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ABSTRACT

Deep learning (DL)-based speaker diarization methods have proven
powerful performance comparing to traditional clustering-based
methods for multi-talker speech diarization and recognition in far-
field scenes. However, most DL-based approaches cannot utilize the
spatial information well due to the poor robustness to unknown array
topology and acoustic scenario. In this paper, a spatial long-term
iterative mask estimation (SLT-IME) method is proposed to im-
prove the performance of speaker diarization in various real-world
acoustic scenarios. First, the complex angular central gaussian mix-
ture model (cACGMM) with diarization results as initial values is
used to estimate the presence probability of each speaker at each
time-frequency bin, namely speaker masks, in a long-term chunk.
Then, the speaker masks are converted to speaker activities accord-
ing to the threshold, which deliver the diarization information of
which speaker is active and when. Finally, the estimated speaker
activity can also serve as the initial input for the diarization system,
resulting in improved ASR performance. Experimental results on
the CHiME-7 three datasets (CHiME-6, DiPCo, Mixer 6) show
proposed method can improve diarization and recognition systems
performance simultaneously. It also plays a key role in the ensem-
ble system that achieves the best performance in the main track of
CHiME-7 DASR Challenge.

Index Terms— Speaker diarization, multi-channel speech en-
hancement, iterative mask estimation, CHiME-7 Challenge

1. INTRODUCTION

Automatic speech recognition (ASR) in distant-talking scenarios
based on the use of microphone arrays has become an important
part of everyday life with the emergence of speech-enabled applica-
tions on multi-microphone portable devices due to its convenience
and flexibility [1]. Several limited tasks were initially investigated,
including the TIdigits corpus [2], the TIMIT [3], the Wall Street
Journal (WSJ) [4] and the LibriSpeech [5] corpora. However, these
tasks do not take into account noisy or reverberant conditions. The
CHiME (1-4) [6, 7, 8] series were launched to investigate the im-
pact of background noises in far-field scenarios, which aimed to
address ASR challenges in real-world applications. To enhance
ASR robustness, a common approach is to use multi-channel speech
enhancement as the front-end system. This category includes rep-
resentative algorithms such as multi-channel Wiener filtering [9],
blind source separation methods [10, 11, 12, 13], and beamforming
methods [14, 15, 16]. Beamforming has gained popularity in the
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CHiME-3 Challenge [17]. In the CHiME-4 Challenge, the best
system introduced a novel approach that combines conventional
multi-channel speech enhancement with deep learning methods [18]
to improve multi-channel speech recognition.

The CHiME-5 [19] and CHiME-6 [20] Challenge have recently
provided the first large-scale corpus of real multi-talker conversa-
tional speech recorded via commercially available microphone ar-
rays in multiple realistic homes [19]. And the CHiME-6 challenge
revisits the previous CHiME-5 challenge and further considers the
problem of distant multi-microphone conversational speech diariza-
tion and recognition in everyday home environments. The latest
CHiME-7 [21] task involves joint ASR and diarization in far-field
settings using multiple recording devices, which may be heteroge-
neous. Unlike previous challenges, the evaluation of systems in-
cludes 3 diverse scenarios (CHiME-6, DiPCo, and Mixer 6). The
objective is for participants to develop a single system that can adapt
to different array geometries and use cases without any prior infor-
mation. The official baseline report shows a diarization attributed
word error ratio (DA-WER) of 55.30%, highlighting the difficulty of
the CHiME-7 ASR task.

