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ABSTRACT

Video information has been widely introduced to speech enhance-
ment as its contribution at low signal-to-noise ratios (SNRs). Con-
ventional audio-visual speech enhancement networks take noisy
speech and video as input and learn features of clean speech di-
rectly. To reduce the large SNR gap between the learning target and
input noisy speech, we propose a novel mask-based audio-visual
progressive learning speech enhancement (AVPL) framework with
visual information reconstruction (VIR) to increase SNRs gradually.
Each stage of AVPL takes a concatenation of pre-trained visual em-
bedding and the previous representation as input and predicts a mask
with the intermediate representation of the current stage. To extract
more visual information and deal with the performance distortion,
the AVPL-VIR model reconstructs the visual embedding as it is fed
in for each stage. Experiment on the TCD-TIMIT dataset shows that
the progressive learning method significantly outperforms direct
learning for both audio-only and audio-visual models. Moreover, by
reconstructing video information, the VIR module provides a more
accurate and comprehensive representation of the data, which in turn
improves the performance of both AVDL and AVPL.

Index Terms— Speech enhancement, progressive learning, vi-
sual embedding reconstruction

1. INTRODUCTION

Speech in noisy environments such as shopping malls, factories,
streets, etc., can be severely disturbed or even drowned in noise.
The aim of speech enhancement [1] is to produce enhanced speech
with better quality and intelligibility by suppressing the background
noise. It is commonly used as a front-end task for automatic speech
recognition (ASR), hearing aids, and communications.

A number of methods have been proposed for speech enhance-
ment. Conventional speech enhancement approaches such as spec-
tral subtraction [2], Wiener filtering [3], and minimum mean squared
error (MMSE) estimation [4] have been extensively studied. To sim-
plify the model, these conventional algorithms are based on a se-
ries of mathematical assumptions about the noisy and clean speech.
However, these conventional methods are often challenging to track
non-stationary noises for real-world acoustic conditions.

In the last few years, deep neural network (DNN)-based speech
enhancement algorithms have received increasing attention. DNN-
based methods have been found to have a more powerful capabil-
ity to model complex relationships between noisy and clean speech,
in comparison to conventional algorithms [5]. According to the
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learning target, these DNN-based algorithms can be broadly clas-
sified into mask-based methods [6, 7] and feature mapping-based
methods [8]. Recently, more and more researchers directly utilize
DNN to model the relationship between noisy and clean waveforms
[9, 10, 11]. Moreover, the learning process of deep structures in
speech enhancement has attracted many researchers. [12] proposes
a speech enhancement network based on progressive learning that
decomposes direct mapping into multiple stages and gradually im-
proves the SNR. Nian et al. [13] propose a time domain progressive
learning network and prove that both the SNR-increased interme-
diate target and clean target can achieve better listening quality and
intelligibility, as they significantly improve the performance of ASR.

Previous researches [14, 15, 16] show that visual information
is beneficial to the speech perception of the corresponding speaker,
especially at low SNRs, since visual information is often immune
to the effects of acoustic conditions. [17] proposes an audio-visual
speech enhancement network that is able to separate a speaker’s
voice-given lip regions in the corresponding video, by predicting
both the magnitude and the phase of the target signal. Hou et al. [18]
reconstruct the input mouth images for speech enhancement in order
to make full use of visual information. [19] employs the phone as a
classification target to extract a visual embedding with more useful
information for speech enhancement. [20] proposes a new mech-
anism for audio-visual fusion adaptable to any feature layer of the
audio and visual networks. Chen et al. [21] adopt a multi-modal em-
bedding by fusing audio and visual embedding, which is extracted
from pre-trained articulation place classification networks, to avoid
performance distortion at high SNRs [22] and realize a satisfactory
performance.

