
1932 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2019

A Theory on Deep Neural Network Based
Vector-to-Vector Regression With an
Illustration of Its Expressive Power

in Speech Enhancement
Jun Qi , Student Member, IEEE, Jun Du , Member, IEEE, Sabato Marco Siniscalchi , Senior Member, IEEE,

and Chin-Hui Lee , Fellow, IEEE

Abstract—This paper focuses on a theoretical analysis of deep
neural network (DNN) based functional approximation. Lever-
aging upon two classical theorems on universal approximation,
an artificial neural network (ANN) with a single hidden layer of
neurons is used. With modified ReLU and Sigmoid activation func-
tions, we first generalize the related concepts to vector-to-vector
regression. Then, we show that the width of the hidden layer of
ANN is numerically related to the approximation of the regression
function. Furthermore, we increase the number of hidden layers
and show that the depth of the ANN-based regression function can
enhance its expressive power. We illustrate this representation with
recently-emerged DNN based speech enhancement. We first com-
pare the expressive power by varying ANN structures and then test
its related regression performance under different noisy conditions
in various noise types and signal-to-noise-ratio levels. Experimental
results verify our theoretical prediction that an ANN of a broader
hidden layer and a deeper architecture can jointly ensure a closer
approximation of the vector-to-vector regression functions in terms
of the Euclidean distance between the log power spectra of noisy
and expected clean speech. Moreover, a DNN with a broader width
at the top hidden layer can improve the regression performance
relative to those with a narrower width at the top hidden layers.

Index Terms—Deep neural network, universal approxima-
tion, speech enhancement, vector-to-vector regression, expressive
power.

I. INTRODUCTION

V ECTOR-TO-VECTOR regression, also known as multi-
variate regression [1], is the problem of finding a regres-

sion model for predicting multiple responses (output vector)
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from some features (input vector). More formally, given a d-dim
input vector spaceX and a measurable q-dim output vector space
Y , the goal is to learn a functional relationship f : X → Y such
that the output vectors approximate some desirable values. The
whole process is summarized in Eq. (1), where e refers to the
approximation error vector:

y = f(x) + e. (1)

In supervised learning, we receive a labeled set of sam-
ple vector pairsS = ((x1,y1), . . . , (xI ,yI)) ∈ (X × Y )I with
x1, . . . ,xI drawn independently and identically distributed (iid)
from a fixed distribution D, and real-valued vector targets yi =
f(xi). We need to find a regression function f best mapping
input samples to the targets with a minimum error.

The problems of vector-to-vector regression have been
studied extensively in the modern engineering community.
For example, speech enhancement aims at designing mapping
functions to transform vectors of noisy speech features into
corresponding vectors of clean speech features [2], [3].
Similarly, image de-noising tries to generate clean vectors of
images from the corrupted ones in different natural scenes [4].
Recently, end-to-end spoken language translation even translates
spectrograms of one language into another [5]. A common goal
of these tasks is to obtain expected output vectors from the input
ones in a vector-to-vector mapping. Without loss of generality,
this work demonstrates a theoretical analysis concerning the
universal approximation of deep models in the context of vector-
to-vector regression with an illustration in speech enhancement.
Speech enhancement is a useful illustration of a general
theoretical analysis because it is an unbounded conversion from
Rd to Rq . However, the classification tasks, such as speech
recognition and face recognition, are bounded vector-to-vector
regressions from Rd → [0, 1]q . In this sense, the classification
tasks can be considered as special cases of regression ones.

Over the years, several machine learning approaches based
on different vector-to-vector regression functions have been
proposed. Linear regression admits a straightforward implemen-
tation, which originated from Pearson’s research on the theory
of evolution [6]; however, the limited expressive power of linear
regression limits the utility of its strong generalization guarantee.
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Support vector regression (SVR) is a kernel-based algorithm
and maintains all the features of support vector machine (SVM)
for classification because SVR aims at solving a max-margin
optimization problem [7]. However, a significant drawback of
SVR is its high computational requirements when dealing with
large training sets [8]. Lasso [9] and Group Lasso [10] based
regularization methods can also be used to define the regression
algorithm, where it may be desirable to find a sparse solution
that selects or omits entire subsets of features. Unfortunately,
the regularization based methods do not admit a natural use of
kernels, which prevents their extension to non-linear vector-to-
vector regression [11].

With the resurgence of artificial neural networks (ANNs, [12])
in machine learning, our previous studies on speech enhance-
ment [2], [13], [14] and the related works [15]–[18], demonstrate
that deep neural networks (DNNs) [19] with multiple hidden
layers, offer an efficient and robust solution to dealing with
large-scale vector-to-vector regression problems. More specifi-
cally, a feed-forward DNN with three hidden layers is taken as
a regression function to map high dimensional input vectors
to the target ones. Notably, the empirical results of speech
enhancement [2], [13] have demonstrated DNNs outperform
shallow neural networks.

This work focuses on a theoretical analysis of the universal
approximation property of ANNs in the context of deep models
used for vector-to-vector regression. Moreover, our theoretical
analysis of the expressive power of such a regression will be
validated on speech enhancement tasks. Although some related
theoretical works [20], [21], [22] have justified the use of ANNs
in their universal capability of approximating different function
classes, this aspect has not been demonstrated in vector-to-vector
regression. This work aims at filling this theoretical gap. Our
study builds on classical theories including Kolmogorov
representation theorem [23], Cybenko universal approxi-
mation theorem [24] and Barron universal approximation
bounds [25].

Regarding the theoretical aspect, we generalize the classical
theorems to interpret the representation power of the DNN based
vector-to-vector regression. First, classical theories ensure that
ANN can represent an arbitrary vector-to-vector regression func-
tion by associating the width of the sigmoidal based hidden layer
with expressive power. Moreover, we present new theories that
the depth of a DNN is independently related to the representation
power of vector-to-vector regression functions, which offers
a justification that DNN with deeper architectures improves
experimental results of DNN-based vector-to-vector mapping.
Besides, DNN generalization capability is briefly discussed
based on a new uniform convergence derived from Rademacher
complexity [26], which can be used to obtain data-dependent
upper-bounds on the learnability of function classes.

As for the experimental part, the related experiments of
speech enhancement aim to verify our theoretical analysis for the
following two points: (1) We evaluate the expressive power of
neural networks with different architectures by setting up differ-
ent widths and depths. (2) We further investigate the expressive
power by analyzing the regression accuracy of neural structures
with different widths and depths.

