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Abstract. This paper presents the DA-AVSE system developed for the
ASRU 2023 Audio-Visual Speech Enhancement (AVSE) Challenge. We
initially employed three well-established AVSE models: MEASE, MT-
MEASE, and PLMEASE. These models demonstrated effectiveness even
without utilizing matched data for training. To further enhance the per-
formance, we introduced a domain adaptation method. More specifically,
we utilized pseudo-labels generated by the models above in conjunction
with the official baseline to fine-tune each model. Through extensive
experiments, we observed that our method significantly improved the
models’ generalization to the target test set, regardless of whether the
training and testing conditions matched. Additionally, we implemented
a multi-model fusion strategy to enhance the overall model performance
further. Our system exhibited significant improvements in all objective
metrics, including PESQ, STOI, and SiSDR, compared to almost all
competing teams. As a result, our system ranked the 2nd place in the
objective metrics comparison for track 1.
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1 Introduction

There are many speech-related applications, such as automatic speech recogni-
tion [1], hearing aids [2], video conferencing [3] in reality. But speech is often
interfered with by noise in the daily acoustic environment, which has a bad
impact on the performance of the applications. Therefore, speech enhancement
to reduce noise while maintaining speech quality and intelligibility is important
research with great practical application value.

The research on speech enhancement has been developed for decades. Tra-
ditional speech enhancement methods are based on statistical signal process-
ing, including spectral subtraction [4], Wiener filtering [5] and minimum mean
squared error (MMSE) estimation [6]. In recent years, deep learning has boomed
and achieved promising results in speech enhancement [7,8]. Deep learning-based
speech enhancement methods recover clean speech from noisy speech via a deep
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neural network. They can better deal with non-stationary noise in real acous-
tic scenes than traditional methods. The deep learning-based methods can be
divided into the audio-only speech enhancement (AOSE) method and the audio-
visual speech enhancement (AVSE) method. It’s difficult for the AOSE method
to handle scenarios with multiple speakers, but the AVSE method can do better
in this case because visual information can assist speech enhancement [9].

Many previous papers [10,11] have pointed out that the AVSE models bring
significant improvements compared to audio-only algorithms, especially in low
SNRs. Since the visual cues, such as facial and lip movements, are immune to
acoustic conditions. Ephrat et al. [12] proposed an AVSE model for complex ratio
mask estimation to separate speech from overlapping speech and background
noises. Hou et al. [13] used a multimodal deep convolutional neural network
that received both noisy audio and lip images as input and generated enhanced
audio and lip images as output, fully leveraging visual information. Chen et al.
[14] adopted a multi-modal embedding extracted from a pre-trained articulation
place classifier to avoid performance distortion at high SNRs, and realized a
significant improvement. [15] designed a lighter model structure by removing the
visual feature extraction network with visual data compression, and experimental
results confirmed that it provides better performance than the audio-only and
AVSE systems without visual data compression. [16] fused audio-visual features
layer by layer and introduced the channel and spectral attention mechanisms to
pay more attention to informative regions of the fused AV feature maps.

Data-driven speech enhancement methods typically use many noisy and clean
speech pairs for training. In the acoustic environment of practical application
scenarios, noise types are always not included in the training, which degrades
speech enhancement performance. To improve the generalization ability of the
speech enhancement models for unseen acoustic environments, the usual practice
is to increase the types of acoustic conditions during training as much as possible.
However,it is not feasible to include all possible conditions during training, so
the mismatch between training and testing of data-driven models has always
been existing.

Domain adaptation can be used as a solution to the above problem. It has
been extensively studied in computer vision in recent years [17, 18], but it is
uncommon in speech signal processing. Domain adaptation aims to transfer the
knowledge learned from the source domain to the target domain. Domain adap-
tation can be used to address the degradation of performance when migrating
speech enhancement models to unseen acoustic environments. [19] proposed a
domain adversarial training method by utilizing unlabelled target domain noisy
speech to extract noise-invariant features, which improved the speech enhance-
ment performance in the unseen target domain. [20] designed a cross-task trans-
fer learning method using paired senone classifiers to align speech signals in the
source and target domains and transfer knowledge from the source domain to
the target domain through multi-task learning. [21] used a Relativistic Discrim-
inator and Multi-Kernel Maximum Mean Discrepancy (MK-MMD) to align the
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speech distributions between the source and target domains, thereby improving
the speech enhancement model’s performance on the target domain.

