which clearly show good performance by means of a strong
monotonic relation with WER. Obviously, CEG has the highest
degree of correlation with WER for both clean-condition and
multi-condition training. Please note that the correlation score
between the CEG and WER for multi-condition training tends
to be smaller than that for clean-condition training because the
number of the same scores of WER corresponding to different
scores of CEG for multi-condition training is larger, which
leads to worse correlation statistics. Unlike the conclusions
in [10, 11], we observe that the correlation scores between
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Figure 3: Scatter plots between the WER and instrumental
measures.



the STOI and WER tend to be larger than those between the
PESQ and WER for multi-condition training and the contrary
conclusion could be drawn for clean-condition training, which
may indicate that the recognition performance depends more
largely on speech quality for clean-condition training and on
speech intelligibility for multi-condition training. Besides, it is
noted that the acoustic confidence measure and the proposed
CEG have positive correlations with WER, on the contrary,
PESQ and STOI have negative correlations with WER.

Recognition performance varies with different speech
enhancement algorithms.  Therefore, we investigated the
relation with WER by two representative noise reduction
algorithms in addition to the reference case of unprocessed
noisy speech, namely, an optimally-modified log-spectral
amplitude (OM-LSA) speech estimator [28] and a masking-
based DNN enhancement algorithm [29]. Table 1 shows the
consistently strongest correlations between CEG and WER
compared with the Entropy, PESQ and STOI in both multi-
condition training and clean-condition training modes for
different enhancement algorithms.

Table 1: Pearson correlation coefficients for different speech
enhancement algorithms.

Training mode |Algorithms|Entropy| PESQ | STOI | CEG
Noisy | 0.553 | 0.554 | 0.628 | 0.743
Multi-condition| OM-LSA | 0.589 | 0.582 | 0.624 | 0.726
DNN 0.676 | 0.600 | 0.639 | 0.744
Noisy | 0.554 | 0.650 | 0.615 | 0.800
Clean-condition| OM-LSA | 0.689 | 0.691 | 0.645 | 0.794
DNN 0.670 | 0.664 | 0.625 | 0.778

The relationship is also investigated for different noise
conditions and different SNR levels, where CEG still
consistently shows strongest monotonic relationship to the
WER compared with Entropy, PESQ and STOI shown in Fig. 4.
The correlation becomes weak in very high SNR levels where
most values of WERs are 0% or in very low SNR levels where
most values of WERs are 100% due to the negative influence of
these points which have the same WERs but different values of
the evaluation measures.
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Figure 4: Pearson correlation coefficients in clean-condition
training mode for different noise types and SNR levels.

4.3. Comparison of evaluation accuracy

From Table 2, we can see that the multi-condition training mode
could bring better recognition performance compared with the
clean-condition training mode. However, the improvements
could not be evaluated by distortion measures due to their
invariance to the backend. In contrast, the acoustic confidence
measure and CEG both related to the backend could evaluate
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it, where the smaller values of them are, the lower WER
is. Besides, there are many cases where the recognition
performance could not be accurately evaluated by both the
distortion measures and acoustic confidence measure, e.g.,
the smaller Entropy of OM-LSA does not bring a decline in
WER compared with that of DNN in both multi-condition
training and clean-condition training modes, better PESQ or
STOI of enhanced speech does not bring improvements of
recognition performance in multi-condition training mode, the
same Entropy of DNN as that of the unprocessed noisy speech
does not bring the same WER, and worse STOI of OM-
LSA brings a decline in WER for clean-condition training.
In contrast, CEG could accurately evaluate the recognition
performance of different speech enhancement algorithms for
both multi-condition training and clean-condition training.

Table 2: The average evaluation measure scores and WERs of
different speech enhancement algorithms for ASR on the official
simulated development and test sets (2960 utterances).

Training mode Noisy |OM-LSA| DNN
Entropy 1.52 1.65 1.71
PESQ 2.00 2.25 2.30
Multi-condition | STOI 0.819 0.808 0.846
CEG 4.23 4.45 4.39
WER(%) | 19.39 25.70 24.46
Entropy 1.92 1.89 1.92
PESQ 2.00 2.25 2.30
Clean-condition | STOI 0.819 0.808 0.846
CEG 6.81 5.99 5.68
WER(%) | 65.52 574 51.59

Many existing speech enhancement algorithms can improve
speech quality but not speech intelligibility [30, 31], such as
OM-LSA in Table 2. However, these speech enhancement
algorithms may improve recognition accuracy especially for
clean-condition training. Their recognition performance cannot
be accurately evaluated by STOI which measures the speech
intelligibility. For example, resulting speech enhanced by
OM-LSA could improve recognition accuracy for clean-
condition training regardless of its worse STOI shown in
Table 2. Accordingly, the conclusion in [10, 11] that the
correlation coefficient between the WER and STOI is higher
than other distortion measures (e.g., PESQ) is not accurate and
reliable enough. Some researches [22, 32] suggested by the
conclusion in [10, 11] designed a speech enhancement front-
end to especially improve STOI and thus achieve better ASR
performance. Our findings reveal the unreasonableness of this
design of speech enhancement front-end as a pre-processor to
ASR.

5. Conclusion

In this study, we propose a measure, i.e., CEG to evaluate the
performance of the speech enhancement algorithms for noise-
robust ASR without using reference transcriptions, language
models and recognition process. Compared with the acoustic
confidence measure, PESQ and STOI, CEG shows the
highest correlation with WER and achieves the most accurate
evaluation of recognition performance. Moreover, CEG could
be directly adopted as the optimization criterion of the ANN-
based speech enhancement algorithms for improving ASR
performance instead of the conventional MMSE criterion,
which will be explored in our another work.
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