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Abstract
This paper describes our USTC NELSLIP system submitted to
the Open Automatic Speech Recognition (OpenASR21) Chal-
lenge for the Constrained condition, where only a 10-hour
speech dataset is allowed for training while additional text data
is unlimited. To improve the low-resource speech recognition
performance, we collect external text data for language model-
ing and train a text-to-speech (TTS) model to generate speech-
text paired data. Our system is then built based on the con-
ventional hybrid structure, where various subsystems are devel-
oped using different acoustic neural network architectures and
different data augmentation methods. Finally, system fusion is
employed to obtain the final result. Experiments on the Ope-
nASR21 challenge show that the proposed system achieves the
best performance for all testing languages.
Index Terms: OpenASR21, low-resource languages, speech
recognition, data augmentation, TTS, system fusion

1. Introduction
The deep learning based Automatic Speech Recognition (ASR)
methods often require a large amount of annotated data, but
there are many languages in the world that suffer from the insuf-
ficiency of annotated data [1]. The goal of the Open Automatic
Speech Recognition (OpenASR21) Challenge, organized by the
National Institute of Standards and Technology (NIST), is to
assess the state of the art of ASR techniques for low-resource
languages. The OpenASR21 Challenge [2] consists of ASR
tasks for 15 low-resource languages with three different train-
ing conditions, i.e., Constrained, Constrained-plus, and Uncon-
strained. For the Constrained condition, the speech dataset al-
lowed for training is only a 10-hour Build dataset provided by
NIST for each language, while additional text data from pub-
licly available resources are permissible during training. The
Constrained-plus condition follows the same training data re-
strictions as the Constrained case, but publicly available and
previously existing speech pre-trained models are allowed. For
the Unconstrained condition, participants are allowed to use all
publicly available speech and text data in any language.

For low-resource languages, the scarcity of transcribed data
hampers the performance of the ASR model. To deal with
this problem, data augmentation is widely used to increase the
amount and the diversity of training data, for instance, speed
and volume perturbation [3], reverberation and noise pertur-
bation [4], vocal tract length perturbation [5], and SpecAug-

This paper presents a detailed description of USTC-NELSLIP sys-
tem, which was submitted to the Constrained condition of OpenASR21
Challenge and obtained the first place for all testing languages among
all submissions.

ment [6]. Although these methods are effective to some extent,
they only increase the variations of existing acoustic signals or
features [7]. One can also use text-to-speech (TTS) techniques
to synthesize speech from the text-only data, which can be done
by either training a TTS model independently for data augmen-
tation [8, 9, 10] or jointly training both the ASR and TTS mod-
els [11, 12].

Compared with speech transcriptions, text-only data are
easier to obtain. It is essential to optimize the language model
(LM) to improve ASR performance. The LM can be trained us-
ing additional text-only data and then integrated into the ASR
system [13, 14]. Nevertheless, there are usually only limited in-
domain text data available to low-resource languages. To aug-
ment the LM training corpus, one can collect text from the web
followed by carefully data filtering [15]. Another approach is to
generate text that is relevant to the target domain [16].

In the OpenASR21 Challenge, we participated in the most
challenging Constrained condition for all 15 languages. Since
publicly available text data is unlimited, in this paper we pro-
pose to leverage external text data not only for language mod-
eling but also for augmenting the acoustic training data. For
LM, we collect as much in-domain text as possible and train
a domain classifier to filter the text obtained from the web to
reduce the domain mismatch. The LM trained on the filtered
web-obtained text is combined with the in-domain LM by inter-
polation to obtain a better LM. For acoustic training, we train a
TTS model to synthesize speech data on the external text, which
introduces more acoustic and linguistic diversity to improve the
system robustness. Based on these, we build a hybrid Deep
Neural Network-Hidden Markov Model (DNN-HMM) based
ASR system, where five acoustic neural network architectures
are adopted for acoustic modeling. We also use the encoder of
end-to-end (E2E) model as a feature extractor to build a supple-
mentary hybrid system. The final ASR system turns out to be a
combination of subsystems trained with different architectures
and different data.

