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Abstract
In this paper, we propose a multi-task joint learning scheme to
improve embedding aware audio-visual speech enhancement by
adopting the phone and the articulation place together as the
classification targets during the training of embedding extractor
and enhancement network. Firstly, the multimodal embedding
is extracted from noisy speech and lip frames, and supervised
by the articulation place and the phone label levels together.
Next, we train the embedding extractor and enhancement net-
work jointly where the learning objects include the ideal ratio
mask, the phone posteriori and the place posteriori. Experi-
ments on the TCD-TIMIT corpus corrupted by simulated addi-
tive noises show that the proposed multimodal embedding at the
multi-scale class level is more effective than the previous em-
bedding at the place/phone level and the multi-task based joint
learning framework further improves speech quality and intelli-
gibility.
Index Terms: speech enhancement, audio-visual, multi-task

1. Introduction
Speech enhancement is a task aimed at improving the quality
and intelligibility of noise-contaminated speech. Speech en-
hancement has a wide range of real-world applications, includ-
ing hearing aids [1], speech recognition [2] and mobile commu-
nications [3], etc.

Traditional speech enhancement methods include spectral
subtraction [4], Wiener filtering [5, 6] and minimum mean
squared error (MMSE) estimation [7]. Recently, data-driven
speech enhancement methods using deep neural networks have
been extensively explored and demonstrated promising results
[8]-[10]. Some researches [11]-[15] showed visual information
such as facial/lip movements can help speech perception, and
using visual data as input can have an auxiliary effect for speech
enhancement in noisy environments. Inspired by these discov-
eries, the speech enhancement system utilizing both audio and
visual modalities, which is also known as Audio-Visual Speech
Enhancement (AVSE), has been developed [16]-[19]. However,
since the acoustic information in the video is limited, how to
obtain as much useful acoustic information as possible is par-
ticularly important for AVSE.

In recent years, researchers [20, 21] used a pre-trained iso-
lated word recognition model to choose the most useful visual
embedding while [22] found that using phone to pretrain vi-
sual embedding extractor rather than isolated word can get bet-
ter performance. In previous works [23], we proposed a state-
of-the-art AVSE model called the multimodal embedding aware
speech enhancement (MEASE) model. The MEASE model in-
cludes a multimodal embedding extractor and an embedding
aware enhancement network. The multimodal embedding ex-
tractor, which takes both audio and video as inputs and fuses

them into multimodal embedding, is pretrained with the articu-
lation place classification task. There is a high correlation be-
tween the low-resolution articulation place label and the lim-
ited acoustic information in the video, which is confirmed to be
beneficial for visual embedding extraction. But for audio em-
bedding extraction, more acoustic details in the audio ask for a
classification target with finer granularity where phone is a more
suitable label than articulation place. The lack of the phone in-
formation limits the performance of the MEASE model.

Multi-task learning has been successfully applied in the
audio-only speech enhancement area. [24] used speech pres-
ence probability (SPP) estimation as a secondary task assisting
the target estimation in the speech enhancement task. [25] pro-
posed a multi-task network to estimate the magnitude spectrum
of both the clean speech and the noise from the noisy speech.
Our method is not a simple audio-video version of the above
multi-task learning method. We consider the differences in au-
dio and video modalities and design two focused auxiliary tasks
respectively, namely phoneme classification and viseme classi-
fication.

According to the above analyses, we propose a two-stage
multi-task joint learning scheme for the MEASE model. The
first stage of the scheme is a multi-task learning method for the
multimodal embedding extractor, i.e. using both the phone and
the articulation place as training targets, to improve the effec-
tiveness of the multimodal embedding. The second stage is a
joint learning approach for the multimodal embedding extractor
and the enhancement network where the learning targets consist
of the ideal ratio mask, the phone posteriori and the place pos-
teriori to further refine the multimodal embedding and improve
the speech enhancement performance.

The rest of this paper is organized as follows. Section 2
introduces the details of the proposed multi-task joint learning
scheme. Section 3 presents dataset, experimental setup and ex-
perimental results, and a conclusion is given in Section 4.

2. The proposed scheme
2.1. The proposed multi-task learning method

Our proposed multi-task learning method for the multimodal
embedding extractor is shown in Fig. 1.