The remainder of the paper is organized as follows: Section II
offers some foundational concepts and symbols used in the pa-
per. Section III introduces the classical universal approximation
theorems. Sections IV and V separately present our theoretical
analysis of DNN based vector-to-vector regression. Experiments
on speech enhancement are given in Section VII and we conclude
our work in Section VIII. Moreover, proofs of Corollaries, which
are not central to this work, are offered in Appendix A and B.
Finally, a brief discussion of the generalization power of DNN
based vector-to-vector regression is presented in Appendix C.

II. PRELIMINARIES

A. Asymptotic Analysis

The asymptotic analysis here refers to measuring the running
time of any operation in mathematical units of computation when
problem scales become sufficiently large. A typical terminology
and related notations include:
� Big-Oh O(·): If T (r) = O(f(r)), there exist constants
z, r0 ≥ 0 such that T (r) ≤ zf(r) for all r ≥ r0.

� Theta Θ(·): If T (r) = Θ(f(r)), there exist constants z1,
z2 such that z1f(r) ≤ T (r) ≤ z2f(r) for all r ≥ r0 .

B. Convex Optimization

A few key concepts concerning convex optimization:
� A normed vector space is a vector space U , with a d-dim

vector u ∈ U with its i-th element ui, in which each vector
has a norm ‖u‖ such that (1) for any u, ‖u‖ is a unique
scalar, and (2) ‖u‖ = 0 if and only if u = 0. All normed
vector spaces in this paper will use variants of theLp norm,
defined by Equation (2). When p go to infinity, ||u||∞ =
max(|u1|, |u2|, . . . , |ud|).

||u||p =

(
d∑

i=1

|ui|p
) 1

p

(2)

� A set K is convex if for any u, v ∈ K, all points on the
line segment connecting u and v also belong to K, i.e.,

∀α ∈ [0, 1], αu+ (1− α)v ∈ K. (3)

� A function f : K → R is convex if for any u, v ∈ K,

f(u)− f(v) ≤ ∇f(u)
(u− v), (4)

where we suppose the first-order gradient ∇f(u) exists.
� A function f is α-strongly convex if for any u, v ∈ K,

f(u)− f(v) ≤ ∇f(u)
(u− v)− α

2
||u− y||22. (5)

� A function f is β-smooth if for any u, v ∈ K,

f(u)− f(v) ≥ ∇f(u)
(u− v)− β

2
||u− v||22. (6)

The key property of a smooth function is that it has
derivatives of any order everywhere in its domain. Conse-
quently, the smoothness of a function ensures that many
optimization algorithms based on gradients can be ef-
ficiently conducted without estimating sub-gradients of
non-differentiable points. In addition, a β-smooth function
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is equivalent to a β-Lipschitz continuous function over the
first-order gradients, i.e.,

||∇f(u)−∇f(v)||2 ≤ β||u− v||2. (7)

III. CLASSICAL UNIVERSAL APPROXIMATION THEOREMS

The problem to be addressed here can be informally stated as
follows: How many functions can a layered neural architecture
realize?

In [27], Kolmogorov’s theorem states that a scalar function
f(x)ofdvariables can be represented with a three-layer function
having d(2d+ 1) inner functions in the first, and (2d+ 1) outer
functions in the second hidden layer. The inner functions are
universal and do not depend on the particular function f(x);
whereas, the outer functions do.

Different mathematical proofs establishing standard multi-
layer feed-forward networks, with as few as one hidden layer
having smooth activations, as universal approximation function
appeared in the late 80’s. Cybenko [24], Hornik et al. [28],
and Funahashi [29] independently reached the same result, yet
Cybenko’s universal approximation theorem is mathematically
concise and elegant. Cybenko replaced the inner and outer
functions with affine transforms and task-independent bounded
scalar nonlinearities, respectively, to approximate any contin-
uous scalar function of n real variables with support in the
unit hypercube. Cybenko’s main result is formally stated in
Theorem 1.

Theorem 1: A continuous function f̂ : Rd → R can be uni-
versally approximated by a feed-forward ANN f as follows,

f(x) =

n∑
j=1

αjσ(w


j x+ bj) (8)

where x,wj ∈ Rd, αj , bj ∈ R, and σ refers to any bounded
activation function satisfying certain smoothness constraints,
e.g., a Sigmoid or modified ReLU activation function.

As shown in [24], the definition of Sigmoid activation func-
tion (9) faithfully satisfies the approximation requirement of
Theorem 1. In the meanwhile, we introduce a modified ReLU
activation function denoted as MReLU in Eq. (10), which is
derived from the clip function in [30] and will be used in our
present work.

Sigmoid(x) =
1

1 + exp(−x)
(9)

MReLU(x) = min(max(0, x), 1) (10)

Cybenko also demonstrated that the ANN universal approxi-
mation capability can be attained with an arbitrarily small error
ε, which more formally implies that f(x) in Theorem 1 is dense
in Rd, as shown in Proposition 1.

Proposition 1: For any x ∈ Rd and arbitrary small ε, a con-
tinuous function f̂(x) can be approximated by a feed-forward
ANN f(x) such that Eq. (11) is always valid.

|f̂(x)− f(x)| ≤ ε (11)

Proposition 1 suggests that for any given ε, there is some ANN
that can achieve that ε. However, it does not link the number of

hidden units, the width of a single hidden layer, with the approxi-
mation error, which was first proven by Barron in [25], where the
sigmoid activation functions are employed. Theorem 2 discusses
an essential bound using Sigmoid activation function [25], and
we further extend it to the modified ReLU function which has not
been shown in [24], [25], [30]. The constrained conditions for
ReLU in our work lie in the fact the input domain is in Rd rather
than [0, 1]d, otherwise a standard ReLU function may grow to
infinity without a bound.

Theorem 2: Given a continuous function f̂ : Rd → R, we
can find a function f : Rd → R in the convex hull of n Sigmoid
or modified ReLU activation functions such that ∀x ∈ Rd,

|f̂(x)− f(x)| ≤ 2C

(
1√
n
+ δτ

)
. (12)

where the constants τ > 0, C > 0, δτ is a distance between the
unit step function and the scaled sigmoid activation function
which is defined as Eq. (13), where 1z>0 equals to 1 if z > 0
and otherwise becomes 0. In addition, with τ → ∞, δτ → 0.

