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ABSTRACT

In this paper, we propose a new feature normalization approach for
robust speech recognition. It is found that the shape of speech fea-
ture distributions is changed in noisy environments compared with
that in the clean condition. So cepstral shape normalization (CSN)
which normalizes the shape of feature distributions is performed by
exploiting an exponential factor. This method has been proven ef-
fective in noisy environments, especially under low SNRs. Exper-
imental results show that the proposed method yields relative word
error rate reductions of 38% and 25% on aurora2 and aurora3 data-
bases, respectively, in comparing with those of the conventional
mean and variance normalization (MVN). It is also shown CSN con-
sistently outperforms other traditional methods, such as histogram
equalization (HEQ) and higher order cepstral moment normalization
(HOCMN).
Index Terms: robust speech recognition, shape normalization

1. INTRODUCTION

With the progress of automatic speech recognition (ASR), the noise
robustness of speech recognizers attracts more and more attentions
for practical recognition systems. Various noise robust technologies
can be constructed either in the feature domain or the model domain
[1]. In this paper, we focus on the feature domain. Quite several
well-known normalization methods for feature domain have been
developed. Cepstral mean normalization (CMN) is a simple but ef-
fective way to remove the time-invariant distortions introduced by
the transmission channel. A natural extension of CMN is mean and
variance normalization (MVN) [2] which normalizes both the mean
and variance. So it can improve the robustness to additive noises, as
well as the channel effects. Higher order cepstral moment normal-
ization (HOCMN) [3] can be considered as the extension of CMN
and MVN, where the mean and variance are related with the first
and second moments, respectively. Double Gaussian normalization
(DGN) [4] uses cumulative density functions (CDFs) matching prin-
ciple under the assumption that the distributions of speech features
in noisy environments are usually bimodal.

The above methods are based on parametric models. Non-
parametric models can also be used in feature normalization, such
as cumulative histogram used in histogram equalization (HEQ) [5].
The non-linear transformation of HEQ has shown its superiority over
the linear compensation approaches, such as CMN and MVN. Sev-
eral extensions, for example, quantile HEQ [6], progressive HEQ [7]
and polynomial-fit HEQ [8], are also proposed recently. The advan-
tage of HEQ methods is that they not only attempt to match speech
feature mean and variance, but also completely match the feature
distribution of the training and testing data.

The motivation of our cepstral shape normalization (CSN)
method is based on the following two points. First, as reported in
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Fig. 1. Distributions for MFCC C0-C4 and LogE compared between
clean condition and noisy environments.

[9, 10, 11], modelling of speech feature distributions is discussed.
Also our preliminary analysis shows that speech feature distributions
of each dimension can be well approximated by employing general-
ized Gaussian density (GGD) model in noisy environments. Second,
compared with traditional normalization methods, CSN has more di-
rectly physical meanings and the stronger pertinency. In HEQ and
DGN, a larger mount of data is needed to accurately estimate the
feature distribution. In HOCMN, the solution of odd order is ap-
proximative and not easy. In CSN, we only need to estimate the
shape factor. Also the solution of the shape factor is accurate and
simple.

The rest of this paper is organized as follows. In section 2, we
propose the CSN method including its analysis and formulation. Ex-
perimental setup and results are discussed in section 3 and 4. Finally
in section 5, we give our conclusions.

2. CEPSTRAL SHAPE NORMALIZATION (CSN)

2.1. Analysis for speech distribution

Before our algorithm is described, first we give some preliminary
analysis of speech distribution. As shown in Figure 1, the distrib-
utions of different feature dimensions, are compared between clean
condition and noisy environments. Here features are processed by
MVN because we only focus on the shape of distributions. In the
clean condition, the distributions of C0 and logE are bimodal. In
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the case of other dimensions only one peak is observed. In noisy
environments where SNR is 0dB, the shape of each dimensional dis-
tributions is changed. All the distributions, even for the C0 the logE,
are Gaussian-like. Only the main difference among these distribu-
tions is the shape or skewness.

Generalized Gaussian density (GGD) model, which is intro-
duced in [11] to approximate the distribution of speech features, is
used here for speech modelling in noisy environments. For the sig-
nal x, with zero mean and unit variance, the PDF of GGD is defined
as:

px(x|ν) =
νA(ν)
2Γ(1/ν)

exp(−[A(ν)|x|]ν) (1)

in which

A(ν) =

�
Γ(3/ν)

Γ(1/ν)
(2)

where Γ(·) defines the Gamma function given by:

Γ(z) =

�
∞

0

xz−1e−xdx, z > 0 (3)

A(ν) defines the dispersion and scale of the distribution, while pa-
rameter ν describes the exponential rate of decay and, in general,
the shape or skewness of the distribution px(x|ν). A well-known
special case of the GGD function is a standard Gaussian or normal
distribution(ν = 2). In effect, smaller values of the shape parameter
ν correspond to heavier tails and therefore to more peaked distribu-
tions.

