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 A B S T R A C T

We have developed an innovative speech enhancement (SE) model backbone that utilizes cross-attention among 
spectrum, waveform and self-supervised learned representations (CA-SW-SSL) to integrate knowledge from 
diverse feature domains. The CA-SW-SSL model integrates the cross spectrum and waveform attention (CSWA) 
model to connect the spectrum and waveform branches, along with a dual-path cross-attention module to select 
outputs from different layers of the self-supervised learning (SSL) model. To handle the increased complexity of 
SSL integration, we introduce a bidirectional knowledge distillation (BiKD) framework for model compression. 
The proposed adaptive layered distance measure (ALDM) maximizes the Gaussian likelihood between clean and 
enhanced multi-level SSL features during the backward knowledge distillation (BKD) process. Meanwhile, in the 
forward process, the CA-SW-SSL model acts as a teacher, using the novel teacher–student Barlow Twins (TSBT) 
loss to guide the training of the CSWA student models, including both lite and tiny versions. Experiments on 
the DNS-Challenge and Voicebank+Demand datasets demonstrate that the CSWA-Lite+BiKD model outperforms 
existing joint spectrum-waveform methods and surpasses the state-of-the-art on the DNS-Challenge non-blind 
test set with half the computational load. Further, the CA-SW-SSL+BiKD model outperforms all CSWA models 
and current SSL-based methods.
. Introduction

Speech enhancement (SE) aims to extract clean speech from signals 
rimarily degraded by noise to improve speech quality and intelli-
ibility [1]. However, traditional SE algorithms [2–4] often struggle 
o handle unexpected non-stationary noise in real-world conditions. 
n recent years, data-driven SE approaches [5–7] using deep neural 
etworks (DNNs) [8] have gained increased attention. These DNN-
ased SE approaches can be broadly classified into spectrum-domain 
nd waveform-domain methods based on the input features. Specif-
cally, spectrum-domain methods [5,9] benefit from the short-time 
ourier transform (STFT) guided by human expert knowledge, of-
ering harmonic information and low temporal resolution. However, 
hey may converge to suboptimal solutions due to difficulties com-
ensating between magnitude and phase [10]. On the other hand, 
aveform-domain methods [11,12] directly map between noisy and 
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clean waveforms, avoiding optimization issues related to magnitude-
phase compensation. Nevertheless, waveform-based solutions cannot 
directly utilize harmonic information, which is crucial for speech qual-
ity. As a result, joint spectrum-waveform methods have been pro-
posed [13–15], which utilize a single model to process both spectrum 
and waveform features. This integration leverages the complemen-
tary strengths of both domains, leading to significant performance 
improvements.

In addition to traditional spectrum and waveform features, self-
supervised learning (SSL) features have recently captured substan-
tial attention due to their exceptional performance and robust gen-
eralization capabilities. SSL involves pretrained models on unlabeled 
data to extract task-agnostic representations, which are then utilized 
as inputs for subsequent model training in the target task. SSL has 
proven highly effective in various downstream tasks, including auto-
matic speech recognition [16], speaker recognition [16], and spoken 
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 data mining, AI training, and similar technologies. 
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language understanding [17]. A few studies have also explored inte-
grating SSL features into SE by replacing [18] or supplementing [19] 
spectrum features, showing significant performance improvements. Re-
cently, [20] has leveraged consistency-preserving loss and perceptual 
contrast stretching to boost SSL-based SE methods further.