The Audio-Visual Speech Enhancement (AVSE) Challenge 2023 aims to ex-
plore novel approaches to audio-visual speech enhancement. The objective evalu-
ation indicators of the challenge include PESQ, STOI and SISDR. The challenge
is divided into two tracks: track 1, which prohibits the use of additional data,
and track 2, which allows it. We participated in track 1. In our work, we first use
the official training set released by the challenge to train three models, namely
MEASE [14], MTMEASE [22] and PLMEASE, which is a model that applies the
audio-visual progressive learning framework proposed in [23] to MEASE. These
three models achieve competitive results on the official evaluation set. To im-
prove the performance of our system on the evaluation set, we propose a simple
and efficient domain adaptation method called Multi-Model Mixture Pseudo-
Label Domain Adaptation (MMMP-DA). The method jointly uses pseudo-labels
generated by multiple models to fine-tune the models. Specifically, we generate
pseudo-labels for the unlabeled evaluation set using three trained models and
the officially trained baseline [24]. Then a small-scale dataset is simulated with
pseudo-labels to fine-tune the four models. The experimental results demon-
strate that our MMMP-DA method can effectively leverage the complementarity
among multiple models and enhance their adaptation ability to the evaluation
set, regardless of whether the training and evaluation environments match.

Furthermore, we use a multi-model fusion strategy to fuse the enhanced
speech predicted by all models, reducing the prediction bias of individual mod-
els and resulting in more robust and reliable predictions. After applying our
MMMP-DA method and the multi-model fusion strategy, our DA-AVSE submis-
sion system achieves 1.77 PESQ, 71.23% STOI and 7.68 SISDR on the evaluation
set of the AVSE Challenge 2023, which ranked 2nd in track 1.

2 Proposed system

2.1 Employed Model

We use four models in the challenge: the official baseline model, MEASE, MT-
MEASE and PLMEASE. The input of the official baseline model includes the
magnitude spectrum and the video frames, and the output of the model is the
mask of the magnitude spectrum. The MEASE model was proposed in [14],
whose full name is multimodal embedding aware speech enhancement model. Its
structure diagram is shown in Figure 1. The MEASE includes a multimodal em-
bedding extractor and an embedding-aware speech enhancement network. There
are two branches inside the multimodal embedding extractor, which extract au-
dio embedding and visual embedding respectively. The input of the audio branch
is the Mel Filter Bank (FBANK) feature of noisy speech, and the audio embed-
ding is obtained through a 1D convolutional layer, a batch normalization, a
ReLU activation and an 18-layer variant of ResNet [25] in which all 2D convolu-
tions are replaced with 1D convolutions. The input of the visual branch is the lip
frames cropped from the video, and the visual embedding is obtained through
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a 3D convolutional layer, a batch normalization, a ReLU activation, a 3D max-
pooling layer and an 18-layer ResNet. Then the audio and visual embeddings
are concatenated over channel dimension and fused through the fusion module
containing a 2-layer Bidirectional Gated Recurrent Unit (BiGRU) to obtain the
multimodal embedding.

The 1D ConvBlock in the embedding-aware speech enhancement network
includes a 1D convolution layer with a residual connection, a ReLU activation,
and a batch normalization. The embedding-aware speech enhancement network
takes a concatenation of multimodal embedding and noisy log power spectrum
(LPS) [26] as input and predicts the ideal ratio mask (IRM) [27] of the noisy
speech.
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Fig. 1. Schematic diagram of MEASE.