The remainder of this paper is organized as follows. Section
2 describes our proposed system for the Constrained condition
in detail, followed by the experimental setup and results analy-
sis in Section 3. Finally, Section 4 concludes this work.

2. System description
In the low-resource case, building a pure E2E ASR system
might not be an appropriate choice due to the overfitting prob-
lem. Thus, we adopt the hybrid DNN-HMM based structure for
the Constrained condition, as shown in Figure 1. To improve
the performance of the system, we explore the use of external
text to augment both acoustic and language model training data.
Other data augmentation methods are also explored to increase
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Figure 1: The workflow of the proposed Constrained system.

the amount and the diversity of training data. Furthermore, we
increase the acoustic model diversity, which is beneficial to the
system fusion.

2.1. External text data collection

The datasets for most of the languages stem from the IARPA
Babel program [17], except that Somali and Farsi stem from the
IARPA MATERIAL program [18]. For the language that has
a corresponding IARPA Babel language pack, we first use the
pronunciation lexicon in the pack together with the transcrip-
tions from the training set. For each language, we also col-
lect a large amount of text data from websites. However, these
web-obtained data are quite different from the provided data,
which is conversational telephone speech (CTS). The out-of-
vocabulary (OOV) rate of web-obtained text is very high. Thus
we perform carefully data filtering for the web-obtained data
to reduce the domain mismatch with the CTS data. In detail,
at first the repeated sentences as well as sentences containing
many repeated or OOV words are removed. Secondly, a domain
classifier is trained to select the data similar to CTS. Finally, we
add colloquial noise such as modal particles and reduplicated
words to the selected text. The filtered text will be denoted
as Public text in the following for brevity. The Babel text and
Public text are used for both language modeling and TTS syn-
thesis. Since pre-trained models such as BERT perform well
on many downstream NLP tasks, the domain classifier is built
based on a pre-trained model and then fine-tuned using all Ba-
bel data with an equal amount of web-obtained data. The pre-
trained model Chinese-BERT-wwm [19] and the multilingual
pre-trained model XLM-R [20] are adopted for Cantonese and
other languages, respectively.

2.2. Data pre-processing and data augmentation

We segment the training data according to the timestamps pro-
vided in the training transcripts. A speaker adaptive Gaussian
Mixture Model-Hidden Markov Model (GMM-HMM) model is
firstly trained following the Babel recipe in Kaldi [21]. Since

there still exist a chunk of silences and some noisy portions
in the audio, data clean-up [22] is performed using the GMM-
HMM model to re-segment the training data. We denote the
data after clean-up as cleaned data.

We use the 3-way speed perturbation [3] and SpecAug-
ment [6] as general steps in our system. We also explore another
way to perturb the speeds of utterances by forcing their lengths
to some allowed lengths spaced by a factor of 1.15 [23]. As this
data augmentation procedure is time-consuming, we only apply
it to a supplementary model to the system fusion.

As it was shown in [24] that the representations learned by
the transformer encoders can contain high-level semantic infor-
mation effectively, we use the transformer encoder as a fea-
ture extractor to build a hybrid model. We directly train an
encoder-decoder (ED) ASR model, which is based on a VGG-
transformer [25]. We find that the ED model is hard to converge
if we train the model directly on the low-resource ASR dataset.
To satisfy the great data demand in training an E2E ASR model,
we apply speed perturbation to augment the training data, and
then add the TTS synthesized data. Using the trained ED model,
the latent representations extracted from the encoder are con-
catenated with the filterbank features as fused features, which
are fed to the neural network of hybrid model. It will be shown
by experiments that although the model trained with such fused
features performs worse than the best single model, it can bring
further gains at the system fusion stage.

