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Abstract. Single-channel speech enhancement for automatic speech recog-
nition (ASR) has been extensively researched. Traditional methods usu-
ally directly learn clean target, which may introduce speech distortions
and limit ASR performance. Meanwhile, these methods usually focus on
either the time or frequency domain, ignoring their potential connec-
tions. To tackle these problems, we propose a joint time and frequency
domain progressive learning (TFDPL) method for speech enhancement
and recognition. TFDPL leverages information from both domains to es-
timate frequency masks and waveforms, gradually predicting less-noisy
and cleaner targets. Experimental results show that TFDPL outperforms
traditional methods in ASR and perceptual metrics. TFDPL achieves
relative reductions of 43.83% and 36.03% in word error rate for its in-
termediate outputs on the CHiME-4 real test set using two different
acoustic models and certain improvements in PESQ and STOI metrics
for clean output on the simulated test set.

Keywords: automatic speech recognition · speech enhancement · joint
time and frequency domain · progressive learning.

1 Introduction

With the advancement of deep learning, automatic speech recognition (ASR) [1]
has made significant progress and has been widely applied in our daily lives [2].
However, in complex acoustic environments, speech may be interfered with by
various sources of noise, leading to degradation in ASR performance.

Speech enhancement (SE) is a critical technology in speech processing that
aims to improve the quality and intelligibility of corrupted speech [3]. Moreover,
it can be utilized as a front-end system to enhance the robustness of ASR systems
[4]. In recent years, supervised speech enhancement techniques based on deep
neural networks have been widely studied and established as the mainstream
approach [5]. These methods can be categorized into two classes based on the
domain: frequency-domain methods and time-domain methods.
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Frequency-domain methods often utilize the Short-Time Fourier Transform
(STFT) to convert the original waveform into a time-frequency spectrogram,
which serves as the input to the neural network. These methods aim to predict
frequency-domain masks or features, such as Ideal Ratio Mask (IRM) [6] or log-
power spectra (LPS) [7]. However, prediction of these methods often discards
the clean phase information, which can be detrimental for speech recognition
[8]. Additionally, certain prediction targets like IRM are limited by their own
assumptions and cannot perfectly reconstruct the clean speech, thus limiting
the performance of frequency-domain methods. In recent years, there has been
increasing interest in time-domain-based speech enhancement methods [9–11].
These methods directly process the raw waveform to overcome challenges asso-
ciated with phase estimation and have a higher theoretical performance ceiling.

Most speech enhancement methods aim to improve the quality and intelli-
gibility of corrupted speech. During training, these methods often utilize tar-
gets such as IRM, clean LPS, or clean waveform. However, using these targets
can sometimes result in excessive suppression and distortion, which may have
a negative impact on ASR performance [12]. To address this issue, researchers
have proposed methods to mitigate over-suppression and improve ASR perfor-
mance. [12] introduced an asymmetric loss function to improve speech preser-
vation, while [13] introduced a progressive learning-based speech enhancement
network that gradually improves the Signal-to-Noise Ratio (SNR) until learning
clean spectral features, where the intermediate target can effectively preserve
speech information. [14] and [15] proposed progressive learning (PL) methods in
the frequency and time domains, respectively, and demonstrated the effective-
ness of intermediate targets in improving ASR performance. In [16], the authors
demonstrated that all audio-only object-oriented progressive learning (AOPL)
models outperform their audio-only counterparts (AODL) in speech enhance-
ment. These findings highlight the advantages of progressive learning methods
in ASR back-end and speech perceptual quality. On the other hand, previous
research in speech enhancement has primarily focused on separate modeling of
either time-domain or frequency-domain information. However, due to the com-
plementary nature of the latent information in these two domains, integrating
them can enhance the performance of the models [17, 18].