The multimodal embedding extractor is pretrained with the articulation place
classification task [14] and kept frozen during the embedding-aware speech en-
hancement network training. The forward propagation process of the enhance-
ment network for a given sample (A, V ), where A represents the noisy speech and
V represents the corresponding video, is represented by Eq. (1), where W refers
to the model parameters. The enhancement network is trained by minimizing the
mean square error (MSE) loss between the predicted ideal ratio mask Ṁ and the
target ideal ratio mask M , as shown in Eq. (2). During training, the network’s
parameters are updated by backpropagating the loss, which is represented by
Eq. (3) and involves the learning rate lr.

Ṁ = F(A, V,W ) (1)

Ltraining =
∑∥∥∥Ṁ −M

∥∥∥2
2

(2)
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W ←W − lr
∂Ltraining

∂W
(3)

Building on the work of MEASE, [22] considered the differences between au-
dio and visual modalities. Specifically, audio contains more and finer acoustic
information compared to video, which is less and rougher. Therefore, to pre-
vent a loss of acoustic details, a finer classification task was used to extract
audio embeddings. The phone label was found to be more suitable than the ar-
ticulation place label due to its finer granularity. Expanding on this idea, [22]
proposed a multi-task pre-training method for the multimodal embedding ex-
tractor, using both the phone and articulation place labels as training targets to
extract more effective multimodal embeddings. The MEASE model that applies
this multi-task pre-training method is called multi-task multimodal embedding
aware speech enhancement (MTMEASE). The forward propagation and loss
backpropagation methods of the enhancement network in the MTMEASE are
the same as those in the enhancement network of the MEASE.

In [23], a mask-based audio-visual progressive learning speech enhancement
(AVPL) model was proposed to address the problem of a large signal-to-noise
ratio (SNR) gap between the learning target and input noisy speech. The model
accomplishes this by dividing the mapping between noisy and clean speech into
multiple stages, gradually narrowing the SNR gap at each stage. The first stage
of AVPL takes a concatenation of the pre-trained visual embedding and the
noisy LPS feature as input. In each subsequent stage, the visual embedding
and the representation outputted by the previous stage are used as input. The
final stage of AVPL predicts the IRM of the noisy speech. The AVPL is able to
suppress more noise while preserving more spectral information. We replaced the
input visual embeddings of AVPL with multimodal embeddings, and named the
resulting model the progressive learning multimodal embedding aware speech
enhancement (PLMEASE) model. The motivation for this change is to take
advantage of the complementarity of audio and video modalities in multimodal
embedding to further improve the performance of speech enhancement. The
forward and backward propagation processes of PLMEASE are the same as
those of AVPL described in [23].

2.2 Proposed Multi-Model Mixture Pseudo-Label Domain
Adaptation (MMMP-DA) method

Our method is model-agnostic and can be applied to multiple models. We regard
the labeled training set as the source domain and the unlabeled evaluation set as
the target domain. The models are trained on the source domain before applying
our MMMP-DA method. The structure of the MMMP-DA method is shown
in Figure 2. Assuming a total of K AVSE models, the evaluation set has Q
unlabeled noisy speech and the corresponding videos. We use A = {Ai, 0 ≤
i < Q} to represent the noisy speech feature set of the evaluation set, and
V = {Vi, 0 ≤ i < Q} to represent the visual feature set. The steps of our method
are summarized as follows:
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Fig. 2. The proposed MMMP-DA method.

Step 1: The first step is the enhancement stage. The K trained source AVSE
models predict pseudo-labels on the target unlabeled evaluation set, respectively.
For the i-th sample (Ai, Vi), the predicted mask of the j-th model Ṁ j

i can be
obtained using Eq. (4), where Wj represents the parameters of the j-th model.

Ṁ j
i = F j(Ai, Vi,Wj) (4)

The enhanced speech feature and noise feature of the i-th sample generated
by the j-th model can be obtained by Eq. (5) and Eq. (6), respectively.

Êj
i = Ai ⊙ Ṁ j

i (5)

N̂ j
i = Ai ⊙ (1− Ṁ j

i ) (6)

Each model can get an enhanced speech feature set and a noise feature set
of evaluation set. We collect all the enhanced speech feature sets from the K
models into a set represented in Eq. (7), and we collect the corresponding noise
feature sets into another set represented as shown in Eq. (8).