2.3. Text-to-speech synthesis

We train a TTS model to synthesize features on the external
text, which are added to the training set to mitigate overfitting
during acoustic model training. The TTS model is built based
on the Flow-TTS [26], which is a non-autoregressive model.
The Flow-TTS consists of an encoder, a decoder, a length pre-
dictor and a positional attention layer. To enable multi-speaker
training and generation, we include i-vector as speaker embed-
ding to the encoder and each step of flow in the decoder. The
i-vector extractor is trained based on a diagonal universal back-
ground model (UBM) [27]. Moreover, we adopt Gaussian up-
sampling [28] to address the length mismatch between phoneme
and spectrogram sequences. In the training stage, we train the
length predictor and the rest of the model separately. We pre-
pare phoneme alignments obtained by the GMM-HMM model
for the 10-hour cleaned data. Using the cross-entropy (CE) loss,
the length predictor takes the phoneme sequence and i-vector as
inputs and returns the length of Mel-spectrograms. The rest of
the model is trained with the maximum likelihood estimation
objective. In the inference stage, an i-vector will be randomly
selected for each sentence from utterances that were used in
the training stage. To avoid serious bias towards synthesized
data, we augment the cleaned data using speed perturbation and
combine them with the synthesized data at a certain ratio. By
including the synthesized data for acoustic model training, the
overfitting problem can be alleviated.

2.4. Acoustic neural network training

For acoustic neural network training, the aforementioned
GMM-HMM model is used to generate training alignment. We
choose the ResNet-TDNNF architecture as the baseline acous-
tic model, which consists of Residual Network (ResNet) and
Factorized Time Delay Neural Network (TDNNF) [29]. The
ResNet contains 7 Res-blocks, e.g., see details in [30]. The
TDNNF has 12 layers with a hidden dimension of 1536 and a
bottleneck dimension of 160. The network takes filterbank fea-
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tures and online i-vector features as inputs. Based on ResNet-
TDNNF, we evaluate different data augmentation strategies and
search for hyper-parameters for training.

We also adopt four different network architectures. Inspired
by [31], we propose a ResNet-Multistream-TDNNF architec-
ture by replacing the simple CNN with ResNet. The input
features are processed by a single ResNet and then branched
out into multiple parallel streams of TDNNF layers. The
time-stride for the TDNNF layers in each stream is unique,
which can enhance system robustness with diverse temporal
resolutions. Output embedding vectors from all streams are
concatenated and projected to the final layer. Besides, we
compare the CNN-TDNNF [32] architecture and two architec-
tures proposed in [30], namely ResNet-TDNNF-Attention and
ResNet-TDNNF-RBiLSTM. All these models are trained using
the lattice-free maximum mutual information (LF-MMI) crite-
rion [33] with CE regularization.

2.5. Language modeling and rescoring

For the first-pass decoding, we train a trigram LM on the Ba-
bel text (Babel LM) using the SRILM [34] toolkit. We also
interpolate the Babel LM with another trigram LM trained on
the Public text to obtain the interpolated LM. The interpolation
weight of Babel LM is set to be 0.8. For the second-pass LM
rescoring, we adopt the Chinese-BERT-wwm for Cantonese and
RNN-LM [35] for other languages. Due to the similar linguistic
information between Cantonese and Mandarin, Chinese-BERT-
wwm is more beneficial to Cantonese than RNN-LM, although
RNN-LM is lighter and easier for training. The Chinese-BERT-
wwm is trained for several iterations using the Cantonese Public
text and then fine-tuned using Cantonese Babel text. For other
languages, the RNN-LMs are initialized using the Public text
and then fine-tuned using the corresponding Babel text. Each
RNN-LM consists of one BLSTMP [36] layer with a hidden
size of 256 and the embedding size of 256.

2.6. System fusion and post-processing

We use lattice fusion followed by minimum Bayes risk (MBR)
decoding [37] to combine the recognition results obtained by
different subsystems. For post-processing, we apply confidence
filtering to the results obtained from lattice, where the rec-
ognized words with a confidence score below the predefined
threshold are discarded.

3. Experiments and analysis
3.1. Experimental setup

The datasets provided for training (Build), development (Dev),
and evaluation (Eval) are 10 hours, 10 hours, and 5 hours, re-
spectively. All hybrid systems are implemented using Kaldi.
During acoustic neural network training, the model is trained
for 6 epochs with a batch size of 128 or 64. The learning rate
decays from 0.001 to 0.00005. The TTS model and ED model
are trained using Pytorch. Considering the very small differ-
ence between cleaned data and perturbed cleaned data, we re-
gard both as real data. We mix the TTS data with the real data
at a ratio of 1.5, where the former consists of Babel TTS and
Public TTS data synthesized on Babel text and Public text, re-
spectively. For test data, we train a TDNN-LSTM based Voice
Activity Detection (VAD) model for each language using Kaldi.
As the data-driven based VAD model is not always effective for
some recordings, we consider an energy-based VAD method as

Table 1: The WER (%) of the best single system and the final
fusion system on 15 languages.