In this paper, we propose a novel joint time-domain and frequency-domain
progressive learning approach (TFDPL) for single-channel speech enhancement
and recognition. TFDPL progressively predicts less-noisy and clearer speech,
simultaneously estimates time-frequency masks and waveform using information
from both the time and frequency domains, and further combines these two
prediction targets through a fusion loss. Experimental results demonstrate that
TFDPL outperforms traditional methods in ASR and perceptual metrics. On the
CHiME-4 real test set, TFDPL’s intermediate output achieves relative word error
rate (WER) reductions of 43.83% and 36.03% compared to the untreated noisy
speech, respectively, using two different acoustic models without retraining. The
final results also demonstrate the best PESQ and STOI scores on the simulated
test set.
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Fig. 1. The overview of proposed joint time-domain and frequency-domain progressive
learning network.

2 Progressive learning with joint time domain and
frequency domain

In this section, we will provide a detailed description of the TFDPL model. We
divide the prediction of clean speech into two stages, aiming to progressively
predict intermediate target speech with a 10dB improvement in SNR relative to
the noisy speech and the final clean speech. The overview of the TFDPL model
is shown in Fig. 1.

TFDPL model consists of three modules: the progressive frequency-domain
masking module, the progressive mix-domain module, and the fusion module.
The TFDPL model takes noisy time-domain signals as input. First, the LPS
features of the signal are extracted and normalized [19]. Then, the normalized
features are fed into the progressive frequency-domain masking module to esti-
mate progressive masks. The estimated masks are multiplied with the original
spectrogram and reconstructed back to waveform signals using inverse STFT
(ISTFT). The reconstructed signals, along with the original noisy speech, are
then fed into the progressive mix-domain module. In addition, we propose a
novel fusion strategy, where the fusion module extracts the corresponding LPS
features from the estimated targets of the two modules at the same stage of pro-
gressive learning, and weights and reconstructs them into fused speech to better
utilize frequency and time domain information.

2.1 Problem formulation

For single-channel speech enhancement, we have a noisy speech signal denoted
as y, which consists of a combination of the clean target speech signal s and
background noise signal n.

y(t) = s(t) + n(t) (1)
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where t indicates a time index. The model progressively predicts the correspond-
ing frequency-domain mask and time-domain waveform for each stage. In [20]
and [15], progressive ratio masks (PRM) and low-noise speech were used as es-
timation targets for each stage, demonstrating their effectiveness in improving
ASR systems. Therefore, the predicted frequency-domain mask and time-domain
waveform for the i-th stage of the TFDPL model are defined as follows:

MPRMi
(k, l) =

|S(k, l)|2 + |Ni(k, l)|2

|S(k, l)|2 + |N(k, l)|2
(2)

yi(t) = s(t) + ni(t) (3)

where MPRMi
(k, l) and yi(t) represent the predicted targets of the progressive

frequency-domain masking module and the progressive mix-domain module in
the i-th stage, respectively. ni(t) represents the residual noise in the i-th stage,
while S(k, l), Ni(k, l) and N(k, l) represent the STFT of the clean speech, resid-
ual noise in the i-th stage, and input noise, respectively. k and l are indices
representing frames and frequency bins, respectively.

Indeed, it can be observed that when Ni(k, l) and ni(t) are both equal to
0, MPRMi and yi correspond to the traditional IRM and the clean speech s,
respectively. They serve as the clean targets for the progressive frequency-domain
masking module and the progressive mix-domain module.

Fig. 2. The detailed design of the components in the TFDPL model. (a) Frequency-
domain progressive enhancer. (b) Mix-domain progressive enhancer. (c) Fusion module.

2.2 Joint time and frequency domain progressive learning

Progressive frequency-domain masking module The progressive frequency-
domain masking module consists of two components: the frequency-domain (FD)
encoder and the frequency-domain (FD) progressive enhancer (shown in Fig.
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2(a)). The data flow and parameters of this module are denoted as FPL. In [16],
each stage of progressive learning is composed of L Blocks, each consisting of a
1D convolutional layer with residual connection, a ReLU activation, and a batch
normalization. We employ 5 Blocks and 2 conformer layers as the FD encoder,
denoted as FFPL

encoder(·).
First, the LPS features of the input signal y are extracted and then fed into

the FD encoder:

EFPL = FFPL
encoder(FLPS(y), ΛFPL

encoder) (4)

where FLPS(·) represents LPS extractor. ΛFPL
encoder and EFPL represent the pa-

rameter sets of the FD encoder and the encoded features.
FFPL

enhanceri
(·) denotes subsequent FD progressive enhancer composed of 5

Blocks, which is used to predict the intermediate representation of that stage:

XFPL
i = FFPL

enhanceri(X
FPL
i−1 , ΛFPL

enhanceri) (5)

where ΛFPL
enhanceri

and XFPL
i represent the parameter set and the intermediate

representation in the i-th stage, respectively. In the case of the first stage, XFPL
0

is equivalent to EFPL.
Then, the mask MFPL

i for the i-th stage is obtained by applying a sigmoid
activation.