Previous methods usually optimize the front-end modules in-
dependently, such as using the diarization module and then using
the GSS module to get the segment single-channel speech, ig-
noring the interaction of each module information and the use of
long-term information. In this paper, we propose a novel method
called spatial long-term iterative mask estimation (SLT-IME) to
enhance speaker diarization performance in various real-world
acoustic scenarios. Our approach leverages the complementary
information from a spatial long-term (SLT)-based spatial mixture
model (SMM) to iteratively improve diarization accuracy. While
the neural speaker diarization using memory-aware multi-speaker
embedding (NSD-MA-MSE)-based diarization approach has shown
powerful performance for multi-talker environments, it often strug-
gles with accurate speaker estimation in low signal-to-noise ratio
(SNR) or same gender cases due to limited spatial information. To
improve the performance of the diarization system, we first seg-
ment the multi-channel data and NSD-MA-MSE-based diarization
results into overlapping long-term blocks. This ensures that each
block contains sufficient speech from all speakers. Next, we utilize
cACGMM to estimate each speaker mask for each block and get
the long masks with overlap-add. The long masks are converted
to each speaker activity by threshold. Finally, we use the obtained
speaker activity as initial values for official cACGMM and then fed
the corresponding beamformed speech to the recognition system.
The estimated speaker activity can also serve as the initial input
for the diarization system, resulting in improved ASR performance.
When tested on CHiME-7 Challenge track 1 tasks (multiple-array
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speech recognition), our proposed SLT-IME approach further en-
hances both diarization and ASR performance. Additionally, this
approach plays a crucial role in our ensemble system which achieves
top performance in CHiME-7 Challenge main track tasks.

2. THE WHOLE FRAMEWORK

The Fig. 1 illustrates the entire framework, which primarily focuses
on addressing the issue of multi-speaker diarization and speech
recognition in various far-field scenarios where the array location
and speaker information are unknown. The framework includes
channel selection, diarization, spatial long-term iterative mask es-
timation (SLT-IME), and automatic speech recognition (ASR). To
begin with, envelope variance measure (EV) is employed for channel
selection to eliminate faulty channels (further details can be found
in [22]). We initially employ the NSD-MA-MSE-based diarization
approach, which is a neural speaker diarization using memory-aware
multi-speaker embedding. This approach demonstrates strong per-
formance and utilizes a framework similar to target-speaker voice
activity detection (TS-VAD). The key distinction lies in the use of
dynamic speaker embeddings obtained by weighting the original
speaker embeddings in the memory block. For further details, refer
to [23]. Next, the proposed SLT-IME approach is used to reduce the
speaker error caused by the initial diarization system by leveraging
long-term multi-channel signal processing. The spatial information
contained in the multi-channel data not only makes the clustering
more stable, but also makes the recognition performance better. The
outputs of SLT-IME can be utilized for diarization system to extract
more reliable speaker features, which can enhance the performance
of NSD-MA-MSE-based diarization system through an iterative
process. Finally, we employ speaker adaptive automatic speech
recognition (SA-ASR) [24] as our recognition system to tackle the
challenges in multi-speaker recognition task.

3. SIGNAL MODEL

In the short-time-Fourier-transform (STFT) domain [25], the signal
model can be expressed as [26]:

Y (l, f) = g(k)S(l, f) +N(l, f) = X(l, f) +N(l, f), (1)

where f is the frequency bin index, l is the frame index, S(l, f) is
the STFT of clean speech. X(l, f) and N(l, f) are M -dimensional
complex vectors that represent the STFT-domain representations of
clean speech received by microphone arrays and noise signal, re-
spectively. g(k) is the signal propagation vector, which is in the
same form as the so-called steering vector in the literature of array
beamforming [27]. We assume that the analysis window is longer
than all the channel impulse responses and that N(l, f) is relatively
stationary.

For the diarization system, we can get the K vectors of 2-class
outputs, denoted as D, as following:

D = dia(Y m;E), (2)

where Y m is the mth microphone data and K is the speaker number.
E = [E1, ...,EK ] is the speaker embeddings, and dia(·) is the
NSD-MA-MSE-based diarization algorithm. D = [D1, ...,DK ],
where Dk = [d(1, k), ..., d(L, k)] represents the probabilities of
speech and silence of speaker k in each frame l. More detailed can
refer to [23].

Channel
Selection

Audio
CSD NSD-MA-MSE

Long-term
Segmentation

Overlap-add &
Mask to VADcACGMM

IterationSpatial Long-term
Processing

Short-term
Beamforming

Spatial Long-term Processing   

NSD-MA-MSE

Fig. 1. The whole framework and proposed spatial long-term itera-
tive mask estimation method.

4. PROPOSED SLT-IME METHOD

Compared to standard reading speech, conversational and sponta-
neous speech pose a greater challenge for speech recognition sys-
tems in dialogue scenarios. Casual pronunciation and frequent over-
lapping of speech significantly reduce the accuracy of acoustic mod-
els. The most significant hurdle is accurately identifying the speaker
at any given moment. [23] introduces a novel diarization system
that addresses this problem by utilizing speaker features and a deep
learning model. However, diarization systems may experience re-
duced performance in cases where speech is heavily affected by
background noises or when two speakers have similar acoustic prop-
erties (e.g., same gender). In order to improve robustness of the di-
arization system in multi-talker situations, a method based on spatial
long-term iterative mask estimation (SLT-IME) is proposed.