The multimodal embedding extractor takes filter bank
(FBANK) features of noisy audio and lip frames cropped from
video as inputs and outputs the multimodal embedding. It con-
sists of an audio embedding extractor, a visual embedding ex-
tractor and a fusion module. The visual embedding extractor,
which consists of a 3D convolutional layer with 64 kernels of
5×7×7 and a stride of 1×2×2, a batch normalization, a ReLU
activation, a 3D max-pooling layer and a 18-layer ResNet [26],
takes lip frames as input and outputs a 256-dimensional vector
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Figure 1: The proposed multi-task learning method for the multimodal embedding extractor

for each lip frame. The visual embedding is the composition of
the vectors of all lip frames. The audio embedding extractor,
which consists of a 1D convolutional layer with 64 kernels of
1 and a stride of 1, a batch normalization, a ReLU activation
and a 18-layer variant of ResNet which all 2D convolutions are
replaced with 1D convolutions, takes FBANK features as input
and outputs a 256-dimensional vector for each time step. The
audio embedding is the composition of the vectors of all time
steps. The number of vectors in audio embedding NA and the
number of vectors in visual embedding NV would not be equal
if the sampling rates of the input audio and video are differ-
ent. The solution is repeating each vector in the visual embed-
ding NA/NV times as shown in Eq. (1). We denote the visual
embedding as EV and the modified visual embedding as ẼV.
Then the audio embedding and the modified visual embedding
are concatenated over channel dimension and sent to the 2-layer
Bidirectional Gated Recurrent Unit (BiGRU) [27] in the fusion
module. The output is the multimodal embedding which con-
sists of the 512-dimensional vector of all time step.

ẼV = {

NA/NV︷ ︸︸ ︷
E0

V, · · · , E0
V, · · · ,

NA/NV︷ ︸︸ ︷
ENV−1

V , · · · , ENV−1
V } (1)

The multimodal embedding extractor is trained by a classi-
fication backend which consists of a 2-layer BiGRU, two fully
connected layers followed by a SoftMax activation. The clas-
sification backend takes the multimodal embedding as input
and outputs the posterior probabilities of each class of phone
(Pphone) and place (Pplace). There are 39 CI-phones and 10
classes of place as in [28, 29] used as the true labels named
P truth
phone and P truth

place . We calculate the cross entropy (CE) loss
Lphone between Pphone and P truth

phone as in Eq. (2) and the cross
entropy loss Lplace between Pplace and P truth

place as in Eq. (3).

Lphone = −
∑

P truth
phone logPphone (2)

Lplace = −
∑

P truth
place logPplace (3)

The total loss function is defined as follows, where α is a
hyper-parameter that is tuned on the validation set.

Lee = α× Lphone + (1− α)× Lplace (4)

The structure of our proposed multi-task multimodal em-
bedding aware speech enhancement (MTMEASE) model is the

module marked by the blue dotted line in Fig. 2, which can
be divided into two parts: the multimodal embedding extractor
and the enhancement network. The input of the enhancement
network is the log-power spectra (LPS) features [30] of noisy
audio and the multimodal embedding. The enhancement net-
work consists of an audio encoder, a multimodal encoder and
a decoder, all of which are stacked by 1D convblocks. The 1D
convblock includes a 1D convolution layer with residual con-
nection, a ReLU activation and a batch normalization. The 1D
convolution layer has 1536 channels, the kernel size is 5 and the
stride is 5. The output of the audio encoder and the multimodal
embedding are concatenated along channel dimension and then
sent to the decoder. In the end, the ideal ratio mask (IRM) [31]
of the noisy audio is predicted.

The multimodal embedding extractor is pretrained and kept
frozen during the training of the enhancement network. We
train the enhancement network by minimizing the mean square
error (MSE) loss between the output IRM M and the target IRM
Mtarget:

Len =
∑

∥M −Mtarget∥22 (5)

2.2. The proposed joint learning approach

As mentioned above, the multimodal embedding extractor is
pretrained in a classification task and is frozen during the train-
ing of the enhancement network. We first proposed a model
called u-MTMEASE which also optimizes the multimodal em-
bedding extractor during the training of the enhancement net-
work, but the performance of u-MTMEASE is not good. Thus
we add constraints on the loss function, and propose a joint
learning approach for the multimodal embedding extractor and
the enhancement network in MTMEASE model. The schematic
diagram of the approach is illustrated in Fig. 2. Compared with
MTMEASE, a classification backend which is the same as that
in Fig. 1 is added as indicated by the yellow dashed arrow. It
predicts the phone and the articulation place while the enhance-
ment network predicts IRM.

The loss function of the joint learning approach is shown in
Eq. (6). It is the weighted sum of the loss of the classification
backend Lee as shown in Eq. (4) and the loss of the enhance-
ment network Len as shown in Eq. (5). Wee and Wen are the
hyper-parameters which are tuned on the validation set.