δτ = min
0≤ε≤ 1

2

{
2ε+max

|z|≥ε
|σ(τz)− 1z>0|

}
. (13)

The upper bound in Eq. (12) of Theorem 2 suggests that a large
n corresponds to a lower approximation error, and it also implies
that a large number of neurons of the hidden layer of the ANN
can result in sufficiently powerful expressiveness of arbitrary
continuous functions. The classical universal approximation
theorems focus on an approximated function for the vector-to-
scalar regression. Therefore, we still need some investigation in
approximating a vector-to-vector regression function in terms of
the Euclidean distance.

IV. ANN BASED VECTOR-TO-VECTOR REGRESSION

We now generalize the classical theorems in Section III to
associate the width of the hidden layer with the related expressive
power in vector-to-vector mapping. The universal approxima-
tion upper bounds for the Sigmoid activation function was shown
in [25]. We first need to justify that the modified ReLU also
realizes the universal approximation bound.

Proposition 2: Based on an ANN with n modified ReLU
activation units f : Rd → R, Barron universal approximation
bound Eq. (12) becomes Eq. (14), ∀x ∈ Rd.

|f̂(x)− f(x)| = O

(
1√
n

)
. (14)

Proof: We first show that for |z| ≥ ε the modified ReLU
activation function can ensure the inequality in Eq. (15).

|σ(τz)− 1z>0| = |MReLU(τz)− 1z>0|
= (1− τz)1{0≤τz≤1}

≤ min
|z|≥ε

exp(−τε) (15)

Based on Eqs. (13) and (15), ε = ln τ
τ yields

δτ ≤ 1

τ
+

2 ln τ

τ
(16)
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Next, we use the inequality Eq. (16) and choose the parameter
τ as

√
n lnn, and the upper bound Eq. (12) becomes

2C

(
1√
n
+ δτ

)
≤ 2C

(
1√
n
+

1

τ
+

2 ln τ

τ

)

≤ 2C

(
2√
n
+

2 ln(lnn)√
n lnn

+
1√

n lnn

)

= O

(
1√
n

)
, (17)

which justifies the upper bound Eq. (14). �
We now extend Barron’s theorem explicitly to vector-to-

vector mapping and deploy an algorithm to demonstrate how
an ANN can achieve the resulting bound. The Barron universal
approximation theorem is generalized to the scenario of the
vector-to-vector regression as shown in Theorem 3.

Theorem 3: Given a continuous vector-to-vector regression
function f̂ : Rd → Rq, we can find an approximated functional
f with q functions f = [f

(1)
n , . . . , f

(q)
n ], where each f (i)

n : Rd →
R consists of n Sigmoid or modified ReLU activation functions
such that ∀x ∈ Rd,

||f̂(x)− f(x)||1 = O

(
q√
n

)
. (18)

Proof: Suppose the regression function f̂ is an q-dimensional
functional f̂ = [f̂ (1), f̂ (2), . . . , f̂ (q)], where each function f̂ (i) :
Rd → R. Thus, based on Proposition 2 and the Lp-norm defini-
tion in Eq. (2), we obtain the bound Eq. (19) for approximating
the ANN based regression functions:

||f̂(x)− f(x)||1 =

q∑
i=1

|f̂ (i)(x)− f (i)
n (x)|

=

q∑
i=1

O

(
1√
n

)
= O

(
q√
n

)
(19)

�
Theorem 3 suggests that the functional f corresponds to an

ANN for the vector-to-vector regression, and the upper bound
in Eq. (18) in Theorem 3 implies that the representation power
of an ANN is essentially controlled by the width of the hidden
and the output layers.

The back-propagation (BP) algorithm based on stochastic gra-
dient descent (SGD) is applied to update parameters of ANNs,
we therefore would like to verify whether SGD can achieve the
bound in Eq. (19). We first introduce an iterative approximation
algorithm proposed by Barron that can realize the approximation
bound in Eq. (14) by alternatively solving a minimization prob-
lem concerningα and g in Step 5 of Algorithm 1. The minimizer
g and α obtained in Step 5 are then used to iteratively update f
in Step 6.

If f corresponds to a parametric ANN, the update of ft
refers to the update of the related parameters w and b at time t.
Furthermore, we assume that g represents the gradient of f ,
α is a learning rate, and the bounded set G is defined as the
set of functions representable by an n-node ANN in Eq (20).

Algorithm 1: Iterative Approximation.
1. Input: A bounded set G, and a target f ∈ G.
2. Choose arbitrary f0 ∈ G.
3. For t = 1, 2, . . . , T :
4. Choose the pair (αt, gt) to solve
5. min

α∈[0,1],g∈G
||f − (αft−1 + (1− α)g)||22.

6. Update ft := αtft−1 + (1− αt)gt.

Algorithm 1 becomes a BP algorithm with momentum [31].

G = {fw,b(x) : w ∈ Rn×d, b ∈ Rn}. (20)

This section also discusses the convergence rate of different
sigmoid activation functions for hidden layers, which are sep-
arately concluded in Corollary 1 and Corollary 2. Corollary 1
aims at the modified ReLU based hidden layer, and Corollary 2
refers to the Sigmoid layer. The related proofs are separately
shown in Appendix A and Appendix B.

Corollary 1: In an input domain [−∞, 1]d, the modified
ReLU based hidden layer is a convex but not smooth and not
strongly convex function. Thus, the SGD algorithm for updating
the ReLU based hidden layer needs Θ( 1

ε2 ) iterations for an
ε-optimal solution.

Corollary 2: A Sigmoid hidden layer is a β-smooth but not
convex function. Thus, the SGD algorithm ensures that it takes
Θ(βε ) iterations for an ε-optimal solution.

By comparing the convergence rates in the two corollaries,
SGD for an ANN with a modified ReLU based hidden layer
ensures a faster rate because Θ( 1

ε2 ) is smaller than Θ(βε ) for
all β > 1/ε, as is true of the Sigmoid hidden layer for most
reasonable values of ε. Furthermore, some new optimization
algorithms, such as root mean square propagation (RMSProp),
adaptive gradient (AdaGrad), and adaptive moment estimation
(Adam), are SGD extensions for speeding up the convergence
rate. However, they may fail to converge to an optimal solution
under some settings. It is not clear if they can achieve Barron’s
bound. Therefore, we are only concerned with SGD here.