Language best single best fusion

Dev Eval Dev Eval

Amharic 35.0 43.1 32.0 39.9
Cantonese 42.3 41.5 38.2 37.6
Guarani 39.0 46.0 36.4 42.6
Javanese 51.9 52.8 47.8 48.1

Kurmanji-Kurdish 63.7 65.4 61.4 61.7
Mongolian 45.4 45.0 41.3 41.0

Pashto 45.2 47.5 41.4 43.2
Somali 55.9 59.1 52.7 55.6
Tamil 61.0 65.8 57.7 62.3

Vietnamese 43.9 43.6 40.9 40.3
Swahili 32.3 35.7 29.5 32.4
Tagalog 42.1 43.8 39.3 40.4

Georgian 37.5 43.0 34.9 39.2
Kazakh 46.1 54.3 40.1 50.0

Farsi 52.4 70.1 49.5 68.0

a complement. The final detection is the union of two methods.
During decoding, the beam size is set to be 16. We search the
LM weight from 7 to 17 at a step size of 1. The word insertion
penalty is set to be 0, and the threshold of confidence filtering
ranges from 0 to 0.5.

3.2. Results and analysis

Table 1 shows the WER of the best single and fusion systems,
where the results on the Dev set are scored locally and the
results on the Eval set are released by the OpenASR21 scor-
ing server. All these results are obtained after LM rescoring
and post-processing. We can see that compared to the best
single system, the fusion system can reduce the WER on the
Eval set by 2.1%-4.7%. It is worth mentioning that ResNet-
Multistream-TDNNF yields the best performance in single sys-
tem for Guarani, Mongolian, Vietnamese, Tagalog, Kazakh and
Farsi. However, ResNet-TDNNF is the best option for other
languages.

To explore the effects of training with different TTS data
and decoding with different LMs, we show the first-pass results
(without LM rescoring or post-processing) of different systems
on the Dev set in Table 2. Without loss of generality, we show
results for seven representative languages. It is clear that the
Babel LM always outperforms the 10h LM on all languages,
e.g., the WER is decreased by 3.6% on average. This is due to
the fact that the 10-hour corpus is a subset of the Babel corpus.
Moreover, using the Babel TTS data can further improve the
performance for all languages with an average WER reduction
of 1.2%, compared to the case without TTS data. This reveals
the feasibility of using TTS data for data augmentation, even
though the considered TTS model is trained with only 10-hour
data. It can be seen that the interpolated LM only surpasses
Babel LM for Cantonese, Mongolian and Kazakh. Using addi-
tional Public TTS data only yields better performance for a few
languages such as Cantonese, Kazakh, Javanese and Farsi. This
can be interpreted by the slight domain mismatch between the
Public and Babel text. Besides, the proportion of Public TTS
data in the training set is critical and influences the effect of us-
ing TTS data. In the evaluation period, we select the LM that
achieves the lowest WER on the Dev set.
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Table 2: The WER (%) of single system using different TTS data and LMs on the Dev set. ‘Baseline’ corresponds to systems trained
without TTS data based on the ResNet-TDNNF model. ‘10h LM’ represents the LM trained on 10-hour transcriptions. Note that Farsi
has no corresponding Babel pack, we thus temporarily treat the 10-hour text data as Babel text data and the TTS data synthesized on
the 10-hour text as Babel TTS data.