MFPL
i = σ(XFPL

i ) (6)

where MFPL
i is a mask with values ranging from 0 to 1, we expect to use the mask

to obtain enhanced speech in the i-th stage with a specified relative increase in
SNR compared to the noisy input:

ŷFPL
i = FReconst

PRM (y,MFPL
i ,Wistft) (7)

FReconst
PRM (·) represents the waveform reconstruction module, which involves mul-

tiplying the extracted spectrum of the input noisy speech y with the predicted
mask, and then using the y phase information to reconstruct the waveform
using ISTFT. ŷFPL

i represents the waveform reconstructed by the progressive
frequency-domain masking module in the i-th stage.

Progressive mix-domain module The progressive mix-domain module con-
sists of two components: a time-domain (TD) encoder, and a mix-domain (MD)
progressive enhancer (shown in Fig. 2(b)). The data flow and parameters of this
module are denoted as MPL. The MD progressive enhancer consists of three
sub-parts: a linear layer, a mix-domain (MD) enhancer, and a time-domain
(TD) decoder. We introduced a linear layer to fuse the encoded features of
the time-domain waveform and the waveform reconstructed based on the pro-
gressive frequency-domain masking module. Each MD enhancer consists of two
stacks of n 1D-ConvBlocks, with increasing dilation factors. The structure of the
1D-ConvBlocks is the same as in Conv-TasNet [21], but without skip connec-
tions.
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The trainable TD encoder takes noisy speech y and progressive frequency-
domain masking module estimated speech ŷFPL

i as inputs, where i takes a value
of 1 or 2, resulting in high-dimensional encoded features.

(EMPL
y , EMPL

ŷFPL
1

, EMPL
ŷFPL
2

) = FMPL
encoder((y, ŷ

FPL
1 , ŷFPL

2 ), ΛMPL
encoder) (8)

where FMPL
encoder(·) represents TD encoder, which consists of a 1D convolutional

layer. EMPL
y , EMPL

ŷFPL
1

, and EMPL
ŷFPL
2

denote the encoded high-level features of the
input noisy speech y, ŷFPL

1 , and ŷFPL
2 , respectively. ΛMPL

encoder represents the pa-
rameter set of the TD encoder. Next, we concatenate the features EMPL

y and
EMPL

ŷFPL
1

, and pass the concatenated feature through a linear layer for informa-
tion fusion and dimensionality reduction. This allows us to obtain a feature that
contains both time-domain and frequency-domain information.

EMPL
1 = Flinear1(Concat(EMPL

y , EMPL
ŷFPL
1

), Λlinear1) (9)

where Concat represents the concatenation of two vectors along the feature
dimension. EMPL

1 represents the fused features in the first stage, which is then
fed into the first MD enhancer.

[XMPL
1 ,MMPL

1 ] = FMPL
enhancer1(E

MPL
1 , ΛMPL

enhancer1) (10)

where FMPL
enhancer1

(·) and ΛMPL
enhancer1

represent the first MD enhancer and the cor-
responding parameter set. XMPL

1 and MMPL
1 denote the mix-domain module

intermediate representation and masks in the first stage. We concatenate XMPL
1

with XMPL
ŷFPL
2

and feed it into the second linear layer to extract fusion informa-
tion for the second stage, which is then passed to the second MD progressive
enhancer.