V. DNN BASED VECTOR-TO-VECTOR REGRESSION

This section establishes a connection between the depth of a
DNN and the expressive power of vector-to-vector regression
functions. We discuss whether the expressive power can benefit
from the increment of depth in terms of the number of hidden
layers. Theorem 4 suggests that the depth of a DNN is associated
with its mapping capabilities. We then consider the constraints
of width and depth together to compose an estimated bound for
practical use.

Theorem 4: Let f̂ : Rd → Rq refer to a vector-to-vector
smooth function, we can find a feed-forward DNN fDNN with k
modified ReLU based hidden layers (k ≥ 2), where the width of
each hidden layer is at least d+ 2, to approximate the function f̂
with an upper bound as Eq. (21), forx ∈ Rd and an integer r ≥ 1
which depends on the maximum value of the first k derivatives
of f , we have

||f̂(x)− fDNN (x)||1 = O((k − 1)−
r
d ) (21)
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Proof: Before we demonstrating Theorem 4, we introduce
Lemmas 1 and 2. Lemma 1 is based on Theorem 1 in [32], and
Lemma 2 is from [33].

Lemma 1: For a smooth function f : Rd → Rq , there exists a
modified ReLU based ANN fANN with a hidden layer ofk units,
and a constant Cf which depends on the maximum value of the
first k derivatives of f . Then, we can find an integer r ≥ 1, there
is a constraint (22) in which Dkf denotes a vector of derivatives
as [∇f,∇2f, . . . ,∇kf ].

||f ||∞ +
∑

k,1≤ k(k−1)
2 ≤r

||Dkf ||∞ ≤ Cf (22)

such that we obtain (23).

||f(x)− fANN (x)||1 = O(k−
r
d ) (23)

Proof: Lemma 1 can be obtained from Theorem 3.1 in [32]
where the input dimension is configured as d. Besides, we use
the modified ReLU function in our work rather than the standard
ReLU used in [32]. However, if all input points beyond [0, 1]d

are taken as the bounded points 0 or 1, then the modified ReLU
function does not change the original Theorem 3.1 in [32]. �

Lemma 2: Let f : Rd → Rq be a modified ReLU based
ANN with input dimension d and a single hidden layer of width
k (k ≥ 1). There exists another modified ReLU based DNN
fDNN , which has input dimension d and (k + 1) hidden layers
with width (d+ 2), that computes the same function as f .

Proof: Assume that a vector A(k) = {A(k)
1 , A

(k)
2 , . . . , A

(k)
nk }

as the output of the k-th hidden layer of width nk = d+
2 based on the modified ReLU function, then we derive
Eq. (24) where∀j ∈ [1, 2, . . . , nk],w

(k)
j ∈ Rd+2,b(k) ∈ Rd+2,

and ∀l ∈ [1, 2, . . . , q], w(k+1)
l ∈ Rq, b(k+1) ∈ Rq .

A(k+1) = MReLU

⎛
⎝b(k) +

nk∑
j=1

w
(k)
j A

(k)
j

⎞
⎠ (24)

fDNN = b(k+1) +

nk+1∑
l=1

w
(k+1)
l A

(k+1)
l (25)

Then, based on Lemma 6 in [33] and similar Theorems in [34],
we know that f can be approximated by A(k+1), which implies
that f̂ can be guaranteed to be approximated by fDNN by
setting all values in b(k+1) as 0 and all values in w

(k+1)
j to be

1
nk+1

. �
Finally, by applying Lemma 2 to Lemma 1, we can find a

modified ReLU based DNN fDNN with k hidden layers which
can be represented by an ANN fANN with a hidden layer of k −
1 units. Thus, we can obtain Eq. (26) which justifies Theorem 4.

||f(x)− fDNN (x)||1 = ||f(x)− fANN (x)||1

≤ Cf

(k − 1)
r
d
= O

(
1

(k − 1)
r
d

)
(26)

�
Theorem 4 suggests that the asymptotic upper bound relies

on the depth of hidden layers k, the input dimension d, and
the output dimension q. For a fixed pair of d and q, a tighter

upper bound can be achieved for larger number k. Besides, the
width of hidden layers must have at least (d+ 2) to obtain the
bound in Eq. (21). In other words, a deeper modified ReLU based
neural network corresponds to the better expressive power of the
vector-to-vector regression function f̂ .

Although Theorem 4 shows that the upper bound of DNN
based vector-to-vector regression depends on the depth k of a
DNN structure, the related bound should also be related with the
width of hidden layers. Theorem 5 revises the bound in Eq. (21)
in Theorem 4 which considers both depth and width.

Theorem 5: For a vector-to-vector regression target func-
tion f̂ : Rd → Rq , there exists a DNN fDNN with k (k ≥ 2)
modified ReLU based hidden layers, where the width of each
hidden layer is at least (d+ 2) and the top hidden layer has nk

(nk ≥ d+ 2) units. For an integer r ≥ 1 associated with the
maximum value of derivatives of f , we can derive Eq. (27).

||f̂ − fDNN ||1 = O

(
q

(nk + k − 1)
r
d

)
(27)

Proof: As in the proof of Lemma 2 in [33], the first d
hidden nodes, in each hidden layer before the last, are scaled
and shifted exact copies of the input; the (d+ 1)-th node in
each hidden layer computes a new ReLU function of the input,
and the (d+ 2)-th node computes the accumulation of all of
the ReLU functions computed by layers so far. In that case,
the entire network acts like a 2-layer network with nk + (k −
1) hidden nodes. By Lemma 1, the approximation error is
O( q

(nk+k−1)
r
d
). �

Note that both Theorems 4 and 5 focus on the modified ReLU
based hidden layers. Unfortunately, we have not found if there
exists a related bound for the Sigmoid based DNNs.

Finally, we discuss whether the iterative algorithm like SGD
can achieve the related bounds. Based on the discussion in
Section IV, we understand that for the given depth k and the
underlying (k − 1) hidden layers, the approximation bound
becomes Eq. (14) which can be achieved via applying the
SGD algorithm. However, if the widths of hidden layers are
given, some of the recent work, namely [35] and [36], suggest
vanilla SGD can converge to local optimal points with provable
generalization bounds.