2.2. Algorithm description

Based on the analysis of section 2.1, Cepstral Shape Normalization
(CSN) is summarized to the following two steps, which are applied
to both training and testing data.
Step1: Cepstral parameters are processed by MVN.

y(n, k) =
x(n, k)− μ(k)

σ(k)
(4)

where x(n, k) is the kth dimensional component of the original cep-
stral vector at frame time n; μ(k) and σ(k) represent the mean
and standard deviation of the current utterance for the kth dimen-
sion,respectively.
Step2: Shape normalization is performed by exploiting an exponen-
tial factor.

z(n, k) = [y(n, k)]α(k) (5)
where α(k) denotes the shape factor for the kth dimension which is
similar to the shape parameter ν in GGD. Our goal of transforma-
tion in Eq. (5) is to make the final processed features satisfy a fixed
reference distribution, which is represented by GGD with a shape
parameter ν0.

In order to obtain the solution of shape factor α(k), we adopt
moment matching estimator(MME) [11]. The rth-order absolute
central moment for a GGD with a shape parameter ν0 is given by:

E[|X|r ] =

� +∞

−∞

|x|rpx(x|ν0)dx (6)

where E[·] represents the expectation operator. Substituting Eq. (1)
into Eq. (6), we can further show that the rth-order moment is es-
sentially defined as:

mr = E[|X|r ] = A−r(ν0)
Γ((r + 1)/ν0)

Γ(1/ν0)
, ν0 > 0 (7)

Then the generalized Gaussian ratio function, is used:

M(ν0, r) =
m2r

m2
r

=
Γ((2r + 1)/ν0)Γ(1/ν0)

Γ2((r + 1)/ν0)
(8)

Based on Eq. (8), we define the following equation:

F (α(k)) =M(α(k), r)−
Γ((2r + 1)/ν0)Γ(1/ν0)

Γ2((r + 1)/ν0)
= 0 (9)

whereM(α(k), r) can be estimated as follows:

M(α(k), r) =
1
N

�
N

n=1 |z(n, k)|2r

( 1
N

�
N

n=1 |z(n, k)|r)2
(10)

N is the frame number of the current utterance.
Obviously, α(k) is the root of Eq. (9). Although there is no

close-form solution, F (α(k)) is a monotonically increasing func-
tion of α(k). So a numerical solution for α(k) can be obtained by
exploiting the secant method, which is a fast iterative method.

Finally, two free parameters, the shape parameter ν0 and the mo-
ment order r, should be set. Some preliminary experiments show
that the configuration of ν0 = 2 and r = 2, which is used in all
experiments, achieves the best performance. ν0 = 2 represents the
standard gaussian distribution, which is widely used as a fixed ref-
erence distribution in other normalization methods. The physical
meaning of Eq. (8) (r = 2) is referred to as the kurtosis, which is the
degree of peakedness of a distribution.

2.3. Temporal smoothing of the features

Though the above CSN approach is very effective in matching the
global feature statistics of the testing (or noisy) speech to those of
the training (or reference) speech, the undesired sharp peaks or val-
leys of the feature vector component sequence of a noisy speech ut-
terance, which are caused by some non-stationary noise, can not be
restored well to that of the original clean speech utterance. There-
fore, a simple temporal M th-order ARMA filter [12] is included in
our experiments.

3. EXPERIMENTAL SETUP

Our experiments are performed on both aurora2 and aurora3 data-
bases. The aurora2 task consists of English digits in the presence
of additive noise and linear convolutional distortion. These distor-
tions have been synthetically introduced to clean TIDigits data. Two
training conditions (clean-condition/multi-condition) and three test-
ing sets (sets A/B/C) are defined by aurora2. Only clean training
condition is considered here because it represents a more serious
mismatch situation and requires more robust speech features.

The aurora3 task consists of Danish, German, Spanish, and
Finnish digits in realistic automobile environments. Three experi-
ments are defined for the evaluation: well-matched, high-mismatch,
and mid-mismatch. The experiment names refer to the relationship
between the testing and training data.

The speech features, including 14 cepstral coefficients (MFCCs,
C0-C12 plus the log-energy), are produced by the reference WI007
front-end. All the normalization methods are applied to these static
features. Only one of C0 and log-energy will be preserved in the
model training. Then the first and second derivatives are computed
through the processed features. HMMs are trained in the manner
prescribed by the scripts included with the aurora task. The details
of the two databases, baseline front-end and back-end can be found
in [13, 14].
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Word Error Rate (%) of Relative
Method Clean Condition Training Error Rate

Set A Set B Set C Avg. Reduction
MVN 29.82 29.23 33.63 30.35 -
DGN 21.73 20.46 21.92 21.26 30.0%
HEQ 20.14 19.19 19.57 19.65 35.3%

HOCMN 19.75 18.76 20.87 19.58 35.5%
CSN 19.13 18.35 19.16 18.82 38.0%

Table 1. Performance comparison of CSN with several normaliza-
tion methods for different testing sets in clean condition training on
aurora2.

