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Abstract—In this paper, we investigate the effectiveness of
using quantum machine learning for privacy protection in audio-
visual speech processing. Quantum machine learning has made
significant theoretical advancements and has been shown to pos-
sess natural advantages in privacy protection over conventional
techniques. Here, we first apply quantum circuits to a word-level
audio-visual speech recognition task. We then propose a novel
metric, an inter-class intra-class similarity ratio, for measuring
the privacy-protecting capabilities of quantum circuits. Finally,
we conduct an in-depth analysis of the differences in privacy
protection between quantum privacy methods and traditional
methods, evaluating their working principles, strengths, and
limitations. Experiments results on the LRW data set show that
the quantum privacy-preserving approach performs well in word-
level speech recognition tasks, demonstrating excellent privacy-
preserving capabilities through selective retention of features.

I. INTRODUCTION

With the rapid development of deep learning, face recognition,
automatic speech recognition and audio-visual technology have
been gradually applied in daily life scenarios in recent years.
The sensitivity of face image data and speech data has led
to growing concerns about data privacy. In this context, it is
crucial to develop effective methods for protecting audio and
video privatized data to comply with new privacy protection
regulations, e.g. the EU General Data Protection Regulation
(GDPR) [1].

There are many traditional algorithms in the field of pri-
vacy protection, such as homomorphic encryption [2] and
differential privacy [3], [4]. Homomorphic encryption is a
cryptographic technique based on the computational complex-
ity theory of mathematical puzzles. This algorithm offers the
property that the result of performing an operation on plaintext
and then encrypting it is equivalent to the result of performing
the corresponding operation on the ciphertext after encryption.
Due to this desirable feature, it can maintain high recognition
accuracy while protecting data privacy. However, its applica-
tion scenarios are greatly limited due to the large amount of
additional computation required for the encryption process.
Differential privacy methods add specific noise to the input
data to prevent attackers from inferring sensitive information
based on the output. However, in practical applications, it is

Fig. 1: Quantum privacy-preserving architecture for speech
recognition task in a vertical federated learning process. Quan-
tum circuits on the Noisy Intermediate-Scale Quantum (NISQ)
server transform the input multi-modal data into quantum
private data and transfer it to the speech recognition model
on local machine.

often caught in the dilemma of trade-off between privacy-
preserving capability and downstream task accuracy. To ad-
dress the above challenges, [5] proposed a differential privacy
method based on frequency domain transform and learnable
privacy budget, which demonstrated outstanding results in face
recognition tasks.

In recent years, federated learning has also emerged as a
common privacy-preserving approach. For example, vertical
federated learning (VFL) [6] is a potential data protection
strategy that decentralizes the end-to-end deep learning frame-
work and separates feature extraction from the downstream
task system. And with the recent advances in commercial
quantum technologies, quantum machine learning (QML) [7]
becomes an ideal building block for VFL due to its parame-
ter encryption and data isolation advantages. The distinction
between quantum machine learning and traditional machine
learning lies in the utilization of quantum circuits. These
circuits consist of a series of quantum gates that operate on
quantum bits (qubits), which are the fundamental units of
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quantum information. The VFL architecture using quantum
circuits as a building block are shown in Fig. 1. Based on
the above, Yang et al. [8] proposed a decentralized acoustic
modeling scheme and designed a quantum convolutional neural
network, resulting in impressive outcomes by combining the
learning paradigm of variable quantum circuit [7] and deep
neural network.

The contributions of this paper are as follows:
• Demonstrates the effectiveness of quantum circuits-based

methods for privacy preservation in a word-level audio-visual
speech recognition task.

• Proposes the inter-class intra-class similarity ratio as a
privacy protection effect metric, and use it to thoroughly
analyze the differences between quantum privacy methods and
traditional methods.