VI. ESTIMATION OF MSE UPPER BOUNDS

The mean square error (MSE) [37] is usually taken as the loss
function for training an ANN or DNN based vector-to-vector
regression function. In this section, we discuss how to make use
of our Theorems in Section V and Section IV to estimate MSE
upper bounds to the vector-to-vector regression models in our
experiments.

Proposition 3 generalizes the theoretical bound in Eq. (19) to
a practical bound in Eq. (28), where the number of training data
samples N and input dimension d need to be taken into account.
Proposition 3 is directly derived from Eq. (18) in Theorem 3 and
a vector-to-vector generalization of the bound for MSE in [30].

Proposition 3: For a target function f̂ : Rd → Rq , we can
use N training data samples to obtain an ANN f with n Sigmoid
or modified ReLU activation functions such that the evaluation
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loss based on MSE can be bounded as in Eq. (28),

MSE(f̂ , f) = O
( q
n

)
+O

(
qnd

N
logN

)
+ ν (28)

where ν refers to a constant approximation error from the non-
deterministic randomness of input noise.

Proposition 3 suggests that for two constants c1 and c2,
MSE(f̂ , f) is upper bounded by Eq. (29).

MSE(f̂ , f) ≤ c1
q

n
+ c2

qnd

N
logN + ν (29)

For f1 with l1 hidden units and f2 with l2 hidden units, if Eqs.
(30), (31) and (32) are all expected to be satisfied, we derive
Eqs. (33) and (34), where l2 > l1 and 0 < ν < ε1+ε2

2 , where ε1
and ε2 are two lower bounds to MSE(f̂ , f1) and MSE(f̂ , f2),
respectively.

ε1 ≤ MSE(f̂ , f1) ≤ c1
q

l1
+ c2

ql1d

N
logN + ν (30)

ε2 ≤ MSE(f̂ , f2) ≤ c1
q

l2
+ c2

ql2d

N
logN + ν (31)

c1
q

l1
+ c2

ql1d

N
logN + ν ≥ c1

q

l2
+ c2

ql2d

N
logN + ν (32)

c1 ≥ l1l2(ε1 + ε2 − 2ν)

2q(l1 + l2)
= ĉ1 (33)

0 < c2 ≤ Nc1
l1l2d logN

, ĉ2 =
Nĉ1

l1l2d logN
(34)

In practical DNN usage, some factors, such as the number
of training data and dimensions of some hidden layers, need
to be taken into account. Theorem 5 is thus generalized to
Proposition 4.

Proposition 4: For a target function f̂ : Rd → Rq , we use
N training data to obtain fDNN with k modified ReLU based
hidden layers (k ≥ 2), where the width of each hidden layer is at
least (d+ 2). For an integer r ≥ 1 associated with the maximum
value of derivatives of f , the MSE loss is bounded by Eq. (35).

MSE(f̂ , fDNN ) = O

(
q

(k − 1 + nk)
2r
d

)

+ O
(qnknk−1

N
logN

)
+ ν (35)

where nk and nk−1 denote the number of units of the k-th and
(k − 1)-th hidden layers, and ν refers to a constant approxima-
tion error from the non-deterministic input noise.

Proof: For a DNN with k hidden layers (k > 2), we regard
the bottom (k − 2) hidden layers as a feature extractor for the
(k − 1)-th hidden layer which can be taken as the input to the
top hidden layer. Since the values of top hidden layer based on
the modified ReLU smoothly lie in (0, 1) with derivatives of
all orders, Barron’s bound continues to hold [30]. Therefore, by
combining Eq. (27) in Theorem 5 with Eq. (28) in Proposition 3,
we derive Eq. (35) in Proposition 4. �

Proposition 4 suggests that there exist two constants a1 and
a2, and we obtain the following:

MSE(f̂ , fDNN) ≤ a1q

(nk + k − 1)
2r
d

+
a2qnknk−1

N
logN + ν

(36)
By comparing Eq. (36) with Eq. (29), only the term q

(nk+k−1)
2r
d

relies on the depth and larger depth further reduces MSE. Thus,
we separately set a1 and a2 as c1 and c2 because the factor of
depth does not impose more additional restrictions.

Further, ĉ1 in Eq. (33) and ĉ2 in Eq. (34) are associated
with a minimum estimated MSE, which correspond to a global
optimum point found by SGD. However, a vanilla SGD without
the use of some optimization tricks like dropout generally cannot
ensure a closely approximated solution to the global one. Thus,
we set an MSE upper bound by setting c1 = ĉ1 in (33) and
c2 = Nĉ1

l1l2d logN in (34) for the concern of implicit optimization
bias from SGD [38] and obtaining MSE upper bounds as mini-
mum as possible.

As to the setup of ε1 and ε2 for computing c1 and c2, Corol-
lary 1 suggests that the modified ReLU based ANNs can ensure
the minimum MSE because of the property of convexity, if the
input domain lies in [−∞, 1]d. Thus, we can set ε1 and ε2 as
the empirical MSE values of two modified ReLU based ANN
models.

Besides, we set the integer r in Eq. (36) as d, which is the same
as the input dimensions. Thus, the estimation of MSE upper
bound can be modified as (37).

MSE(f̂ , fDNN ) ≤ a1q

(nk + k − 1)2
+

a2qnknk−1

N
logN + ν

(37)
Finally, the configuration for v varies from various noisy types

of different SNR levels. Empirically, we set the values of v as
0.1 under all noisy conditions as shown in Table II.

VII. EXPERIMENTS ON SPEECH ENHANCEMENT

A. Experimental Goals

We now discuss deep learning for speech enhancement with
particular attention to linking experimental outcomes with the
theorems presented in the previous sections. DNN generaliza-
tion capability of the vector-to-vector regression has been em-
pirically justified in our earlier efforts [2], [13], [14]; therefore,
the present work mainly discusses the expressive power but not
the generalization problem and overfitting problems, and that
implies that we would not use very large neural architectures
and focus on matched noisy conditions. We aim at verifying the
following aspects:
� The expressive power of the ANN-based vector-to-vector

regression function can be enhanced by enlarging the width
of the hidden layer.

� The depth of a DNN can contribute to the improvement of
the expressive power of the vector-to-vector regression.

� The above properties can be consistently maintained and
verified in various noisy conditions and SNR levels.