Method 20dB 15dB 10dB 5dB 0dB -5dB
MVN 4.10 8.79 20.47 43.94 74.43 89.41
DGN 3.34 6.07 12.61 27.48 56.80 84.03
HEQ 3.74 6.29 12.12 24.71 51.37 82.62

HOCMN 2.97 5.20 10.80 24.22 54.71 84.50
CSN 3.67 6.07 11.88 24.22 48.27 76.74

Table 2. Performance (Word Error Rate) comparison of CSN with
several normalization methods for different SNRs in clean condition
training on aurora2.

4. EXPERIMENTAL RESULTS

4.1. Comparison of CSN with other normalization methods

In this section, LogE(log-energy) is used for all experiments. We
compare the performances of five feature normalization meth-
ods(MVN, DGN, HEQ, HOCMN, CSN). MVN can be considered
as the baseline. For HOCMN, the odd and even order are set to 3
and 4, respectively.

As shown in Table 1, CSN consistently achieves the best per-
formance among these methods for different testing sets on aurora2.
Compared with MVN, our method yields relative WER(word error
rate) reduction of 38.0% for the average of all testing sets.

From the viewpoint of SNRs, the performances of different
methods are also compared in Table 2. It can be found that for high
SNRs, CSN is comparable to other methods such as HOCMN and
HEQ. But when the SNR is below 5dB, The performance of CSN is
much better than the others.

Moreover, the effectiveness of different normalization ap-
proaches can also be observed with the following average distance
measure:

d = E

�
||ȳ − x̄||

||x̄||

�
(11)

where x̄ and ȳ are the 13-dimensional vectors of MFCC parame-
ters for clean and noisy speech processed by a certain normalization

Method 20dB 15dB 10dB 5dB 0dB -5dB
MVN 0.821 0.908 1.000 1.098 1.203 1.306
DGN 0.841 0.926 1.014 1.107 1.205 1.303
HEQ 0.855 0.939 1.025 1.115 1.211 1.307

HOCMN 0.818 0.901 0.988 1.081 1.180 1.279
CSN 0.826 0.907 0.990 1.081 1.178 1.277

Table 3. Distance measure comparison of CSN with several normal-
ization methods for different SNRs on aurora2.

Table 4. Performance comparison of CSN with several normaliza-
tion methods on aurora3

method, respectively. || · || is the Euclidean distance, and the average
E[·] is performed over all testing utterances on aurora2, including all
different noise types but separated for different SNRs. The distance
measure d reflects how the normalized feature vectors are ”individ-
ually“ matched to their clean speech versions. The results of the
distance measure d are listed in Table 3. The conclusion is that the
measure d for CSN-processed features is consistently smaller than
others under low SNRs(<5dB), which is almost the same as that of
the WER. But there are two main differences between distance mea-
sure and WER. First, the relative reduction of distance measure is
much smaller than that of WER. Second, the reduction of WER do
not necessarily result in the reduction of distance measure, which
can be observed by comparing the rows of MVN and HEQ in Table
2 and 3 respectively.

Table 4 presents WER results for different methods on aurora3.
For all three experiments including well-matched, mid-mismatch
and high-mismatch, the average performances of CSN are con-
sistently better than those of other methods, especially for high-
mismatch case. And a 25% relative reduction in overall WER is
achieved when compared with MVN. Also consistent improvements
of CSN for each language are obtained except for the case of Spanish
language in DGN and HEQ. Furthermore, the rank of overall perfor-
mances of DGN, HEQ and HOCMN is not consistent on aurora2
and aurora3 as shown in Table 1 and 3. So our CSN method, which
achieves the best performance on both aurora2 and aurora3, is more
stable.
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Fig. 2. Performance comparison of CSN with several techniques
applied on aurora2

4.2. Further improvements with CSN

To achieve further improvements with CSN, several techniques are
applied as follows. 1) LogE is replaced by C0, which is considered
more robust in noisy conditions. 2) The implementation for CSN can
be in the manner of full-utterances or segments. Our experiments in
section 4.1 exploits the former. In the latter, or by segments with
length L, the summation in Eq. (10) is performed by a segment of
frames including the preceding L

2
frames and following L

2
frames.

L = 90 is properly used for aurora2 experiments. For aurora3, the
effectiveness of segmental implementation is not obvious, which is
not reported here. 3) the ARMA filtering mentioned in section 2.3 is
combined with CSN. The order M is set to 2 and 3 for aurora2 and
auror3, respectivley.

The results are listed in Figure 2 and 3. With the above tech-
niques, significant improvements are achieved for both aurora2 and
aurora3, especially in mismatch case. We obtain relative WER re-
ductions of 18.9% and 26.4%, which are the best average perfor-
mances on aurora2 and aurora3, respectively, compared with the
original CSN without using any techniques.

5. CONCLUSIONS

The CSN algorithm, which normalizes the shape of feature distrib-
utions as described in this paper, is an efficient feature normaliza-
tion method for robust speech recognition. The performances of our
method on aurora2 and aurora3 are significantly improved compared
with the MVN method, and also consistently better than those of
other traditional normalization methods. Further improvements of
performance are achieved by several techniques such as concatenat-
ing a simple ARMA filtering procedure. In our future work, it is rea-
sonable to expect even better performance by combining our method
with other noise-robust techniques.
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