Ê =
{
Ê0

0 , · · · , Ê0
Q−1, · · · , ÊK−1

0 , · · · , ÊK−1
Q−1

}
(7)

N̂ =
{
N̂0

0 , · · · , N̂0
Q−1, · · · , N̂K−1

0 , · · · , N̂K−1
Q−1

}
(8)

Step 2: The second step is random simulation, where we create a dataset with
a total duration of 20 hours. For each sample, we randomly select an enhanced
speech feature Êj

i from the set Ê and a noise feature N̂v
u from the set N̂ . We

then randomly select a value from the set signal-to-noise ratio (SNR) range
as the SNR and use it to calculate the noise adjustment factor α during the
simulation.We denote the simulated sample as Ãu

i , and the simulation formula
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is shown in Eq. (9). The corresponding visual feature is Vi. The label of this
sample can be calculated with Eq. (10).

Ãu
i = Êj

i + αN̂v
u (9)

M̃u
i =

∥∥∥Êj
i

∥∥∥2
2∥∥∥Êj

i

∥∥∥2
2
+

∥∥∥αN̂v
u

∥∥∥2
2

(10)

Step 3: The third step involves fine-tuning models using the simulated
dataset separately. During the fine-tuning stage, we employ the k-fold cross-
validation method [28] which divides the simulated dataset into k subsets for
a total of k iterations. We leave one fold for testing each iteration and use the
remaining k-1 folds to train the model. This method allowed us to fully use
the data, avoid over-fitting issues caused by insufficient data, and improve the
model’s generalization ability. When the input is the simulated sample (Ãu

i , Vi),
the output mask M̂ j

i of the j-th model is calculated using Eq. (11).

M̂ j
i,u = F j(Ãu

i , Vi,Wj) (11)

The loss function we use during fine-tuning is the MSE loss between the
predicted mask and the target mask, as shown in Eq. (12). The update formula
of the model parameters is shown in Eq. (13), where lr is the learning rate.

Lfinetuning =
∑∥∥∥M̂ j

i,u − M̃u
i

∥∥∥2
2

(12)

W ←W − lr
∂Lfinetuning

∂W
(13)

3 Experiments

3.1 Datasets

The AVSE Challenge 2023 provides 113 hours of training set and 8.5 hours of
development set. Audio tracks of interferers are composed of a single compet-
ing speaker or a noise source in the following ranges: -15 dB to 5 dB (com-
peting speaker) and -10 dB to 10 dB (noise) [24]. The videos of the target
speakers and the competing speakers in the training set are selected from the
LRS3 dataset [29]. Noise data mainly comes from Clarity Challenge (First edi-
tion) [30], Freesound [31], and DNS Challenge (Second edition) [32]. All audio
files are monaural speech with a 16 kHz sampling frequency and 16 bits of bit
depth. The target speakers, competing speakers and noise files of the training
and development set are all disjoint but share the same noise categories.

The official evaluation set has 1,389 extracted sentences from 30 speakers.
Approximately half of the mixed speech in the evaluation set has a competing
speaker scenario while the other half has noise. There are six competing speakers.
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The noise types used in the evaluation set are a subset of the noise types used
in the training and development sets.

To evaluate the generalization ability of our MMMP-DA method, we create
an acoustic environment that does not match the evaluation set. Specifically, we
build an audio-visual dataset based on the benchmark released by the Multi-
modal Information-based Speech Processing (MISP) 2021 Challenge [33]. The
MISP2021 Challenge Audio-Visual Speech Recognition (AVSR) dataset contains
122.53 hours of audio-visual data recorded in a real-home TV room, with the
language being Chinese. We utilize near-field audio and corresponding mid-field
video from this dataset and mix it with MISP home-scene noise at 6 levels of
SNRs (-15 dB, -10 dB, -5 dB, 0 dB, 5 dB, and 10 dB) to create a 132-hour
training set and a 10-hour development set. We named this dataset as the MISP
home-noise dataset. The acoustic environment of this dataset is significantly
mismatched from that of the AVSE Challenge 2023 evaluation set, as the noise
and language types are completely different.