� Although the depth and width are two joint parameters af-
fecting the expressive power of vector-to-vector regression,
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a top hidden layer with a broader width for a deeper DNN
architecture contributes to a better expressive capability.
Interesting, this property has also been experimentally ver-
ified in [39]–[42], where the authors noticed that bottleneck
features extracted from a layer closer to the output lead
to a better and abstract representation of original speech
features.

The experimental configurations and data preparation are
briefly summarized in the next section. More technical detail
of the related C++/Python codes can be found in [2], [13].

B. Experimental Setup

The DNN used for speech enhancement is a feed-forward
ANN, where inputs were the normalized log-power spectral
feature vectors [40] of noisy speech and outputs referred to
the feature vectors of clean or enhanced speech. The reference
of clean speech feature vectors associated with the noisy one
was assigned to the top layer of DNN in the training process,
but the top layer of DNN corresponds to the feature vectors
of the enhanced speech during the testing phase. The Sigmoid
and modified ReLU functions were used for hidden layers of
neural networks, whereas the linear function is used as the
output layer for the vector-to-vector regression. To improve
the subjective score in a voice conversion task, the global
variance equalization [43] was used to alleviate the problem
of over-smoothing by correcting the global variance between
estimated feature vectors and clean reference targets. During
DNN training, the standard back-propagation algorithm [44]
with MSE was adopted to measure the difference between a
normalized log-power spectral feature vector, and the reference
one. To enable non-stationary noise awareness, the technique
of noise-aware training (NAT) [45] was employed to generate
high-dimensional feature vectors of the length of 3-frames via
concatenating frames within a sliding window. Moreover, the
SGD algorithm with a learning rate of 1× 10−2 and a momen-
tum rate of 0.4 was used for the update of parameters.

The clean dataset was obtained from the TIMIT speech cor-
pus [46], where 4620 utterances were used for training, and
1600 utterances were selected for testing. Two types of noises,
namely M109 and Babble, from the Noise-92 dataset [47] were
chosen for synthesizing the noisy training and testing samples
at SNR levels of 5 dB, and 15 dB. The M109 noise is a
stationary noise and is collected from the engine of tanks. The
Babble noise is more challenging because it involves a mix-
ture of multiple speakers. Since we are interested in assessing
the DNN based vector-to-vector expressive power, concerning
the theorem discussed in previous sections, we have deliberately
built and evaluated DNN architectures of speech enhancement
based on training and testing data covering the same noise types
and SNR levels. For example, if a DNN model was trained
with noisy speech material corrupted by the Babble noise with
an SNR of 15 dB, the DNN model would be evaluated with
the test data having the same characteristics in terms of noise
types and SNR values. Besides, all the clean speech and noise
waveforms were downsampled to 8 KHz. The frame length and
the shift length were separately set to 32 msec and 16 msec

which correspond to 256 samples and 128 samples, respectively.
So, the dimension of one feature is 257 which involves an
additional dimension for the log-power feature. To improve the
robustness against noises, long-term features were applied by
separately connecting 3 left-and-right neighbors of each frame,
which resulted in a dimension of 771. The feature values were
further processed by using a mean and variance normalization
before they were fed to the DNN inputs.

Since the outputs of modified ReLU function over inputs of
(1,∞) are exactly 1, Corollary 1 should be still valid if all of
inputs whose values greater than 1 are set to 1. It is simple to
justify that the outputs of modified ReLU based ANN are the
same over the two input domains. Thus, our experimental results
of modified ReLU based ANN can reasonably correspond to
Corollary 1.

Two evaluation criteria, namely MSE and the perceptual
evaluation of speech quality (PESQ) [48], were employed in
our experimental validation. The MSE assessment is directly
associated with the expressive power of vector-to-vector regres-
sion functions because MSE is set as the objective loss function
in the DNN training process. A lower MSE value corresponds to
better representativeness. On the other hand, PESQ is an indirect
evaluation which is highly correlated with subjective objective
scores. The PESQ score, which ranges from −0.5 to 4.5, is
calculated by comparing the enhanced speech with the clean
one. A higher PESQ score corresponds to a higher quality of
speech perception.

C. An Evaluation of the Expressive Power of Layered ANNs

We here present experimental results on speech enhancement
by comparing different neural network architectures obtained
by varying width and depth of the hidden layers. Table I demon-
strates the model architectures in our experiments, where the
structures (the dimension in each layer) follow an order of Input
→ hidden layer 0 → hidden layer 1 → · · · → hidden layer k →
Output.

As shown in Table I, we first compare the regression perfor-
mance of an ANN with a narrower and broader width. The width
of the hidden layer of ANN1 was set equal to 800, which is based
on the unit constraint for the hidden layers in Theorem 4 (Here,
d = 771, d+ 2 = 773 < 800); whereas, ANN2 had a hidden
layer of 1600 neuron units. Next, we studied vector-to-vector
regression by increasing the number of hidden layers of DNN1.
As shown in Table I, DNN1 had four hidden layers with widths
800-800-800-1600. Two additional hidden layers of width 800
were further appended to DNN2, which resulted in a deeper six
hidden layers 800-800-800-800-800-1600.

Table III shows the experimental results of different neural
network architectures. The evaluation of speech enhancement
in terms of both MSE and PESQ measures was conducted in a
straightforward noisy condition (M109) with a high SNR level
(15 dB). The results show that ANN2 with a broader width
can outperform ANN1 with a narrower width, and DNN2 with
six hidden layers achieves better results by DNN1 with four
hidden non-linear layers. Moreover, both DNN1 and DNN2 with
a deeper architecture can lead to better regression performance.
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TABLE I
MODEL STRUCTURES FOR VARIOUS VECTOR-TO-VECTOR REGRESSION

TABLE II
THE SETUP OF HYPER-PARAMETERS FOR THE ESTIMATION OF

MSE UPPER BOUNDS

TABLE III
THE EVALUATION RESULTS UNDER THE M109 NOISE OF SNR 15 DB

Besides, we estimate the MSE upper bounds based on
Eqs. (29) for ANNs and (36) for DNNs. As discussed in
Section V, we assume that the modified ReLU based ANNs
can closely achieve ε1 and ε2 in Eqs. (33) and (34) by tak-
ing ε1 = Estimate_MSE (ReLU) = ANN1 (MReLU) and ε2 =
Estimate_MSE (ReLU) = ANN2 (MReLU). Then, we can
compute ĉ1 and ĉ2 based on ε1 and ε2 used in Eqs. (33) and (34),
where the other hyper-parameters for the estimation of MSE
upper bounds can be found in Table II. Based on Table III, the
results suggest that our estimated MSE (Estiamte_MSE) can
offer rational upper bounds for DNN based models, but they can
not ensure rational upper bounds for Sigmoid ANNs because of
non-convexity of Sigmoid functions. Overall, the experimental
results well correspond to the theoretical analysis in Section VII.