EMPL
2 = Flinear2(Concat(XMPL

1 , EMPL
ŷFPL
2

), Λlinear2) (11)

[_,MMPL
2 ] = FMPL

enhancer2(E
MPL
2 , ΛMPL

enhancer2) (12)

where EMPL
2 and MMPL

2 represent the fusion features and masks for the sec-
ond stage. Finally, we perform element-wise multiplication between the ob-
tained masks (MMPL

1 and MMPL
2 ) and the EMPL

y separately, and pass each result
through their respective TD decoder to obtain the estimated intermediate tar-
gets and clean targets from the mix-domain module.

ŷMPL
i = FMPL

decoderi(E
MPL
y ,MMPL

i , ΛMPL
decoderi) (13)

where FMPL
decoderi

(·) and ΛMPL
decoderi

represent the i-th TD decoder and its corre-
sponding parameter set, and ŷMPL

i represents the waveform estimated by the
progressive mix-domain module in the i-th stage.
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Fusion module This module connects the progressive frequency-domain mask-
ing module and progressive mix-domain module, as shown in Fig. 2(c) for more
details. First, the fusion module receives the masking MFPL

i estimated by the
progressive frequency-domain masking module and the spectrum and phase of
the noisy speech y to obtain the reconstructed speech ŷFPL

i through ISTFT. Af-
terward, we can input ŷFPL

i into the progressive mix-domain module to fuse the
information from both the time-domain and frequency-domain, and obtain its
predicted waveform ŷMPL

i .
Finally, we propose a novel fusion strategy that combines the outputs of

the progressive frequency-domain masking module and progressive mix-domain
module, aiming to further exploit the complementarity of different domain in-
formation:

LPSfusioni = λ ∗ FLPS(ŷMPL
i ) + (1− λ) ∗ FLPS(ŷFPL

i ) (14)

ŷfusioni = FReconst
LPS (ŷMPL

i ,LPSfusioni ,Wistft) (15)

By employing a weighted fusion approach, we acquire the fused LPS feature
LPSfusioni , with a weight parameter λ ranging from 0 to 1. The function FReconst

LPS (·)
denotes the waveform reconstruction based on the LPS features and the phase
of ŷMPL

i . ŷfusioni represents the waveform obtained through the fusion strategy.

2.3 Multi-target loss

We propose a multi-task learning approach to train TFDPL. In this approach, we
utilize a multi-scale scale-invariant signal-to-distortion ratio (SI-SDR) loss [22]
for the progressive mix-domain module and fusion module. Additionally, we use
a minimum mean squared error (MSE) loss for the progressive frequency-domain
masking module.

LFPL
i = LMSE(M

FPL
i ,MPRMi) (16)

LMPL
i = LSI-SDR(ŷ

MPL
i , yi) (17)

Lfusion
i = LSI-SDR(ŷ

fusion
i , yi) (18)

The final optimization objective of TFDPL is a linear combination of the three
mentioned losses.

LTFDPL =
∑
i

αi ∗ LFPL
i + βi ∗ LMPL

i + γi ∗ Lfusion
i (19)

3 Experiments and Analysis

3.1 Data corpus

Clean speech is obtained from the WSJ0 SI-84 dataset [23], which consists of
7,138 utterances from different speakers. We randomly selected 7,000 utterances
for training, 65 for validation, and 73 for testing. The noise data used to generate
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noisy-clean pairs is sourced from the CHIME-4 noise dataset [24]. During the
training process, we employed an online augmentation strategy where speech
and noise pairs were randomly selected and randomly segmented into durations
ranging from 4 to 6 seconds. The SNR was varied between -5dB and 5dB to
generate noisy speech. We simulated a test set to evaluate the perceived quality
of the enhanced speech at five different SNR levels (-10dB, -5dB, 0dB, 5dB,
10dB) using 73 clean speech utterances from the test set and three training-time
unseen noises from the NOISEX-92 corpus [25]: Destroyer Engine, Factory1, and
Speech Babble. Additionally, we conducted an ASR performance evaluation of
our framework on the CHiME-4 real test set, which includes 1,320 real recordings
in four different conditions: bus (BUS), cafe (CAF), pedestrian area (PED), and
street (STR).