The SLT-IME method consists of four stages: segmentation,
long-term block processing, overlap-add, short-term beamforming.
In the segmentation stage, sequential multi-channel audios and di-
arization results are segmented into long overlapped blocks. Then,
each block is passed to cACGMM to estimate the presence proba-
bility of each speaker and noise, denoted as speaker mask. Next,
the speaker masks in all blocks are concatenated into long sequential
masks with overlap-add method and VAD for each speakers are gen-
erated by the long sequential masks. Finally, the estimated speaker
activity can also serve as the initial input for the diarization system,
resulting in improved ASR performance.

4.1. Long-term segmentation

The sequential inputs Y and D are split into blocks of length B
(B is pre-defined) and hop size W = B/2, with 50% overlap.
The length of last block is L − ⌊L/W ⌋ × W , where ⌊·⌋ is round
down function. The inputs in each blocks are generated, denoted as
Y s and Ds, s = 1, ..., S, where S = ⌈L/W ⌉ is the number of
blocks, where ⌈·⌉ is round up function. To make each block con-
taining enough speech for all speakers, the block size should be long
enough.

4.2. Long-term block processing

The segmentation outputs Y s and Ds are then passed to the spa-
tial mixture model, namely the complex Angular Central Gaussian
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Mixture Model (cACGMM) [28]:

p(z(l, f)) =

K+1∑
k=1

π(l, f)A(z(l, f);B(l, f)), (3)

where π(l, f) is a time-varying a priori probability and z(l, f) =
Y(l, f)/||Y(l, f)||. The number of classes K+1 is set to the num-
ber of speakers K plus one for the noise. The cACGMM parameters
are trained using the EM algorithm, which involves alternating E-
and M-steps. The update equations for the cACGMM are as follows:

γ(l, f, k) = π(l,f)det(B(l,f))−1(z(l,f)HB(l,f)−1z(l,f))−N∑K+1
k=1

π(l,f)det(B(l,f))−1(z(l,f)HB(l,f)−1z(l,f))−N
(4)

B(l, f) = N∑L
l=1

γ(l,f,k)

∑L
l=1 γ(l, f, k)

z(l,f)Hz(l,f)

z(l,f)HB(l,f)−1z(l,f)
(5)

where γ(l, f, k) is the a posterior probability that the class k is ac-
tive at a time-frequency (l, f) bin. Based on the description of
cACGMM algorithm, the EM algorithm converges to a local opti-
mum of the objective function and is thus susceptible to its initial-
ization. It is important to choose a appropriate initial values for the
posterior γ(l, f, k).

For block s, the posterior is initialled with the diarization results
ds(l, k) as

γinit
s (l, f, k) =

ds(l, f, k)∑K+1
k=1 ds(l, f, k)

, (6)

where ds(l, f, k) is a copy of ds(l, k) in the frequency dimension.
Suppose that noise is present at any time, so ds(t,K + 1) = 1, t =
1, ..., T . For current novelty diarization algorithm based on deep
learning, there are few researches to explore how to utilize the spatial
information for multi-array cases. Because it is hard to construct a
training dataset containing kinds of array shapes and distributions for
model training. cACGMM is an algorithm adaptive to the test signal
and it can utilize the spatial information for every time steps. If one
speaker are recognized as the other speakers or missed detection in a
long-term block, the cACGMM model can correct the wrong speaker
activity information while iterating. Therefore, it can further reduces
the speaker error significantly in low SNR cases or the same gender
of speakers.

4.3. Overlap-add
After the convergence of the EM algorithm initialized with diariza-
tion results in each block, the probability of speech presence at (l, f)
bin is detected through the learned class posterior probabilities, de-
noted as γdia

s (l, f, k).