II. RELATED WORK
A. Quantum Machine Learning for Signal Processing

The current phase of quantum computing is often referred to
as the noisy intermediate-scale quantum era. During this era,
quantum processors consist of intermediate-scale qubits, which
are not yet advanced enough to achieve fault-tolerance or reach
the threshold for quantum supremacy. These processors are
sensitive to external factors (noisy) and susceptible to quantum
decoherence and not capable of continuous quantum error
correction, which limits the potential applications of NISQ
technology. However, Mitarai et al. [7] build a pioneering
framework for building machine learning models on NISQ
devices by the use of variable quantum circuit (VQC) [9].
VQC can be progressively iteratively optimized, allowing noise
effects in NISQ devices to potentially be absorbed into these
learned circuit parameters. Several successful machine learning
applications based on VQC have been reported in the recent
literature, such as transfer learning [10] and deep reinforcement
learning [11]. It is worth noting that recent studies [12],
[13] have shown that quantum machine learning (QML) has
advantages over classical machine learning in terms of lower
memory storage, secure encryption of model parameters, and
good feature representation capabilities.

While still a nascent technology, quantum machine learning
has already been applied in various fields. For instance, [14]
successfully implemented image recognition using quantum
deep convolutional networks, [15] proposed a speech recogni-
tion system using quantum backpropagation (QBP) simulated
by fuzzy logic computation, and [16] successfully applied
quantum transfer learning techniques to the synthetic speech
detection task.

B. Privacy Preservation

In the realm of privacy protection, research can be broadly
classified into three categories, depending on how the input
data is processed: data anonymization methods, data encryp-
tion methods, and data perturbation methods. Data anonymiza-
tion methods, such as k-anonymity [17] and t-closeness [18],
work by desensitizing sensitive information to protect privacy.
While these methods allow data to be analyzed and utilized to

Fig. 2: Pipeline of quantum privacy-preserving method for
word-level audio-visual speech recognition. © denotes the
concatenate operation.

some extent, they may also undermine the integrity and accu-
racy of the data, reducing its validity. Homomorphic encryption
and secure multi-party computation [19] are classical data
encryption methods that effectively protect data security while
achieving excellent results on downstream tasks. However,
the high computational costs associated with encryption and
decryption make these methods difficult to apply in practice.
In contrast, data perturbation methods avoid the high costs of
encryption by perturbing the original input. Differential privacy
is a widely used data perturbation method. [20] employed
differential privacy to perturb eigenfaces and distributed the
privacy budget equally to each eigenface, which resulted in a
significant loss of accuracy. Besides, [21] uses the Mixup [22]
method to perturb the data, and [23] proposed a Gaussian
noise perturbation method to suppress the unimportant pixels
before sending them to the cloud. Recent studies [24] have
started to investigate how to incorporate differential privacy
into speech processing, but these efforts have not extended into
the multi-modal learning setting. In summary, privacy concerns
regarding audio-visual patterns deserve further investigation.

C. Word-Level Audio-Visual Speech Recognition

Traditional Audio-Visual Speech Recognition (AVSR) methods
follow a two-step process that involves feature extraction and
recognition [25]. However, recent advancements have signifi-
cantly improved the performance of Visual Speech Recognition
(VSR) and Automatic Speech Recognition (ASR) by com-
bining feature extraction and recognition inside deep neural
networks. In VSR, [26] proposed an end-to-end network called
Visual to Phoneme. [27] proposed Spatio-Temporal Fusion
Module to maintain the local spatial information and reduce
the feature dimensions. [28] designs a novel deep learning
architecture using hierarchical pyramidal convolution and self-
attention, thereby enhancing the model’s ability to discover
fine-grained lip movements. In ASR, [29] demonstrated the
superiority of deep representations of the network over hand-
crafted features such as filterbank features.

III. METHOD

A. Audio-Visual Quantum Privacy Protection

Figure 2 illustrates the pipeline of the audio-visual quantum
privacy protection method. It comprises two modules: quantum
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transformation and word-level audio-visual speech recognition.
In the quantum transformation module, we pre-process the
audio-video data first. For audio data, we extract its FBank
features; for video data, we read its grayscale image and split
it into different frames for subsequent processing. Next, we
chunk the processed audio and video data into patches and
feed them into a quantum gate for quantum encoding into
the initial quantum states. We then perform further quantum
transformations using quantum circuits. Finally, the quantum
state is decoded by a measurement function to output quantum
privatized data.