3.2 Experimental settings

For the MEASE, MTMEASE, and PLMEASE models, we utilize a 25-ms Han-
ning window and an overlap of 10 ms to extract audio frames during the audio
preprocessing phase. The spectra of each frame is computed by a 400-point
short-time Fourier transform. The videos are resampled to 25 fps and the lip
area with a size of 98×98 pixels is cropped from each video frame. We com-
pute 201-dimensional LPS features as the input of the enhancement network,
40-dimensional FBANK features and lip frames as input to the multimodal em-
bedding extractor.

The objective metrics used on the challenge leaderboard include percep-
tual evaluation of speech quality (PESQ) [34], short-time objective intelligibility
(STOI) [35] and Scale-Invariant Signal-to-Distortion Ratio (SISDR) [36]. Higher
is better on three metrics.

The training methods of the models MEASE, MTMEASE and PLMEASE
are similar. Firstly, we train the multimodal embedding extractor for 100 epochs
with the Adam optimizer. The initial learning rate is 3e-4, decreasing on log scale
after 30 epochs. After training the multimodal embedding extractor, we freeze
it and train the speech enhancement network for 100 epochs using the Adam
optimizer. The initial learning rate is set to 1e-3 and halved if the validation loss
does not decrease for three epochs.

During random simulation, we generate a dataset of 20 hours of noisy-clean
pairs with SNRs ranging from -10dB to 0dB. In the fine-tuning stage, the number
of cross-validation folds is set to 10. We use the Adam optimizer with an initial
learning rate of 3e-4, which is halved if the validation loss fails to improve after
three consecutive epochs.



A Study on Domain Adaptation for Audio-visual Speech Enhancement 9

3.3 Results of the MEASE, MTMEASE and PLMEASE in matched
scenario

In this section, we present the results of the MEASE, MTMEASE and PLMEASE
models on the evaluation set after being trained on the official training set, which
represents a matched condition between training and test data. As evidenced
quantitatively in Table 1, the three aforementioned models demonstrated com-
petitive performance across all evaluation metrics.

Table 1. Performance of MEASE, MTMEASE and PLMEASE on the evaluation set
in the matched scenario.

Model PESQ STOI(%) SISDR
Noisy 1.14 44.10 -5.07
Baseline 1.41 55.63 3.67
MEASE 1.60 67.66 5.34
MTMEASE 1.61 67.86 5.46
PLMEASE 1.56 66.28 4.97

3.4 Performance analysis of the proposed MMMP-DA method

To demonstrate the effectiveness of our proposed method, we compare the per-
formance of our MMMP-DA method with a common single-model pseudo-label
domain adaptation method, denoted as SMP-DA. The SMP-DA method only
uses pseudo-labels and noise generated by a single model to simulate the fine-
tuned dataset, which means that domain adaptation is only performed on a
single model. We apply the SMP-DA and proposed MMMP-DA methods on
four models: the official baseline, MEASE, MTMEASE and PLMEASE. The
results are shown in Table 2.

Table 2. Performance comparison of SMP-DA and MMMP-DA methods on the
baseline, MEASE, MTMEASE and PLMEASE models on the evaluation set in

matched scenario.

Model
SMP-DA MMMP-DA

PESQ STOI(%) SISDR PESQ STOI(%) SISDR

Baseline 1.60 64.26 8.01 1.63 65.51 8.43

MEASE 1.64 69.09 5.79 1.68 70.30 6.26

MTMEASE 1.65 69.25 5.85 1.68 70.30 6.24

PLMEASE 1.61 68.54 5.67 1.64 69.25 5.93

By comparing the results presented in Tables 1 and 2, we can see that our
MMMP-DA method consistently improves the performance of all models, indi-
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cating that our method is robust and effective. For example, the SISDR of the
baseline model increased from 3.67 to 8.43, and the STOI of the PLMEASE
model increased from 66.28% to 69.25%.