γre
s (l, f, k) =

{
γdia
s (l, f, k), s = 1

[γdia
s−1(l, f, k) + γdia

s (l, f, k)]/2, s > 1,
(7)

where (s − 1)W ≤ l < sW . All blocks are then concatenated
together to form a 3-D tensor γre = [γre

1 , ...,γre
S ] ∈ RL×F×K . The

final speaker activity at frame level, denoted as M re
vad(l, k), which

also provides the diarization information of which speaker is active
and when can be obtained as follow:

M re
vad(l, k) =

{
1, if β(l, k) > 0.2, l = l − 6, ..., l
0, else,

(8)

where β(l, k) = (
∑F

f=1 γ
re(l, f, k))/F can provide the probability

of speaker presence at each frame l. We also can repeat the whole
process using the refined speaker activity M re

vad.

4.4. Short-term beamforming

To generate the speech for speech recognition, we also utilize
the short-term beamforming, which is the official GSS process in
CHiME-7. In this process, the whole sequential inputs Y is split
into many short-term segments according to the diarization results.
The beamformed speech at each segment, denoted as X̂seg, can be
obtained as follow:

X̂seg = bf(Y seg;M seg), (9)

where bf(·) denotes the beamforming algorithm. Y seg and M seg

denote the segment of Y and M re
vad.

5. EXPERIMENTS
5.1. Data corpus
The recently CHiME-7 Challenge provides the large-scale corpus of
real multi-talker conversational speech recorded via commercially
available microphone arrays in multiple realistic homes and meeting
rooms [21]. This challenge contains three datasets: CHiME-6 [29],
Dipco [30] and Mixer6 [31]. The three corpus essentially congre-
gates a large number of acoustic problems that may exist in real life,
which poses a great challenge to existing ASR systems, especially
for the front-end processing in the case of noise, reverberation, over-
lapping speech. There are four main challenging of the corpus: 1)
different array topologies: linear (CHiME-6, 6 Kinect array devices
with 4 microphones each for a total of 24 microphones), circular
(DiPCo, 5 far-field devices each with a 7-mic circular array (six plus
one microphone at the center)), or heterogeneous (Mixer 6, 14 mi-
crophones of varying styles, placed in various locations); 2) vari-
able numbers of speakers in each session; 3) linguistic differences
between dinner party scenarios (CHiME-6 and DiPCo) versus inter-
views (Mixer 6); and (4) diverse acoustic conditions.

5.2. Implementation details
For front-end configurations, speech waveform is sampled at 16 kHz,
and the corresponding frame length is set to 1024 samples (64 msec)
with a frame shift of 256 samples. The STFT analysis is used to com-
pute the DFT of each overlapping windowed frame. The diarization
system is mainly based on neural speaker diarization using memory-
aware multi-speaker embedding (NSD-MA-MSE). For the proposed
SLT-IME system, the long-term block size is 7500, and the hop size
is 3750. For beamforming, we stack all arrays into one big array
according to [32]. The channel selection [33] and beamforming [34]
are also adopted. For the back-end configurations, The speaker adap-
tive automatic speech recognition (SA-ASR) is just used as black-
box for evaluating the performance. More details can refer to [24].

5.3. Results and analysis
Table 1 shows the Diarization results (false alarm (FA), missed
(MISS), speaker error (SPKERR) and diarization error rate (DER))
on the DEV with the NSD-MA-MSE and the proposed SLT and
SLT-IME based diarization refine strategies. Note that base on the
speech analysis of the three datasets, the overall signal-to-noise
ratio (SNR) of CHiME-6 and DiPCo is much lower than that of
Mixer 6. And CHiME-6 has a more casual speaking style than
other sets. First, the “NSD-MA-MSE”, “SLT” and “SLT-IME”
denote the diarization system [23], the proposed spatial long-term
(SLT) and spatial long-term iterative mask estimation (SLT-IME)
approach. For the SPKERR index in diarization, the proposed SLT
can hugely reduce the SPKERR in development and evaluation sets,
e.g., the SPKERR were significantly reduced from 1.92% to 1.45%
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Table 1. Diarization results on the DEV with the baseline and the
proposed SLT-based diarization refine.