3.2 Implementation details

The speech waveform was sampled at a frequency of 16kHz. We applied a 32-
ms Hanning window with 16-ms overlap to extract audio frames. Then, a 512-
point STFT was used to compute the spectrum of each frame, resulting in 257-
dimensional LPS features. Before feeding the features into the neural network,
they were normalized using global mean and variance [19].

For the TFDPL model, each MD enhancer is composed of two stacks, each
containing 8 1D-ConvBlocks. The remaining hyper-parameters setting is similar
to the original Conv-TasNet [21]. Besides, we do not use skip connection in MD
enhancer. We used PyTorch to train the model, with an initial learning rate set
to 5e-4. The batch size was 12. If the loss on the validation set did not decrease
after an epoch, the learning rate was halved. Adam [26] is used as the optimizer.
For the loss configuration, we use α1 = 2.3, α2 = 1.5, and βi and γi are set to 1
to balance the training loss. For the fusion configuration, we set λ = 0.5.

We trained four baseline models for comparison with our proposed method.
The first model has the same network structure as the progressive frequency-
domain masking module of TFDPL, denoted as FDPL. The second model is
denoted as TDPL, we set the stack of the progressive enhancer in TDPL to con-
tain 8 1D-ConvBlocks, because we found that this has better performance, and
the rest of the hyperparameters are set similarly to [15]. The third model, de-
noted PL-ANSE [14], combines progressive learning with the traditional IMCRA
[27] algorithm. The fourth is the traditional speech enhancement Conv-TasNet,
denoted as TDSE.

We evaluated our method on two different ASR systems. The first one is an
official ASR system [24], referred to as ASR(1), where the acoustic model is
trained using the DNN-HMM architecture with sMBR criteria [28]. The second
system is trained with LF-MMI using TDNN and is referred to as ASR(2).
Both ASR systems used a 5-gram Kneser-Ney (KN) smoothed language model
for the first-pass decoding [29], and scoring was performed using an RNN-based
language model.
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3.3 Evaluation metrics

To evaluate the perceived quality of the enhanced speech, we employed the per-
ceptual evaluation of speech quality (PESQ) [30] and short-time objective in-
telligibility (STOI) [31] metrics. Higher values in both metrics indicate better
performance. Additionally, we employed word error rate (WER) to assess the
model’s improvement on the ASR system, where lower values are better. The in-
termediate and clean outputs of the model render great service to ASR back-end
and human listener, respectively.

3.4 Results and analysis

In this section, we will compare the performance of the proposed model with
other models in terms of ASR back-end and perceived quality of the enhanced
speech. Explanation of terms in Tables 1, 2, 3, 4 and 5: Noisy represents the noisy
speech without any enhancement. D-Fusion represents divide fusion, which is the
fusion output obtained by applying the fusion strategy proposed in Section 2.2
to separately trained FDPL and TDPL models. J-Fusion represents joint fusion,
which indicates the output of the fusion module in TFDPL.

Table 1. WER(%) comparison of different targets for different methods on CHiME-4
real test set with ASR(1) and ASR(2).

Target Model ASR(1) ASR(2)

Noisy - 23.84 13.46
- PL-ANSE 18.57 12.48

Clean TDSE 24.55 21.69

+10dB
FDPL 16.26 10.38
TDPL 15.18 9.74

D-Fusion 14.41 9.12

Clean
FDPL 17.76 11.54
TDPL 26.43 25.16

D-Fusion 14.83 10.64

Analysis on recognition performance Table 1 presents the results of dif-
ferent speech enhancement methods in ASR systems. PL-ANSE [14] combines
multiple targets of progressive learning with IMCRA [27] algorithm to estimate
speech. We can observe that the intermediate target (+10dB) of progressive
learning can always improve the performance of ASR, while its clean target or
TDSE directly estimating the clean target may degrade the performance of ASR.
Studies [20] and [15] have demonstrated separately that the intermediate targets
in progressive frequency-domain and time-domain models effectively enhance the
performance of ASR systems. Our experiments validate this finding. Addition-
ally, the ASR performance of the intermediate targets of FDPL and TDPL is
better than that of PL-ANSE and TDSE, so we choose FDPL and TDPL for
subsequent fusion experiments. When FDPL and TDPL results are fused, the
performance of intermediate target fusion still exceeds the performance of clean
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target fusion on two different ASR backends and improves ASR performance.
Due to the superior performance of the intermediate targets of the progressive
learning method in ASR, subsequent ASR experiments are based on the inter-
mediate targets. Furthermore, the fused results show improvements compared to
the best results of the individual models before fusion, providing strong evidence
for the complementary nature of the frequency and time domains and indicating
the effectiveness of our fusion strategy. This is also the motivation behind our
joint training.