D. A Width Evaluation at the Top Hidden Layer of DNN

We now analyze the effects of the width of the top hidden
non-linear layer of a DNN. Although we observe that width
of hidden layers and depth of the neural architecture are two

TABLE IV
A COMPARISON OF THE EXPRESSIVE POWER AMONG DNN2

(800-800-800-800-800-1600) DNN3 (800-800-800-800-800-800), AND DNN4
(800-800-800-800-1600-800) UNDER M109 NOISE OF SNR 15 DB

Fig. 1. A comparison of convergence rates on the training set under the M109
noise of SNR 15 dB.

joint factors affecting the expressive power of the DNN based
vector-to-vector regression function, it is expected that a broader
width at the top of the hidden layer can achieve better regression
results based on Theorem 3 in Section IV and Theorem 5 in
Section V. Thus, we compared three DNNs with architectures
shown in Table I, where DNN3 corresponds to a structure of
800-800-800-800-800-800, and the architecture of DNN4 is set
up as 800-800-800-800-1600-800.

Table IV shows the results for those three DNNs. It is observed
that the top hidden layer with a broader width corresponds to
lower MSE and higher PESQ, which suggests that the config-
uration of a broader width at the top hidden layer is essential
to maintain better expressive power of a DNN based vector-to-
vector regression function. However, a broader hidden layer in
the middle of DNN cannot contribute to a better result, which is
matched with our estimated MSE for DNN4 in Table IV, where
we also verify the estimated MSE upper bounds for DNN3 are
consistent with the results.

E. A Comparison of Convergence Rates

In Section IV, Corollary 1 and Corollary 2 analyze con-
vergence rates of SGD for the modified ReLU and Sigmoid
activation functions, respectively. This section provides some
empirical MSE results under the M109 noise of SNR 15 dB to
verify the related theories. As shown in Figure 1, the modified
ReLU based ANNs perform faster convergence rates and lower
MSE values compared with the Sigmoid based ones, which con-
sistently corresponds to Corollary 1 and Corollary 2. Besides,
Figure 1 also shows that DNNs with more hidden layers and a
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TABLE V
THE EVALUATION RESULTS UNDER THE BABBLE NOISE OF SNR 15 DB

TABLE VI
THE EVALUATION RESULTS UNDER THE M109 NOISE OF SNR 5 DB

TABLE VII
THE EVALUATION RESULTS UNDER THE BABBLE NOISE OF SNR 5 DB

broader top hidden layer can achieve lower MSE values with
much faster convergence rates.

F. Empirical Assessment in Adverse Noisy Conditions

Thus far, we have analyzed the expressive power of the DNN
based vector-to-vector regression function in favorable noisy
conditions. In this section, we further evaluated the related
expressive power under some noisy adverse conditions. Table V
shows the regression results under a complicated Babble noisy
condition. Table VI and VII separately list the regression results
in the adverse noisy conditions at a low SNR level. We observed
that all the conclusions of the DNN based vector-to-vector
regression in Section VII-C are still valid in the adverse noisy
environments at a low SNR level, although the performance
becomes worse in such conditions. However, we have only tested
on a complicated noisy condition, yet the resulting property can
be regarded as a general case because Babble noise is a typical
and one of the most complicated noises in practice.

In adverse conditions, the estimated MSE values based on
Eqs. (29) and (36) are separately shown in Table V, VI and
VII. By comparison, the estimated MSE upper bounds provide
rational estimation to the real empirical MSE in all cases except
Sigmoid based ones.

G. Experimental Summary

The empirical regression results discussed in the previous sec-
tions confirm our theoretical claims, respectively. More specifi-
cally, the experimental results verify that an ANN with a broader
hidden width outperforms the one with a narrower one, and
a deeper architecture contributes to better expressive power.
Also, experimental evidence also suggests a configuration of
a broader width at the top hidden layer is essential to achieving
better expressive power of DNN based vector-to-vector regres-
sion function. Moreover, the related properties of DNN based
vector-to-vector regression function can be even maintained in
noisy adverse conditions of various SNR levels. Furthermore,
the evaluated MSE upper bound can be closely estimated based
on our Propositions 3 and 4.

Besides, since optimizing a DNN with more than two hidden
layers is a non-convex problem, the optimization error may
affect the reliability of estimated MSE strategies discussed in
this work. Thus, some theoretical work on the issue of opti-
mization methods for DNN should be essentially considered
for discussing on the generalization capability of DNN based
vector-to-vector regression.

VIII. CONCLUSION

This work focused on a theoretical analysis of DNN-based
vector-to-vector regression. We have started from the classical
universal approximation theorems for an ANN and then general-
ized the related theorems to DNN. We have shown that the width
of the hidden layers of ANN is associated with the approximation
of the vector-to-vector regression function. The experiments on
speech enhancement verify the related theoretical properties
that a broader width at the top hidden layer and a deeper
DNN architecture contribute to the better expressive power of
DNN based vector-to-vector regression functions. Moreover, the
related properties of expressive power still hold even in noisy
adverse conditions.

APPENDIX A
PROOF OF COROLLARY 1

First to prove Corollary 1, it is certainly known that the ReLu
function is a convex but non-smooth function with the inequality
as Eq. (38), where x∗ denotes the optimal point, gt refers to the
sub-gradient of the pointxt andη is the learning rate, the function
f represents a modified ReLU activation function.

f(xt)− f(x∗) ≤ g
t (xt − x∗) ≤ 1

η
(xt − xt+1)


(xt − x∗)

≤ 1

η

(||xt − x∗||22 + ||xt − xt+1||22 − ||xt+1 − x∗||22
)

≤ 1

2η

(||xt − x∗||22 − ||xt+1 − x∗||22
)
+

η

2
||gt||22 (38)

Summing the resulting inequality over t, and using that ||xt −
x∗|| ≤ R and the sub-gradient of the modified ReLU ||g||22 ≤ 1
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yield a regret Eq. (39) at time T .