Cantonese Mongolian Kazakh Tamil Pashto Javanese Farsi

The number of tokens in the Babel text (k) 884 400 267 485 877 308 64
The number of tokens in the Public text (k) 73,874 11,192 29,865 3,666 42,780 997 31,568

Baseline + 10h LM 48.6 51.2 52.9 67.5 50.2 56.5 55.5
+ Babel LM 45.7 47.9 48.7 62.4 47.1 53.8 -
+ interpolated LM 45.1 47.3 48.3 62.4 47.2 53.8 54.0

+ Babel TTS + 10h LM 47.1 50.0 52.0 66.8 48.6 55.3 55.1
+ Babel TTS + Babel LM 44.1 46.7 47.7 61.5 45.5 52.6 -
+ Babel TTS + interpolated LM 43.6 46.2 47.4 61.4 45.5 52.6 53.7

+ Babel & Public TTS + 10h LM 46.5 50.4 51.7 67.2 49.0 55.2 54.1
+ Babel & Public TTS + Babel LM 43.3 47.1 47.2 61.7 46.0 52.4 -
+ Babel & Public TTS + interpolated LM 42.6 46.4 46.6 61.7 45.9 52.3 52.7

Table 3: Results of different models trained w/o or w/ TTS data
on the Cantonese Dev set.

Model Context WER(%)

w/o TTS w/ TTS

CNN-TDNNF 144 45.9 43.5
ResNet-TDNNF 188 45.1 42.6
ResNet-TDNNF-Attention 108 46.7 45.6
ResNet-Multistream-TDNNF 344 45.9 42.8
ResNet-TDNNF-RBiLSTM 96 46.8 44.2

Table 3 shows the first-pass results of models trained with-
out (w/o) or with (w/) TTS data for different models on the Can-
tonese Dev set. We can see that the TTS data are effective for
all models. Moreover, adding TTS data is more beneficial for
the models that have a wider temporal context, e.g., ResNet-
Multistream-TDNNF, which somehow explains why ResNet-
Multistream-TDNNF is the architecture of the best single sys-
tem for some languages.

In Table 4, we show the effects of different fusion strategies
on the Cantonese Dev set. All results are obtained before post-
processing. ‘REAL’ refers to five models mentioned in Table 3
trained with real data. ‘USP’ refers to a model augmented by
the utterance-level speed perturbation with a series of allowed
lengths. ‘SYN’ refers to five models trained with TTS synthe-
sized data. ‘TER’ represents a model trained with transformer
encoder representations. The subscript r means that the results
are obtained after the second-pass rescoring. We can see that
by only using real data, the fusion of five models results in a
WER reduction of 2.6% (from 45.1% to 42.5%), which is at-
tributed to the effective complementarity of different models. It
is clear that combining USP, SYN or TER can all improve the
performance of the fusion system, while the positive effect of
combining SYN is more obvious, e.g., the WER is decreased
by 2.0% (from 42.2% to 40.2%). This is consistent with the re-
sults obtained by the single system in Table 3. Moreover, fusing
the rescored results can reduce the WER on the Cantonese Dev
set from 39.6% down to 38.6%. Note that such fusion is not
always better than the fusion of the first-pass results for some
languages, but our experiments show that combining both the

Table 4: The effect of fusion strategy on the Cantonese Dev set.

Fusion System WER(%)

Fusion 1: REAL 42.5
Fusion 2: REAL + USP 42.2
Fusion 3: REAL + USP + SYN 40.2
Fusion 4: REAL + USP + SYN + TER 39.6
Fusion 5: REALr + USPr + SYNr + TERr 38.6
Fusion 6: Fusion 4 + Fusion 5 38.4

rescored and first-pass results yields a consistent improvement
for all languages, e.g., the WER on the Cantonese Dev set is
reduced to 38.4%. After post-processing, the WER is further
reduced to 38.2%, as shown in Table 1.

4. Conclusion
In this paper, we presented a detailed description of our sys-
tem submitted to the OpenASR21 challenge for the Constrained
condition. We proposed to leverage external text for both lan-
guage modeling and acoustic data augmentation. Experimental
results showed the proposed method can improve the ASR per-
formance under a low-resource scenario. Moreover, combining
subsystems trained with different acoustic neural network archi-
tectures and different data can yield a significant improvement.
Our submission ranked first for the Constrained condition in
all 15 languages. Actually, we also submitted for the Uncon-
strained condition and won the first place in seven involved lan-
guages, where the inclusion of TTS data and the optimization
of LMs were similarly considered. In the future, we will con-
duct more experiments and present both the Constrained and
Unconstrained systems in a more complete report.
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