Ltotal = Wee × Lee +Wen × Len (6)
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Figure 2: The joint learning approach of the multimodal embedding extractor and the enhancement network

3. Experiments
3.1. Dataset

The dataset used in experiments is the simulated dataset of
noisy speech based on the TCD-TIMIT audio-visual corpus
[32] which was created in [23]. It consists of 59 volunteer
speakers with around 98 videos each. The 5643 utterances of
57 speakers (31 male and 26 female) were divided into 5600
utterances and 43 utterances as the train set and the validation
set, respectively. The utterances of the remaining two speakers
(1 male and 1 female) are used as the test set.

The 115 noise types which include 100 noise types in [33]
and 15 home-made noise types were mixed with the train set at
the SNRs of -5 dB, 0 dB, 5 dB, 10 dB and 15 dB. Three unseen
noise types (Destroyer Operations, Factory2 and F16 Cockpit)
at above-mentioned SNR levels are used to build a validation
set. Three other unseen noises (Destroyer Engine, Factory1 and
Speech Babble) at above-mentioned SNR levels are used for
testing. All the above unseen noises were collected from the
NOISEX92 corpus [34].

3.2. Experimental settings

All the speech utterances were resampled to 16 kHz. The au-
dio frames were extracted by a 25-ms Hanning window and an
overlap of 10-ms. Then a 400-point short-time Fourier trans-
form was used to compute the spectra of each frame. 201-
dimensional LPS features were calculated as the input of audio
encoder and 40-dimensional FBANK features were calculated
as the input of multimodal embedding extractor. The videos
were resampled to 25 fps. We extracted 68 facial landmarks
from every video frame by using Dlib [35] implementation of
the face landmark estimator [36]. Then the lip frames of size
98×98 pixels were cropped by using the 20 mouth landmarks
from 68 facial landmarks. PESQ [37] and STOI [38] are used
as evaluate metrics.

The training of MTMEASE is divided into two parts.
Firstly, we train the multimodal embedding extractor with
Adam optimizer for 100 epochs. α used in Eq. (4) is set to
0.7. The mini-batch size is set to 64. The initial learning rate is
3e-4 and decreased on log scale after 30 epochs. Next, we train
the enhancement network with Adam optimizer for 100 epochs.
The batch size is set to 96. The initial learning rate is 1e-4 and
halved if the loss on the validation set does not improve for three

consecutive epochs.
We denote the MTMEASE model with the joint learning

approach as JL-MTMEASE. We use the same optimization
method as that of the enhancement network in MTMEASE ex-
cept the initial learning rate is set to 1e-5 to minimize the loss
during the joint learning of JL-MTMEASE. The values of Wee

and Wen in Eq. (6) are set to 1 and 0.1, respectively.

3.3. Results of the proposed MTMEASE model

To verify our points where the phone label and audio are highly
correlated while the articulation place label and acoustic in-
formation in the video are highly correlated, we did exper-
iments on the audio embedding aware speech enhancement
(AEASE) model and the visual embedding aware speech en-
hancement (VEASE) model [23]. The differences among the
model structures of AEASE, VEASE and MTMEASE are that
AEASE has an audio embedding extractor, VEASE has a vi-
sual embedding extractor and MTMEASE has a multimodal
embedding extractor. We compare the enhancement perfor-
mance of AEASE-phone and AEASE-place, i.e. the AEASE
model using the phone/the articulation place to train the audio
embedding extractor. Similarly, we compare the performance
of VEASE-phone and VEASE-place, i.e. the VEASE model
using the phone/the articulation place to train the visual em-
bedding extractor. We got results of AEASE-place, VEASE-
phone, VEASE-place and MEASE from [23]. Table 1 presents
evaluations for AEASE-phone, AEASE-place, VEASE-phone,
VEASE-place, MEASE and our MTMEASE.

The first four rows in Table 1 show that the performance
of AEASE-phone is better than that of AEASE-place while the
performance of VEASE-place is better than that of VEASE-
phone. The performance gain is more significant on the STOI
metric. The results imply that there is a high correlation be-
tween the phone label and audio which is beneficial for au-
dio embedding extraction and there is a high correlation be-
tween the articulation place label and visual acoustic informa-
tion which is beneficial for visual embedding extraction.