Comparing the results of the SMP-DA and MMMP-DA methods in Table 2,
it is clear that the MMMP-DA method consistently outperforms the SMP-DA
method. These findings suggest that leveraging prior knowledge from multiple
models through the MMMP-DA method is more effective in facilitating domain
adaptation than using a single model, as in the SMP-DA method. Specifically, the
MMMP-DA method can leverage the complementarity among multiple models
and capture a wider range of variations in the target evaluation set, enabling
effective domain adaptation across multiple models. In contrast, using a single
model for domain adaptation may lead to limited effectiveness in improving its
performance due to the model’s inability to capture all the variations in the
target evaluation set.

To demonstrate the validity of our MMMP-DA method in mismatched sce-
narios, we evaluate the performance of the MEASE model with and without the
MMMP-DA method applied in a mismatched scenario using the MISP home-
noise dataset as the training set. We also set up a fine-tuning scenario training
with the MISP home-noise dataset and fine-tuning on the official development
set to compare with the MMMP-DA method. The number of cross-validation
folds when fine-tuning with the development set and the learning rate setting
are the same as that of our MMMP-DA method. We present the performance
comparison on the evaluation set in Figure 3.
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Fig. 3. The performance comparison of MEASE on the evaluation set. "w/o MMMP-
DA" stands for MEASE without applying our MMMP-DA method. "w MMMP-DA"
stands for MEASE applying our MMMP-DA method. "mismatch" represents that
MEASE is trained in the mismatched scenario, that is, the MISP home-noise dataset.
"match" represents that MEASE is trained in the matched scenario which is the official
training set. "finetune" means that the MEASE is fine-tuned with a small amount of
matching data after training in mismatched scenario.

Figure 3 shows that the MMMP-DA method steadily improves the perfor-
mance of the MEASE model in all three evaluation metrics, regardless of whether
the environments are matched or mismatched. In the case of mismatched envi-
ronments, our method enables the model to achieve comparable or even better
performance than the model fine-tuned with the matched development set. This
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suggests that the MMMP-DA method can effectively improve the model’s gen-
eralization and make it more suitable for the evaluation set, even when labeled
real matching data is not available during the fine-tuning stage.

3.5 Objective results on AVSE Challenge 2023

In this section, we introduce the method we use in the challenge. We first use the
official training set to train the MEASE, MTMEASE and PLMEASE models,
and then we jointly apply our MMMP-DA method on these three models and the
official trained baseline provided by the challenge. Finally, we fuse the prediction
results of the evaluation set from the four models, that is, average the predicted
time domain waveforms to obtain the final predicted waveform. This operation
can effectively reduce the bias and variance of a single model, thereby improving
the stability and accuracy of predictions.

Table 3. Performance comparison of our system and some other competing systems
on the evaluation set.

System PESQ STOI(%) SISDR
Baseline 1.41 55.63 3.67
BioASP_CITI 1.41 53.78 3.61
AVSE02 1.61 68.21 8.81
Ict_avsu 1.66 67.67 6.73
Merl 2.71 83.76 14.43
DA-AVSE 1.77 71.23 7.68

Table 3 presents a comparison of the performance of our DA-AVSE system
with some other participating systems in the challenge track 1. The table shows
that our DA-AVSE system outperforms almost all other competing systems re-
garding all three evaluation metrics. Specifically, our system achieves a PESQ
of 1.77, an STOI of 71.23%, a SISDR of 7.68 dB. These results demonstrate the
effectiveness of the MMMP-DA method and the model fusion strategy.

4 Conclusions

This paper presents our submission to the AVSE Challenge 2023 track 1, where
we introduced three AVSE models: MEASE, MTMEASE, and PLMEASE, yield-
ing competitive results. Additionally, we propose a domain adaptation method
called MMMP-DA to enhance the model’s generalization capability to the target
test set. By applying the MMMP-DA method to the official baseline, as well as
the MEASE, MTMEASE, and PLMEASE models, and employing a multi-model
fusion strategy, we further improve the overall model performance. Our final re-
sults on the evaluation set demonstrate notable achievements, ranked 2nd on
track 1 in terms of objective metrics.
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