For the word-level audio-visual speech recognition task,
referring to the system in [28], [30], our system utilizes a 3D
convolutional layer and an 18-layer residual network (ResNet-
18) [31] as the frontend for the video modality, a mask module
and a ResNet-18 as the frontend for the audio modality. The
features extracted by the two frontends are concatenated and
fed into a multi-scale temporal convolutional network (MS-
TCN) backend, which then goes through the self-attention
based consensus module to output the words probabilities.

B. Quantum Gates

In this section, we briefly introduce several basic quantum
gates: Rx, Ry, Rz , and CNOT . Unlike a classical bit, which
has two states (0 and 1), a quantum bit can be represented as
|ϕ⟩ = α|0⟩+ β|0⟩, |α|2 + |β|2 = 1. We can also express it in
the form |ϕ⟩ = cos θ|0⟩+ e−iϕ sin θ|1⟩, θ, ϕ ∈ R. The density
matrix of this quantum bit is:

ρ = |φ⟩⟨φ| =
[

cos2 θ
2 e−iϕ sin θ

2 cos
θ
2

eiϕ sin θ
2 cos

θ
2 sin2 θ

2

]
. (1)

⟨ϕ| represents the conjugate transpose of |ϕ⟩.
Alternatively, we can construct the density matrix space

using the four Pauli matrices as its basis, which is:

I = σ0 =

[
1 0
0 1

]
, σx = σ1 =

[
0 1
1 0

]
,

σy = σ2 =

[
0 −i
i 0

]
, σz = σ3 =

[
1 0
0 −1

]
.

Any matrix can be decomposed into ρ =
∑4

i=0 aiσi.
Considering Trρ =

∑4
i=0 aiTrσi, we can determine that

a0 = 1/2. Therefore, the density matrix can be expressed as:

ρ =
1

2
(I + r⃗ · σ) = ρ(r⃗),

r⃗ = 2 (a1, a2, a3) = (sin θ cosϕ, sin θ sinϕ, cos θ).

Substituted the expression of r⃗ into the density matrix
yields:

ρ =
1

2

(
I +

[
cos θ e−iϕ sin θ

e−iϕ sin θ − cos θ

])
=

[
cos2 θ

2 e−iϕ sin θ
2 cos

θ
2

eiϕ sin θ
2 cos

θ
2 sin2 θ

2

]
.

|0⟩ Ry Rx •

|0⟩ Ry Rz

|0⟩ Ry • Rz

|0⟩ Ry Ry

Fig. 3: An example of random quantum circuit.

This is equal to Equation 1, thus we establish the mapping
relation from the quantum state to the 3D sphere, commonly
known as the Bloch sphere [32].

Next, we define the quantum gates Rx, Ry, Rz to mean the
representation of the quantum bit in the Bloch sphere rotating
around the x, y, z axes respectively. It is then straightforward
to determine their corresponding matrices as:

RX (θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
, RY (θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
,

RX (θ) =

[
e−i θ

2 0

0 e−i θ
2

]
.

Similarly, with reference to the Exclusive-OR gate in clas-
sical logic gates, we can express the CNOT gate as a matrix:

CNOT =


1 0 0 0
0 1 0
0 0 0 1
0 0 1 0

 .

C. Quantum Circuits

For better privacy protection effect, the structure and parame-
ters of quantum circuits are randomly generated. Fig. 3 gives
a diagram of a random quantum circuit, where only the most
basic quantum gates Rx, Ry, Rz , and CNOT are applied. The
classical vectors are initially encoded into a quantum state
|ϕ⟩ = |0000⟩, and the encoded quantum states go through
the quantum circuit for the following steps:
Step 1:Φ1 = Ry |0⟩Ry |0⟩Ry |0⟩Ry |0⟩.
Step 2:Φ2 = RxRy |0⟩RzRy |0⟩Ry |0⟩Ry |0⟩.
Step 3:Φ3 = RxRy |0⟩RzRy |0⟩Ry |0⟩CNOT (Ry |0⟩) .
Step 4:Φ4 = RxRy |0⟩CNOT (RzRy |0⟩)Ry |0⟩Ry CNOT(Ry |0⟩) .
Step 5:Φ5 = RxRy |0⟩CNOT (RzRy |0⟩)RzRy |0⟩RyCNOT (Ry |0⟩) .