In this study, we propose a novel audio-visual progressive learn-
ing (AVPL) framework with visual information reconstruction (VIR)
for speech enhancement. Specifically, the mapping between noisy
and clean speech is split into multiple stages. In each stage, the in-
termediate representation outputted by the previous stage is concate-
nated with the pre-trained visual embedding to improve the SNR
gradually. Moreover, the intermediate representation outputted by
the current stage is also used to reconstruct the visual embedding.
Experimental results show the proposed framework achieves signif-
icant performance improvements for both PESQ and STOI metrics
in contrast to the baseline model. We also conduct a comprehensive
ablation study and find that the progressive learning network retains
more spectral details and suppresses more noise, especially in the
non-speech segments.

The rest of the paper is organized as follows. Section 2 intro-
duces our proposed AVPL-VIR model. Section 3 introduces the
implementation details and experiments. Finally, we conclude our
findings in Section 4.



Fig. 1. The overview of proposed audio-visual progressive learning model with visual information reconstruction

2. PROPOSED AUDIO-VISUAL PROGRESSIVE
LEARNING SPEECH ENHANCEMENT WITH VISUAL

INFORMATION RECONSTRUCTION

This section introduces the AVPL and the VIR module in detail.
We apply progressive learning in audio-visual speech enhancement,
which improves SNRs gradually. Then the VIR is established to ex-
tract more visual information and prevent performance degradation
with increasing convolution blocks. The overview of the proposed
model is illustrated in Fig. 1.

2.1. Audio-Visual Progressive Learning Network

The proposed AVPL model takes a concatenation of noisy log power
spectrum (LPS) ALPS and visual embedding as input. We employ a
visual embedding extractor in [21], which is pre-trained with a novel
classification target, i.e. place of articulation. The lip frames pass
through a 3D convolution and ResNet-18 successfully:

EV = ResNet-18(Conv3D(V )) (1)

where EV and V denote visual embedding and input lip frames re-
spectively.

The progressive learning network divides the conventional direct
learning method into multiple stages, and each of them achieves a
small SNR improvement, which is easier to learn. Each stage is
composed of L 1D-ConvBlocks, denoted as FPL

i (·), including a 1D
convolution layer with a residual connection, a ReLU activation, and
a batch normalization.

For the i-th stage in AVPL, the intermediate representation is
obtained by a concatenation of visual embedding and the previous
representation:

XPL
i = FPL

i ([XPL
i−1, EV ],Λi)

= FPL
i (...[FPL

1 ([ALPS, EV ],Λ1), EV ]...,Λi)
(2)

where Λi and XPL
i denote the parameter set of weight matrices and

bias vectors and the intermediate representation in the i-th stage, re-
spectively. For the first stage, XPL

0 is equivalent to ALPS .
Then a sigmoid activation is employed to obtain a mask Mi for

the i-th stage:
MPL

i = σ(XPL
i ) (3)

where MPL
i is range from 0 to 1. We expect to use the mask MPL

i

to obtain enhanced speech with SNRi dB increasing in SNR to noisy

input. Therefore the learning target for i-th stage [23] is denoted as
MSNRi :

MSNRi(k, t) =
|S(k, t)|2 + |Ni(k, t)|2

|S(k, t)|2 + |N(k, t)|2 (4)

where S(k, t), Ni(k, t) and N(k, t) represent the short-time Fourier
transform (STFT) of the clean speech, residual noise for i-th stage,
and input noise at time frame t and frequency bin k, respectively.
For the last learning stage, the learning target MSNRK is the same as
IRM to estimate a clean speech.

To optimize the parameters, the mean square error (MSE) loss is
calculated for every stage:

LPL
maski =

∑
k,t

∥∥∥MPL
i (k, t)−MSNRi(k, t)

∥∥∥2

(5)

where LPL
maski denotes the MSE loss for estimated mask in i-th stage.

The gradient is updated as the dashed line in Fig. 1 indicated. Since
multiple masks are estimated in the progressive learning network, a
weighted multi-targets learning loss LAVPL is designed as follows:

LAVPL =
1

K

K∑
i=1

αiLPL
maski (6)

where αi is the weighting factor for i-th learning stage.
The corresponding audio-only direct learning (AODL) and

audio-visual direct learning (AVDL) methods take N 1D-ConvBlocks
in total the same as corresponding progressive learning, with only
one target, i.e. IRM. The audio-only progressive learning (AOPL)
takes the noisy LPS as input, which employs the same structure as
AVPL.