Scenario Method DEV
FA MISS SPKERR DER

CHiME-6
NSD-MA-MSE 1.64 25.44 2.85 29.93

+SLT 13.32 16.32 2.58 32.22
+SLT-IME 2.66 19.91 3.43 26.00

DiPCo
NSD-MA-MSE 1.80 14.50 1.92 18.22

+SLT 16.65 6.64 1.45 24.74
+SLT-IME 2.61 11.11 1.39 15.12

Mixer 6
NSD-MA-MSE 1.54 7.68 0.63 9.85

+SLT 13.25 3.11 0.11 16.48
+SLT-IME 1.48 7.57 0.36 9.41

Table 2. DA-WER on the DEV and EVAL with the baseline and the
proposed SLT-based diarization refine.

Scenario Baseline NSD-MA-MSE SLT-IME
DEV EVAL DEV EVAL DEV EVAL

CHiME-6 62.4 77.4 33.6 35.8 32.8 33.2

DiPCo 56.6 54.7 35.1 33.7 32.0 31.6

Mixer 6 22.5 33.7 12.8 11.9 12.4 11.6

Macro 47.2 55.3 27.2 27.1 25.7 25.5

on development set of DiPCo, respectively. With better SPKERR
initialization for NSD-MA-MSE, the SLT-IME provided huge di-
arization performance improvement on all three datasets, e.g., the
SPKERR were significantly reduced from 29.93% to 26.00% on
development set of ChiME-6.

Table 2 shows the Diarization Attributed Word Error Rate (DA-
WER) on the DEV and EVAL with the official baseline, NSD-MA-
MSE and the proposed SLT-IME. Comparing with NSD-MA-MSE,
SLT-IME can further improve the performance of the recognition
in terms of WER on both DEV and EVAL sets, e.g., the WER re-
duced from 35.8% to 33.2%, 33.7% to 31.6% and 11.9% to 11.6%
on EVAL sets of CHiME-6, DiPCo and Mixer 6. By utilizing spatial
information effectively, especially on overlapping regions, SLT-IME
can serve as a better initialization system for NSD-MA-MSE.

Fig. 2 presents the oracle label and diarization label of 16s
speech segments from selected utterance which belong to DiPCo
dataset. Fig. 2 a) shows the spectrogram of speech segments from
selected utterance which belong to DiPCo dataset. We can find that
there are some overlap and background noise which is challenge
for diarization. Fig. 2 b) shows the oracle labels. We can find that
the official annotation labels two consecutive speech segments as
one segment, causing the silent segment in the middle to also be
labeled as a human voice, for example the first segment of speaker
4. Fig. 2 c) shows the diarization labels. The baseline diarization
system can detect most speech segments, but it misses some seg-
ments belong to speaker 1 and speaker 2 due to the background
noise and overlap. Fig. 2 d) and e) show the estimated masks and
vad by SLT-IME method corresponding to speaker 1 and speaker
2. We can find that SLT-IME method is able to retrieve the speech
segments missed by baseline diarization system due to its powerful
spatial modeling capabilities. Fig. 2 g) shows the estimated mask
and vad by SLT-IME method for speaker 4. The SLT-IME method
can obtain more accurate VAD information for each speaker and the
refined segments information is better for beamforming avoiding the

Fig. 2. An example of a long speech segment from the DiPCo devel-
opment set: a) Spectrogram; b) Oracle speaker activity labels; c) The
baseline diarization results; d) - g) The SLT-IME results for speaker
s ∈ {1, 2, 3, 4}.

Fig. 3. Comparison of Word Error Ratio (WER%) between SLT-
IME method under different lengths of long-term chunks configura-
tions for multi-channel speech enhancement on the development set.

influence of noise segments. And this also explains the deterioration
of the FA index in Table 1.

Fig. 3 shows the comparison of Word Error Ratio (WER%) be-
tween SLT-IME method under different lengths of long-term chunks
configurations for multi-channel speech enhancement on the devel-
opment set. We can find that the performance is worst when the
length of the chunk is 90s. And SLT-IME gets the best performance
when the length is 120s. As the length becomes longer, the perfor-
mance gradually deteriorates.

6. CONCLUSION

In this paper, we propose a simple and effective method called SLT-
IME to enhance the robustness of diarization systems iteratively,
yielding a ASR performance improvement. By utilizing spatial long-
term information, the SLT model can not only make full use of the
space and speaker information but also distinguish different speakers
from multi-channel noisy data. In the future, we can improve SLT-
IME by leveraging upon better spatial beamforming approaches and
more informative feedback from diarization system.
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