Furthermore, due to the potential for many unexpected
noisy signals from CNOT gates, particularly with our current
non-error-corrected quantum devices and the connectivity of
physical qubits, we limit the number of qubits in our random
quantum circuit to ensure it falls within the noise tolerance
capabilities of VQC.

IV. PRIVACY PROTECTION CAPABILITY MEASUREMENT

A. Inter-class Intra-class Similarity Ratio

To quantitatively analyze the privacy protection capability of
different methods, we introduce a new metric called the inter-
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class intra-class similarity ratio (IISR).
To process video data, we group frames from the same video

together as one class, while frames from different videos are
treated as separate classes. Audio data is handled in a similar
fashion. Suppose there are n video segments in total, and each
video segment has m frames, the j-th frame image of the i-th
video segment is figi,j .

First, we utilize SSIM as the measure of the similarity
between data. From there, we can calculate the intra-class
similarity by employing the following formula:

ssimintra =
1

n ∗m ∗ (m− 1)

n∑
i=1

m∑
j,k=1
j ̸=k

ssim
(
figi,j ,figi,k

)
.

Similarly, the inter-class similarity function is:

ssiminter =
1

n ∗ (n− 1) ∗m2

n∑
i,l=1
i ̸=l

m∑
j,k=1

ssim
(
figi,j ,figl,k

)
.

To calculate the IISR of SSIM, we can express it as the ratio
of inter-class similarity to intra-class similarity:

IISRssim =

(m− 1)
∑n

i,l=1
i ̸=l

∑m
j,k=1 ssim

(
figi,j ,figl,k

)
m ∗ (n− 1)

∑n
i=1

∑m
j,k=1
j ̸=k

ssim
(
figi,j ,figi,k

) .
Similarly, the formulas for the IISR of RMSE and PSNR

are:

IISRrmse =

(m− 1)
∑n

i,l=1
i ̸=l

∑m
j,k=1 1/rmse

(
figi,j ,figl,k

)
m ∗ (n− 1)

∑n
i=1

∑m
j,k=1
j ̸=k

1/rmse
(
figi,j ,figi,k

) .

IISRpsnr =

(m− 1)
∑n

i,l=1
i̸=l

∑m
j,k=1 psnr

(
figi,j ,figl,k

)
m ∗ (n− 1)

∑n
i=1

∑m
j,k=1
j ̸=k

psnr
(
figi,j ,figi,k

) .
Inter-class and intra-class similarities respectively denote

the proportion of shared information contained within inter-
class and intra-class data. Greater similarity indicates more
compact data. The IISR represents the proportion of common
information contained within inter-class and intra-class data. A
smaller ratio implies that the intra-class data is more compact
than the inter-class data, making it easier to differentiate
whether the two data belong to the same class, which in turn
means more information is preserved.

B. Privacy Attack

To assess the effectiveness of privacy protection methods,
privacy attacks [24] are often employed. It can be broadly
classified into white-box attacks and black-box attacks.

1) White-box attack: White-box attacker has access to all
of our operations. With this knowledge, in order to attack
the quantum privacy protection method, they can take all
parameters in the quantum circuits and inverse them to get
inverse quantum circuits, and then feed the quantum privatized
data into the inverse quantum circuits to get the output.

2) Black-box attack: A black-box attack assumes that the
attacker does not possess any knowledge regarding the model’s
internal structure and parameters. Nevertheless, attackers can
collect large amounts of audio and video data and input the
data into the model to obtain processed data. Subsequently,
they can train a decoder to restore the processed results to
the original input. Finally, attackers can leverage the trained
decoder to recover users’ private data. For our subsequent ex-
periments, we will use UNet [33] as our decoder to reconstruct
the original data from the processed data.

V. EXPERIMENTS

A. Experimental Setup

To evaluate the impact of two privacy-preserving methods on
downstream tasks, we selected a moderately challenging yet
feasible task: word-level speech recognition. For the dataset,
we use the Lip Reading in the Wild (LRW) [34], which consists
of about 500,000 audio-visual speech segments extracted from
BBC TV broadcasts. It encompasses 500 target words and
numerous speakers, and provides a word-level label for each
audio-visual speech segment.