Inspired by the achievements of the SSL-based and joint spectrum-
waveform SE methods, this work proposes a novel joint spectrum-
waveform-SSL model backbone for SE, fundamentally anchored in the 
cross-attention among spectrum, waveform and SSL representations. 
We refer to our proposed solution as CA-SW-SSL. Specifically, the CA-
SW-SSL model evolves from the cross-spectrum and waveform atten-
tion (CSWA) model and introduces a dual-path cross-attention (DPCA) 
module for handling multi-layer SSL features. The CSWA model com-
bines the classic spectrum-domain S-TCN [21] and waveform-domain 
ConvTasnet [12] models using two cross-attention modules with op-
posing directionals, facilitating efficient information exchange. DPCA 
effectively achieves dynamic alignment and layer selection by sepa-
rately calculating time-wise and layer-wise attention across the out-
puts of all layers in the SSL model and then combining these atten-
tion weights using the Kronecker product. Experimental results prove 
the proposed CA-SW-SSL model surpasses existing SSL-based SE and 
joint spectrum-waveform methods. However, these remarkable per-
formance gains come with a substantial demand for parameters and 
computational resources, underscoring the necessity to focus on model 
compression [22].

Knowledge distillation (KD) [23] is a widely used technique for 
model compression, where a smaller student model is trained under the 
supervision of a larger teacher model [24,25]. Several studies [26–28] 
have successfully applied KD to SE, achieving significant reductions in 
model parameters and computational complexity without noticeable 
performance degradation. Therefore, this work also proposes a novel 
bidirectional knowledge distillation (BiKD) framework, which is parti-
tioned into backward and forward processes based on the direction of 
knowledge transfer. In the process of backward knowledge distillation 
(BKD), a novel adaptive layered distance measure (ALDM) is proposed 
to optimize the whole model by improving the Gaussian likelihood 
between the clean and enhanced multi-level features mapped by a 
frozen SSL model, with homoscedastic uncertainty [29] interpreted as 
layer-dependent weighting. For forward knowledge distillation (FKD), 
the CA-SW-SSL model takes on the role of the teacher, supervising 
the training of the CSWA model and its smaller versions, acting as 
student models. To achieve this, an innovative teacher–student Barlow 
Twins [30] (TSBT) loss is used to ensure that the cross-correlation 
matrix between the teacher and student intermediate features closely 
approximates the identity matrix. Finally, we obtained a highly efficient 
CSWA-Tiny model, with only 1∕39th of the parameters and 2∕5th of the 
computational complexity of the CA-SW-SSL model.

Key contributions of our work can be outlined as follows:

(1) Proposing a novel SE backbone featuring cross-attention among 
spectrum, waveform, and SSL representations (CA-SW-SSL),
which includes cross spectrum and waveform attention (CSWA) 
for joint modeling and dual-path cross-attention (DPCA) for 
multi-layer SSL features. To the best of our knowledge, the CA-
SW-SSL model is the first to combine spectrum, waveform, and 
SSL features in a single SE model.

(2) Developing a bidirectional knowledge distillation (BiKD) frame-
work for model compression. An innovative adaptive layered dis-
tance measure (ALDM) performs the backward process by max-
imizing the Gaussian likelihood between clean and enhanced 
multi-level SSL features. Meanwhile, the forward process em-
ploys the CA-SW-SSL model as the teacher, utilizing the inno-
vative teacher–student Barlow Twins (TSBT) loss to guide the 
training of the CSWA student models.
2 
(3) Assessing the effectiveness and generalizability of CA-SW-SSL 
and BiKD through a set of comprehensive experiments. The 
CA-SW-SSL model achieves state-of-the-art (SOTA) results on 
the widely recognized DNS-Challenge and Voicebank+Demand 
datasets. Through the BiKD framework, reducing the parameters 
by 38∕39 and the computational complexity by 3∕5, the resulting 
CSWA-Lite model still demonstrates outstanding performance on 
both datasets.

The remainder of the paper is organized as follows. Section 2 
introduces related works. In Section 3, the proposed CSWA and CA-
SW-SSL models are illustrated. Section 4 describes our proposed BiKD 
framework. Section 5 discusses the experimental results and analysis. 
Finally, our findings are summarized in Section 6.