Table 2. WER(%) comparison of different speech enhancement methods in various
environments on CHiME-4 real test set with ASR(1).

Model Domain BUS CAF PED STR AVG
Noisy - 36.55 24.73 19.92 14.16 23.84
FDPL Freq. 24.36 17.69 13.30 9.69 16.26
TDPL Time 21.18 16.16 13.32 10.05 15.18

D-Fusion Time & Freq. 21.05 15.39 12.01 9.19 14.41

TFDPL Freq. 21.63 14.94 11.79 9.28 14.41
Time & Freq. 20.21 14.59 12.05 9.19 14.01

J-Fusion Time & Freq. 19.42 14.40 11.04 8.70 13.39

Table 3. WER(%) comparison of different speech enhancement methods in various
environments on CHiME-4 real test set with ASR(2).

Model Domain BUS CAF PED STR AVG
Noisy - 21.16 13.39 10.41 8.87 13.46
FDPL Freq. 16.41 10.44 8.48 6.20 10.38
TDPL Time 14.41 9.60 8.13 6.84 9.74

D-Fusion Time & Freq. 13.74 9.10 7.60 6.05 9.12

TFDPL Freq. 13.98 9.66 7.94 6.05 9.41
Time & Freq. 12.99 9.54 7.75 6.54 9.21

J-Fusion Time & Freq. 12.75 8.52 7.21 5.98 8.61

Tables 2 and 3 display the WER for different speech enhancement methods
under various environmental conditions on the CHiME-4 real test set, using
ASR(1) and ASR(2). The observation reveals that the intermediate targets of
progressive learning have improved ASR performance in various environmental
conditions. By comparing the WER in various environments, FDPL and TDPL
have demonstrated their advantages in low-noise and challenging conditions,
respectively, highlighting the complementarity of frequency-domain and time-
domain information. We further fused the prediction results of TDPL and FDPL,
and it led to improved ASR performance in all environments, highlighting the
robustness of time and frequency domain information fusion.

Regarding the TFDPL model, its progressive frequency-domain masking mod-
ule shows significant improvements compared to FDPL, achieving relative im-
provements of 11.38% and 9.34% on the two acoustic models, respectively, with
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no additional parameters compared to FDPL. As for the progressive mix-domain
module, it incorporates information from the frequency-domain leading to per-
formance improvements relative to TDPL in all environments for two acoustic
models, with average relative improvements of 7.71% and 5.44%, respectively.
The performance of both the progressive frequency-domain masking module and
progressive mix-domain module in TFDPL has improved, indicating that there
is a mutually reinforcing effect between the time-domain and frequency-domain
in TFDPL, thus confirming the effectiveness of TFDPL.

(a) Noisy

(b) FDPL

(c) TDPL

(d) TFDPL

Fig. 3. Spectrograms and ASR Results of FDPL, TDPL, and TFDPL. (a) Noisy speech,
(b) Intermediate output of the FDPL model, (c) Intermediate output of the TDPL
model, (d) Intermediate output of the TFDPL model fusion module.
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Finally, the fusion of TFDPL model results achieved relative improvements
of 43.83% and 36.03% compared to noisy speech in two acoustic models, reaching
the best performance. Compared to the fusion results of separately trained FDPL
and TDPL, TFDPL achieved relative improvements of 7.08% and 5.59% in two
acoustic models, and relative improvements of 11.79% and 11.60% compared to
TDPL. In Fig. 3, we selected a representative utterance from a real BUS envi-
ronment to visually compare the performance of FDPL, TDPL, and TFDPL. In
the blue boxed regions in Fig. 3(b) and Fig. 3(c), the target speech of FDPL and
TDPL respectively experienced excessive suppression and distortion, resulting
in substitution errors in the corresponding ASR results. TFDPL effectively com-
bines information from both the time and frequency domain, thereby avoiding
such errors. The experimental results strongly demonstrate the effectiveness of
TFDPL’s intermediate targets in ASR.