To account for practical application factors, we introduce
noise to the original speech. A total of 115 noise types
including 100 noise types from [35] and 15 homemade noise
types corrupted the corpus in the training set at 5 SNR levels
(i.e., 15 dB, 10 dB, 5 dB, 0 dB, and -5 dB). The validation
and test sets were corrupted by three unseen noise types at the
aforementioned SNR levels, i.e., Speech Babble, Buccaneer1,
and Destroyer Engine. All unseen noises were collected from
the NOISEX92 corpus [36]. Following the addition of noise,
we extracted its 40-dim Fbank features from the noisy speech
as the input. Regarding the video modality, we utilize grayscale
images directly as input.

We employed the method proposed by [5] as the baseline for
privacy protection. In the frequency domain transform part, we
use some functions in TorchJPEG [37] to transform the input
data into BDCT coefficients and then remove its direct part.
And for the initial value of the learnable budget allocation
parameter, we set it to 0 so that the privacy budget of each
location is equal in the initial stage.

For the quantum privacy-preserving method, we use Pen-
nylane to build a 4-bits random quantum circuits and divide
the input data into 2×2 patches into the quantum circuits to
generate quantum privatized data.

B. Performance of Word-level Audio-visual Speech Recogni-
tion

We conducted a comparative analysis of the classification ac-
curacy for speech recognition task using original data, baseline
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TABLE I: Speech recognition accuracy(Acc) in
different data types and modalities.

Acc Original Baseline Quantum
ASR 69.00 65.92 68.12
VSR 86.43 84.23 85.42

AVSR 89.23 87.13 88.26

privatized data, and quantum privatized data, respectively. The
results are shown in Table I.

Based on the table, it is apparent that the classification
accuracy of the original data is the highest, irrespective of the
modality. This implies that both privacy-preserving methods
lead to some information loss. Nonetheless, we observed that
the training results of the quantum privatized data are superior
to the baseline approach, suggesting that the quantum privacy-
preserving method loses less information for the downstream
task required.

C. privatized data Analysis

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Visualization of privatized data. (a) Spectrogram of
original audio data; (b) Grayscale plot of original video
data; (c) Spectrogram of audio baseline privatized data; (d)
Grayscale plot of video baseline privatized data; (e) Spectro-
gram of audio quantum privatized data; (f) Grayscale plot of
video quantum privatized data.

As the first step of our analysis, we performed visualization
operations on the dataset. Specifically, We randomly select an
audio-video segments from the original dataset, generated the
grayscale map of the first frame of the video and the audio
spectrogram, and repeated the same visualization procedure
for the baseline privatized data and quantum privatized data

TABLE II: privatized data analysis.

Modality Data type IISRrmse IISRpsnr IISRssim

Video
Original 0.314 0.611 0.491
Baseline 0.532 0.741 0.585

Quantum 0.539 0.772 0.680

Audio
Original 0.611 0.824 0.407
Baseline 0.855 0.925 0.675

Quantum 0.926 0.973 0.776

Video lip
Original 0.457 0.738 0.533
Baseline 0.693 0.856 0.663
Quantum 0.641 0.818 0.635

TABLE III: Data analysis of white-box attack in
video modality.

Data type IISRrmse IISRpsnr IISRssim

Original 0.314 0.611 0.491
Quantum 0.539 0.772 0.680

White-box Attack 0.536 0.761 0.662

corresponding to this segments. The resulting visualizations
are shown in Fig. 4.

As per our analysis of the visualizations, we observed
that the quantum privatized data the quantum privatized data
better preserves the lip area compared to the baseline data
while worse in other area. Similarly, we noted that quantum
privatized data captures high-frequency information better than
the baseline privatized data from the audio spectrograms.

For further analysis, we employ the IISR metric. We ran-
domly select 10 words and 30 audio-video segments for
each word, and calculate IISR for the audio and video data
separately. Moreover, given the significant reliance of the VSR
task on the lip area in the video, we extracte the lip area of the
video segments and compute its IISR. The results are shown
in Table II.