RegretT =


∑
t=1

(f(xt)− f(x∗)) ≤ R2

2η
+

ηT

2
. (39)

By taking η = R√
T

, we obtain Eq. (40).

RegretT ≤ R
√
T (40)

On the other hand,

f

(
1

T


∑
t=1

xt

)
− f(x∗) ≤ 1

T


∑
t=1

(f(xt)− f(x∗)) ≤ R√
T
(41)

For an ε-optimal, we set R√
T
= ε, we obtain T = Θ( 1

ε2 ) for an
ε-optimal solution.

APPENDIX B
PROOF OF COROLLARY 2

To prove Corollary 2. We say a continuously differentiable
function f is β-smooth if ∇f is β-Lipschitz, that is

||∇f(x)−∇f(y)||2 ≤ β||x− y||2 (42)

In addition, let f be a β-smooth function on Rn. Then for any
x,y ∈ Rn, one has

|f(x)− f(y)−∇f(y)
(x− y)|

=

∣∣∣∣
∫ 1

0

∇f(y + t(x− y))
(x− y)dt−∇f(y)
(x− y)

∣∣∣∣
≤
∫ 1

0

||∇f(y + t(x− y))−∇f(y)||2 · ||x− y||2dt

≤
∫ 1

0

βt||x− y||22dt =
β

2
||x− y||22. (43)

By taking x = xt+1, y = xt, and let f represent a Sigmoid
function, we obtain:

f(xt+1) ≤ f(xt) +∇f(xt)

(xt+1 − xt) +

β

2
||xt − xt+1||22

≤ f(xt)− η||∇f(xt)||22 +
β · η2
2

||∇f(xt)||22. (44)

Summing the resulting inequality over t, we obtain Eq. (45),
where we set the learning rate η = 1

β .

E[||∇f(x)||22] =
1

T


∑
t=1

||∇f(xt)||22 =
2(f(x1)− f(xT+1))

η(2− ηβ)T

≤ 2β(f(x1)− f(xT+1))

T
(45)

which suggests: E[||∇f(x)||22] = O( βT ). Moreover, by setting

2β(f(x1)− f(xT+1))

T
= ε (46)

which suggests that T = Θ(βε ) for an ε-optimal solution.

APPENDIX C
THE GENERALIZATION BOUND FOR DNN BASED

VECTOR-TO-VECTOR REGRESSION

Finally, we briefly discuss the uniform convergence bound
derived from the Rademacher complexity of neural networks
for the generalization power of the vector-to-vector regression,
which builds on the recent work in [49]. The Rademacher
complexity, which definition is introduced via Definitions 1
and 2, is a measure of how rich a class of hypothesis is. It does
so by measuring how well the class can fit random noise using
Rademacher random variables.

Definition 1: A Rademacher random variable takes on values
±1 and is defined by the uniform distribution as Eq. (47).

σi =

{
1, w.p. 1

2

−1, w.p. 1
2

(47)

Definition 2: The empirical Rademacher complexity of a
class G of functions g : X → R with respect to a sample
S = (x1, x2, . . . , xq) is

R̂S := Eε1,...,εq

[
sup
g∈G

1

q

q∑
i=1

εig(xi)

]
(48)

where ε1, ε2, . . . , εq are iid Rademacher random variables.
Note that sup(·) in Definition 2 is an abbreviation of supre-

mum. The supremum of a sample S of a partially ordered set
T is the largest element in T that is less than or equal to all
elements of S, if such elements exist.

Next, we employ the uniform convergence bound associ-
ated with the Rademacher complexity to measure the DNN
generalization power for vector-to-vector regression. Specif-
ically, we first define an ANN class H as Eq. (49), where
W = {w(1),w(2)} in which w(1) ∈ Rn×d, w(2) ∈ Rq×n. In
addition, B′

2 > 0, B2 > 0 are two constants, and the empirical
and expected losses are defined as L̂(f) and L(f), respectively,
the Rademacher complexity of neural networks RN (H) offers
an upper bound Eq. (50) of ||L̂(f)− L(f)||2.

H = {fW : ||w(1)
i ||2 ≤ B′

2, ||w(2)
j ||2 ≤ B2, i ∈ [n], j ∈ [m]}

(49)

||L̂(f)− L(f)||2 ≤ 2RN (H). (50)

Theorem 6 presents an upper bound Eq. (51) for the uniform
convergence based on the Rademacher complexity. The upper
bound does not rely on the width of the hidden layer of ANN,
but the number of training data N is necessarily large enough to
lower the bound.

Theorem 6: Define B(W) =
∑n

i=1

∑q
j=1 ||w(1)

i ||2||w(2)
j ||2

and H = {fW : B(W) ≤ B1}. If ||xi||2 ≤ C, ∀i ∈ [n], then

RN (H) ≤ 2B1C√
N

. (51)

where constants B1 > 0 and C > 0.
Proof: The empirical Rademacher complexity can be ob-

tained by Eq. (52), where we use the fact that L2-norm is
self-dual, and let σ refer to the Rademacher variables which
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take {−1, 1} with an equal probability.

RS(H) = Eσ

[
sup

||w||2≤B1

1

N

∑
i

σiw

xi

]

= Eσ sup
||w||2≤B1

w

(

1

N

∑
i

σixi

)

=
B1

N
Eσ||

∑
i

σixi||2

=
B1

N

(
Eσ

(
||
∑
i

σixi||22
)) 1

2

(52)

Then, based on Jensen’s inequality [50], we obtain:

RS(H) ≤ B1

N
Eσ

√∑
i

σ2
i ||xi||22 =

B1

N

√∑
i

||xi||22. (53)

Thus, the Rademacher complexity can be derived as Eq. (54).

RN (H) = E[RS(H)] ≤ B1

N

√∑
i

E||xi||22 ≤ B1C√
N

. (54)

�
As discussed in Section V, the hidden layers of DNN are taken

as better feature extraction, and an ANN is responsible for the
vector-to-vector regression. The bottom hidden layers of DNN
offer a better feature representation of inputs, and the abstracted
feature can be taken as the inputs of an ANN which corresponds
to the top two layers of DNN. Thus, the generalization power of
ANN can be simply generalized to DNN with a deep learning
architecture.
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