Table 4. PESQ comparison on different speech enhancement methods at several SNRs.

Metrics PESQ
Model Domain -10 -5 0 5 10 avg.
Noisy - 1.38 1.52 1.79 2.11 2.44 1.85
TDSE Time 1.57 2.27 2.76 3.11 3.39 2.62
FDPL Freq. 1.48 1.99 2.42 2.75 3.02 2.33
TDPL Time 1.59 2.28 2.78 3.14 3.41 2.64

D-Fusion Time & Freq. 1.66 2.33 2.84 3.20 3.45 2.70

TFDPL Freq. 1.54 2.06 2.47 2.79 3.05 2.38
Time & Freq. 1.41 2.11 2.67 3.04 3.36 2.52

J-Fusion Time & Freq. 1.75 2.42 2.94 3.27 3.50 2.78

Table 5. STOI(%) comparison on different speech enhancement methods at several
SNRs.

Metrics STOI(%)
Model Domain -10 -5 0 5 10 avg.
Noisy - 49.53 60.20 72.38 83.10 90.46 71.13
TDSE Time 62.40 81.77 90.19 93.99 95.99 84.87
FDPL Freq. 58.35 74.10 84.76 90.99 94.53 80.55
TDPL Time 62.66 82.21 90.57 94.25 96.17 85.17

D-Fusion Time & Freq. 64.77 82.26 90.47 94.30 96.29 85.62

TFDPL Freq. 59.63 75.22 85.65 91.48 94.75 81.35
Time & Freq. 62.84 82.46 90.99 94.62 96.43 85.47

J-Fusion Time & Freq. 65.53 82.99 91.12 94.69 96.46 86.16

Analysis on perceptual quality metrics Table 4 and 5 presents the average
PESQ and STOI comparisons of different models’ clean targets across five SNR
levels and three types of unknown noise. The PESQ and STOI of TDPL’s clean
target are superior to TDSE’s clean target, demonstrating the effectiveness of
progressive learning methods in perceptual quality. The fusion results of TFDPL
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achieved the best PESQ and STOI scores across all SNRs. The PESQ and STOI
of TDPL’s clean target are superior to TDSE’s clean target, demonstrating the
effectiveness of progressive learning methods in perception. The fusion results of
FDPL and TDPL outperformed their individual models, indicating the comple-
mentary nature of time and frequency domain information in improving percep-
tual quality. Particularly, at SNR of -10dB, the STOI improvement relative to
TDPL was 2.11, demonstrating the robustness of the time and frequency domain
fusion in challenging environments.

For the progressive frequency-domain masking module of TFDPL, it still
maintains improvement over FDPL. In the progressive mix-domain module, it
shows an improvement in STOI compared to TDPL but a decrease in PESQ.
However, the fusion of the two yields the best performance, with an improvement
of 0.08 in PESQ and 0.76 in STOI compared to the fusion results of separately
trained models, demonstrating its effectiveness in perceptual quality.

4 Conclusion

In this paper, we propose a TFDPL method for speech enhancement and recog-
nition. TFDPL progressively predicts less-noisy and clearer speech, while esti-
mating time-frequency masks and waveforms using information in the time and
frequency domains, and further combines these two prediction targets through a
fusion loss. Finally, the mutually beneficial effect of time-domain and frequency-
domain is achieved. The experimental results demonstrate that TFDPL outper-
forms both time-domain and frequency-domain progressive learning methods,
as well as their fusion results, in both ASR and human listener tasks. On the
CHiME-4 real test set, TFDPL’s intermediate output achieves relative WER
reductions of 43.83% and 36.03% compared to the untreated noisy speech, un-
der two different acoustic models. The clean output also demonstrates the best
PESQ and STOI scores on the simulated test set. The positive experimental
results demonstrate the effectiveness of the TFDPL approach.
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