From the first two rows of the table, we can see that
for both the video and audio data, the IISR values for the
original, baseline, and quantum privatized data follow the
trend of OriginalIISR < BaselineIISR < QuantumIISR,
regardless of the IISRrmse, IISRpsnr or IISRssim. This
suggests that the quantum privatized data retains relatively
less information compared to the baseline method, thereby
providing stronger privacy protection. By further analyzing the
IISR of lip area data, we can find that there is OriginalIISR <
QuantumIISR < BaselineIISR, which is different from
previous results and indicating that quantum privatized data
retain more information in the lip region, thus performing
better in downstream tasks.

D. White-box Attacking Experiments

The white-box attack results is visualized in Fig. 5. Addition-
ally, we calculated the IISR for the white-box attack results,
with the results shown in Table III.

As we can see from the figure or the table, the impact
of white-box attacks is very limited. The quantum privacy
protection method exhibited strong resistance to white-box
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(a) (b)

Fig. 5: Visualization of white-box attack. (a) Grayscale plot
of original video data; (b) Grayscale plot of white-box attack
results of video quantum privatized data.

attacks, which is indicative of the irreversibility of quantum
circuits.

E. Black-box Attacking Experiments

(a) (b) (c)

Fig. 6: Visualization of untrained black-box attack. (a)
Grayscale plot of original video data; (b) Grayscale plot of
untrained black-box attack results of video baseline privatized
data; (c) Grayscale plot of untrained black-box attack results
of video quantum privatized data.

In this section, we discuss the privacy-preserving reliability of
the two approaches under black-box attacks.

Since the quantum privacy method does not require any
trainable parameters and the number of parameters required for
the baseline method is small, we examined the reconstruction
results of the untrained attack network after initialization. The
results are visualized in Fig. 6. From the figure, it is evident
that compared to the baseline, the quantum privatized data
reconstruction results are better restored near the lips, but
worse restored in other regions.

The visualization results of the audio and video data recon-
structed by the trained black-box attack network are also shown
in Fig. 7. The video visualizations reveal that while both the
quantum privacy protection method and the baseline method
are effective at resisting black-box attacks, the restoration
results for the video quantum privatized data are superior to
those of the video baseline privatized data in the lip region.
Similarly, the audio quantum privatized data exhibits better
restoration capability for high-frequency information compared
to the audio baseline privatized data.

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Visualization of black-box attack. (a) Spectrogram of
original audio data; (b) Grayscale plot of original video data;
(c) Spectrogram of black-box attack results of audio baseline
privatized data; (d) Grayscale plot of black-box attack results
of video baseline privatized data; (e) Spectrogram of black-box
attack results of audio quantum privatized data; (f) Grayscale
plot of black-box attack results of video quantum privatized
data.

TABLE IV: Data analysis of black-box attack.

Modality Data type IISRrmse IISRpsnr IISRssim

Video
Original 0.314 0.611 0.491
Baseline 0.489 0.838 0.773

Quantum 0.632 0.867 0.892

Audio
Original 0.611 0.824 0.407
Baseline 0.798 0.956 0.882

Quantum 0.914 0.984 0.947

Video lip
Original 0.457 0.738 0.533
Baseline 0.589 0.864 0.894
Quantum 0.562 0.839 0.848

We compute the IISR values of the reconstructed audio and
video data, with the results depicted in Table IV. From the
table, we can see that for both audio and video modalities, the
reconstruction results of quantum privatized data are inferior
to those of the baseline privatized data, indicating that the
quantum protection approach is more resistant to black-box
attack than the baseline. Furthermore, we analyze the lip
region data separately and find that the reconstruction results
of quantum privatized data are better than those of the baseline
privatized data. This observation provides further evidence to
support the superior performance of the quantum privatized
data for word-level speech recognition tasks.
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VI. CONCLUSIONS

This paper successfully demonstrates the effectiveness of quan-
tum circuits-based privacy-preserving methods in audio and
video modalities. Through visualizations and the IISR metric,
we are able to analyze the privacy-preserving ability of the two
methods in terms of privatized data, resistance to white-box
privacy attacks, and black-box privacy attacks. Furthermore,
by analyzing the data in the lip region, we can find that
the quantum privacy-preserving methods can maintain the
features required for downstream tasks while discarding other
information, thereby enabling excellent privacy-preserving ca-
pabilities while performing well in downstream tasks, which is
inseparable from the advantage of quantum circuits in feature
representation capability.
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