Based on the results in Table 1, MTMEASE shows consis-
tent improvements over MEASE across all evaluation metrics.
For example, the PESQ of MTMEASE increased from 2.29 to
2.38 at -5 dB SNR and from 3.16 to 3.26 at 10 dB SNR. The re-
sults demonstrate our proposed multi-task learning method can
improve the effectiveness of the multimodal embedding.
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Table 1: Average performance comparison of AEASE-phone, AEASE-place, VEASE-phone, VEASE-place, MEASE and our
MTMEASE on the test set at different SNRs averaged over 3 unseen noise types.

Model PESQ STOI (in %)
SNR (in dB) -5 0 5 10 15 -5 0 5 10 15
AEASE-place 2.09 2.39 2.69 2.98 3.27 60.84 72.24 81.58 88.39 92.76
AEASE-phone 2.10 2.40 2.71 3.00 3.29 61.20 72.67 81.93 88.56 92.87
VEASE-place 2.21 2.47 2.73 3.00 3.26 66.57 75.27 82.64 88.80 92.96
VEASE-phone 2.14 2.42 2.69 2.96 3.23 66.29 74.89 82.22 88.45 92.79
MEASE 2.29 2.59 2.88 3.16 3.42 68.96 77.64 84.43 89.99 93.64
MTMEASE 2.38 2.70 2.99 3.26 3.50 70.75 78.98 85.45 90.56 94.01

Table 2: Average performance comparison of JL-AEASE-phone, JL-VEASE-place, u-MTMEASE, MTMEASE and JL-MTMEASE
on the test set at different SNRs averaged over 3 unseen noise types.

Model PESQ STOI (in %)
SNR (in dB) -5 0 5 10 15 -5 0 5 10 15
JL-AEASE-phone 2.12 2.47 2.79 3.08 3.35 62.45 74.62 83.29 89.47 93.46
JL-VEASE-place 2.24 2.52 2.77 3.04 3.29 66.67 75.53 83.07 89.10 93.07
MTMEASE 2.38 2.70 2.99 3.26 3.50 70.75 78.98 85.45 90.56 94.01
u-MTMEASE 2.32 2.62 2.91 3.19 3.45 70.48 78.58 85.22 90.45 93.95
JL-MTMEASE 2.39 2.71 3.00 3.27 3.51 71.02 79.25 85.64 90.67 94.08

3.4. Results on the joint learning approach

The joint learning framework can be generalized to AEASE and
VEASE models [23] as training the audio/visual embedding ex-
tractor and enhancement network jointly. To examine the ef-
fectiveness of the proposed joint learning approach on enhance-
ment performance, we not only train the JL-MTMEASE model,
but also apply the approach to the AEASE-phone model and the
VEASE-place model, which is the best AEASE/VEASE model
in the previous experiments, respectively. We denote them as
JL-AEASE-phone and JL-VEASE-place, respectively. The re-
sults of these models and the u-MTMEASE model we men-
tioned in the Section II are shown in Table 2.

Table 2 shows that the performance of u-MTMEASE,
which simply trains the embedding extractor together with the
enhancement network, degrades compared to MTMEASE. This
may be attributed to the different training objectives of the em-
bedding extractor and the enhancement network, resulting in
the decline of effectiveness of embedding. Nevertheless, the re-
sults of JL-MTMEASE achieve a stable improvement in each
SNR compared to MTMEASE. Besides, significant improve-
ments were achieved on JL-AEASE-phone and JL-VEASE-
place compared to AEASE-phone and VEASE-place in Ta-
ble 1, respectively. The reason why the improvement of JL-
MTMEASE is not obvious might be that the performance of
MTMEASE is already excellent, and there is little room for im-
provement. In summary, the joint learning approach is robust
and has sufficient generalization ability.

Fig. 3 shows the spectrogram comparison between MEASE
and JL-MTMEASE. Compared with MEASE, JL-MTMEASE
can remove most of the noise and reduce speech distortion as
shown in the white box of Fig. 3.

4. Conclusions
In this study, we propose a multi-task joint learning scheme
consisting of a multi-task training method on the multimodal

(a) Mixture (Speech Babble,10dB) (b) Clean

(c) MEASE(PESQ=2.92,STOI=0.87) (d) JL-MTMEASE(PESQ=3.19,STOI=0.88)

Figure 3: The spectrogram comparison between MEASE and
JL-MTMEASE

embedding extractor which can get more effective multimodal
embedding and an approach of joint learning between the em-
bedding extractor and the enhancement network to make the
multimodal embedding more suitable for speech enhancement
task and further improve the enhancement performance. The
experimental results show that our proposed scheme improves
the PESQ and STOI metrics on the enhanced speech. In the
future, we will try to apply the proposed scheme to other audio-
visual speech enhancement models.
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