2.2. AVPL with Visual Information Reconstruction

Visual information plays an essential role in improving the intelligi-
bility of enhanced speech, especially at low SNRs. We expect more
visual information can be extracted to intermediate representations.
Then the VIR module is established and changes each progressive
stage into a multi-target one. In addition to predicting a mask MPL

i ,
the stage is also called for reconstructing the visual information.

The VIR module takes a similar structure as enhancement
blocks, which consists of LVIR 1D-ConvBlocks, denoted as FVIR

i (·).
In stage i, the intermediate representation XPL

i extracted by FPL
i (·)

is used to reconstruct visual information, i.e. visual embedding in



this paper. The intermediate representation passes through the VIR
module as follows:

EVIR
i = FVIR

i (XPL
i ) (7)

where EVIR
i denotes reconstructed visual embedding at i-th stage.

The MSE loss for VIR LVIR
i is calculated as:

LVIR
i =

∑∥∥∥EVIR
i − EV

∥∥∥2

(8)

Combined with the progressive learning loss LPL
i , the multi-targets

loss LMulti
i can be defined as follows:

LMulti
i = η1LPL

maski + η2LVIR
i (9)

where η1 and η2 are the weighting factors for the estimated mask
and reconstructed visual embedding in the i-th stage. To minimize
the multi-target loss, each stage is required to extract more visual
information to intermediate presentation XPL

i , which is especially
important for performance at low SNRs. The MSE loss for AVPL-
VIR is defined as follows:

LAVPL-VIR =
1

K

K∑
i=1

αiLMulti
i (10)

where, the weighting factor αi is the same as AVPL. In this way, we
utilize visual information not only by feeding it to each stage but also
by driving the network to make full use of it. AVPL-VIR improves
the SNR of input speech and reconstructs the visual information in
a progressive way. It achieves this by utilizing both audio and video
modalities, allowing for more accurate and detailed visual informa-
tion to be extracted from the input. Overall, AVPL-VIR provides
a more effective and efficient method for processing and analyzing
multimodal data.

3. EXPERIMENTS

3.1. Implementation Details

Clean speech derived from TCD-TIMIT audio-visual corpus [24] is
corrupted at five SNR levels (-5dB, 0dB, 5dB, 10dB, 15dB) with 100
noise types in [25] and 15 homemade noise types to build a 35-hour
training set. We present the test set with four SNR levels (-5dB,
0dB, 5dB, 10dB) which includes 3 other unseen noise types from
NOISEX-92 corpus [26]: Destroyer Engine, Factory1, and Speech
Babble.

For AODL and AOPL models, there are 20 1D-ConvBlocks in
total, i.e. N = 20. The visual embedding reconstruction is com-
posed of 5 1D-ConvBlocks, i.e. LVIR = 5. The weight parame-
ters η1 and η2 in multi-targets loss are set to be 1 and 0.1 respec-
tively. The loss weight parameter αi of each learning stage is 1.
We train models with an initial learning rate set as 0.001, and it will
be halved if the loss does not decrease for 3 consecutive epochs on
the validation set. We adopt perceptual evaluation of speech quality
(PESQ) [27] and short-time objective intelligibility (STOI) [28] to
evaluate enhanced speech, both of them have higher values to indi-
cate better performance.

3.2. Analysis on Progressive Learning and Visual Information
Reconstruction

Tu et al. [12] implement 3 LSTM layers with 3 progressive targets to
achieve the best performance. However, convolution blocks in this

study are more complex, how many progressive targets will yield the
best enhancement performance is of great interest and worth explor-
ing. Firstly, we perform a series of experiments using AOPL with
K progressive targets, where K ∈ {3, 4, 5}. An average PESQ and
STOI comparison between AODL and AOPLs with different pro-
gressive targets over 4 SNR levels and 3 unseen noise types is shown
in Table 1.

Table 1. PESQ and STOI(%) comparison on AODL and AOPL with
different numbers of targets. (The value of K and its corresponding
intermediate targets are set as K = 3: +10dB, +20dB; K = 4:
+5dB, +10dB, +15dB; K = 5: +5dB, +10dB, +15dB, +20dB)

Metrics AODL AOPL
K = 3 K = 4 K = 5

PESQ 2.49 2.63 2.66 2.64
STOI(%) 74.29 76.09 76.84 76.21

Our analysis demonstrates that all audio-only object-oriented
progressive learning (AOPL) models outperform their audio-only
counterparts (AODL), indicating the effectiveness of the progressive
learning approach in the complex network structure. Specifically,
AOPL achieves its highest performance, with gains of 0.17 PESQ
and 2.55 STOI(%) over AODL, when trained with 4 targets: 3 in-
termediate targets (+5dB, +10dB, +15dB) and a clean target at the
end.

We also observe that increasing the number of stages can lead
to overfitting and performance degradation. To balance performance
and computation cost, we select a default setting of K = 4 for all
subsequent experiments.

To further investigate the impact of the number of 1D-ConvBlocks
in each progressive stage on speech enhancement performance, we
conduct additional experiments. Specifically, we compare the av-
erage PESQ and STOI performance of AVDL and AVPL models
with L 1D-ConvBlocks in each progressive stage. We set L to 3, 4,
or 5, and to ensure a fair comparison, we also included the results
of AVDL models with L × K 1D-ConvBlocks. Our findings are
presented in Table 2

Our experiments on the impact of the number of 1D-ConvBlocks
in each progressive stage show that AVPL models consistently out-
perform their AVDL counterparts with the same number of blocks,
as indicated by the significant STOI gains of AVPL over AVDL for
all SNRs. Specifically, the best performance for AVPL is achieved
with 3 1D-ConvBlocks in each stage, while AVDL requires 4 1D-
ConvBlocks. However, as the number of 1D-ConvBlocks increased,
the STOI performance of both AVPL and AVDL declined, which
could be attributed to visual information distortion. Importantly, our
findings suggest that progressive learning has the potential to achieve
high performance with fewer 1D-ConvBlocks, indicating its useful-
ness in model compression.

To confirm the effectiveness of the VIR, we conducted a com-
parative analysis of AVDL and AVPL models with and without VIR.
When using the same number of 1D-ConvBlocks, AVDL-VIR con-
sistently outperforms AVDL in terms of both PESQ and STOI for
all SNR levels, suggesting that the VIR module effectively utilizes
lip frames to improve the quality and intelligibility of the enhanced
speech. In subsequent experiments with AVPL-VIR, we initially set
L = 3 as the default, but observe performance degradation com-
pared to AVPL. As we increase L to 5, AVPL-VIR yields notable im-
provements over the best AVPL system at different SNRs, suggest-
ing that VIR helps models better leverage visual information with



Table 2. PESQ and STOI(%) comparison on AVDL, AVDL-VIR, AVPL, AVPL-VIR with different numbers of blocks in each stage and 4
targets (+5 dB, +10 dB, +15 dB, and clean) at several SNRs averaged over noise types. The avg. means the average score on several SNRs.

Metrics PESQ STOI(%)
Model L -5 0 5 10 avg. -5 0 5 10 avg.
Noisy - 1.70 1.97 2.26 2.56 2.12 54.34 65.11 75.33 84.48 69.82

AVDL
3 2.25 2.54 2.82 3.07 2.67 66.81 75.92 83.22 89.19 78.79
4 2.25 2.55 2.82 3.08 2.68 67.42 76.28 83.36 89.35 79.10
5 2.25 2.55 2.81 3.07 2.67 66.95 76.00 83.35 89.31 78.90

AVDL-VIR
3 2.28 2.59 2.88 3.16 2.73 67.45 76.62 84.12 89.85 79.51
4 2.27 2.58 2.88 3.15 2.72 67.94 77.25 84.85 90.06 80.03
5 2.25 2.55 2.82 3.14 2.69 68.01 77.21 84.47 90.03 79.93

AVPL
3 2.31 2.63 2.93 3.21 2.77 68.62 77.65 84.77 90.14 80.30
4 2.32 2.63 2.93 3.21 2.77 68.54 77.61 84.69 90.14 80.25
5 2.33 2.64 2.93 3.21 2.78 68.53 77.58 84.60 90.06 80.19

AVPL-VIR 3 2.31 2.64 2.94 3.23 2.78 68.61 77.54 84.75 90.14 80.26
5 2.34 2.65 2.95 3.22 2.79 69.28 77.91 84.87 90.13 80.55

deeper structures. The results of these experiments are presented in
Table 2.

(a) Noisy (b) Clean

(c) AOPL(clean) (d) AVDL

(e) AVPL-VIR(+5 dB) (f) AVPL-VIR(clean)

Fig. 2. Spectrograms of a speech corrupted by babble noise at -5 dB
SNR.(a)Noisy speech, (b) clean speech, (c) clean output of AOPL,
(d) clean output of AVDL,(e) +5dB intermediate output of AVPL-
VIR, (f) clean output of AVPL-VIR.

3.3. Comparison with others’ methods

Table 3 compares the performance of our proposed models (the best
AOPL, AVPL, and AVPL-VIR) with the state-of-the-art MEASE
module [21] on the TCD-TIMIT dataset. Our proposed AVPL-VIR
model outperforms AOPL by 3.71 STOI gains and 0.13 PESQ gains,
indicating the essential role of visual information in speech enhance-
ment. Compared to AVDL, AVPL-VIR shows improvements of 0.11
PESQ and 1.45 STOI(%), demonstrating the effectiveness of incor-
porating VIR into AVPL.

In summary, AVPL-VIR achieves even better performance than
the MEASE module, leveraging the benefits of progressive learn-
ing and visual embedding reconstruction. By breaking down the
learning process into smaller, more manageable steps, AVPL-VIR

reduces the difficulty of each learning phase. The VIR module al-
lows for more comprehensive usage of the visual information, re-
sulting in superior performance. Overall, our results demonstrate
the effectiveness of incorporating visual information and utilizing
progressive learning for audio-visual speech enhancement.

Table 3. PESQ and STOI comparison of best AOPL, AVDL, and
AVPL-VIR averaged on all SNR levels and noise types.

Model Noisy AOPL AVDL AVPL-VIR MEASE [21]
PESQ 2.12 2.66 2.68 2.79 2.73

STOI(%) 69.82 76.84 79.10 80.55 80.29

In Fig. 2, an example of utterance from the test set corrupted
by babble noise at -5 dB SNR is selected to intuitively compare the
performance of AVDL, AOPL, and AVPL-VIR. The region of the
green box in Fig. 2(c) and Fig. 2(f) illustrates that AVPL-VIR can
do better in suppressing noise in the non-speech segments, as it can
extract and utilize visual information adequately. The region of the
yellow box in Fig. 2(d) and Fig. 2(f) indicates that progressive learn-
ing can reduce speech distortion at high frequency, remaining more
details of clean speech. Combining progressive learning and VIR,
we increase the SNR of noisy speech gradually with multiple in-
termediate targets and take advantage of visual information, which
outperforms the baseline model.

4. CONCLUSION

In this paper, we propose an AVPL-VIR model, which splits the
conventional mapping between noisy and clean speech into multi-
ple stages to achieve SNR improvement gradually and establishes a
visual information reconstruction module to make better use of vi-
sual information. The experiment shows that progressive learning
has a significant improvement on PESQ and STOI for both audio-
only and audio-visual speech enhancement. In addition, the VIR can
help models make better use of visual information with deep struc-
tures, which brings further improvement to AVDL and AVPL.
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