2. Related work

2.1. Joint spectrum-waveform SE

Spectrum-domain methods, e.g., [5,9,31] harness short-time Fourier 
transform (STFT), effectively leveraging crucial harmonic information 
for speech quality while maintaining reduced time resolution. Efficient 
context modeling is allowed by those models with minimal computa-
tional cost. However, these methods are prone to converging to local 
suboptimal solutions due to the compensation problem between mag-
nitude and phase [10]. In contrast, waveform-domain methods directly 
model the waveform mapping [12,32], bypassing the compensation 
problem but sacrificing harmonic information.

Some researchers have proposed joint spectrum-waveform methods 
that integrate the strengths of both [13–15,33,34]. Specifically, TFT-
Net [14] directly transforms the noisy complex spectrum into the cor-
responding clean waveform, effectively harnessing the harmonic infor-
mation while circumventing the optimization challenges arising from 
the interplay between magnitude and phase. Similarly, MDPhD [13] 
integrates both spectrum-domain and waveform-domain models in a 
cascaded manner, introducing an auxiliary loss at the intermediate 
stage to harmonize the contributions of the two models. However, 
in both TFT-Net and MDPhD, the spectrum and waveform branches 
are arranged serially, constraining the exchange of information be-
tween different representation domains. To address this, DBNet [15] 
introduces a novel dual-branch structure with alternating interconnec-
tions, where a novel bridge layer is employed to facilitate information 
exchange between spectrum and waveform branches. A similar dual-
branch structure is found in WSFNet [34], where dual-path RNN blocks 
are embedded into the bottleneck layer to model intra-frame and inter-
frame long-range contextual correlations. Further, WMPNet [33] builds 
upon the spectrum-waveform dual-branch structure by incorporating a 
fusion sub-network to merge the two pre-enhanced speech.

It is worth noting that the above techniques all use the same archi-
tecture for processing both the spectral- and waveform-based inputs, 
disregarding their unique properties. Additionally, the information ex-
change between the spectrum and waveform branches is often one-way, 
significantly limiting the overall performance.

2.2. SSL-based SE

The SSL-based SE method, which traces its origins back to [18], 
involves using the final output of an SSL model as input to a three-layer 
bidirectional long short-term memory (BiLSTM) network for estimating 
the ideal non-negative phase sensitive mask [35]. However, replacing 
the spectrum feature with SSL features did not yield significant benefits. 
Therefore, [19] proposed using SSL features as auxiliary inputs, com-
bining them with the log 1𝑝 [36] feature to predict the magnitude mask 
by a two-layer BiLSTM, demonstrating superior performance compared 
to the replacement method. In [20], consistency-preserving loss and 
contrast stretching were introduced to boost the overall speech quality 
further.
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Inspired by deep feature loss [37], several studies have proposed 
loss functions in the feature spaces of the SSL models. One such 
example is the phone-fortified perceptual loss (PFPL) [38], defined as 
the Wasserstein distance [39] on latent representations of the wav2vec 
model [40] thereby incorporating phonetic information for training SE 
models. [41] introduced the mean squared error (MSE) between the en-
hanced and clean intermediate encoded features from SSL models as the 
optimization target, showing a strong correlation with speech quality 
and intelligibility. More recently, [42] proposed a contrastive regular-
ization technique, which utilizes contrastive learning to minimize the 
distance between clean and enhanced speech while maximizing the 
distance between noisy and enhanced speech within the representation 
space of the SSL model.

Despite the above encouraging efforts, additional investigation is 
needed to understand the specific information that SE models gain 
from SSL models to enhance performance, as well as to identify which 
SSL model layer provides the optimal auxiliary features for forward 
inference and the best representation space for loss computation.

2.3. Knowledge distillation in SE

Knowledge distillation [23] (KD) refers to the process where a 
smaller student model is trained under the guidance of a larger teacher 
model [24,25]. The challenges of defining the specific form of knowl-
edge and selecting the appropriate distillation loss directly impact the 
effectiveness of knowledge transfer from teacher to student. While KD 
was initially applied at the output layer [43,44] of deep models, recent 
works have honed in on distillation at intermediate layers [45–47]. 
Moreover, it is widely acknowledged that two of the most effective 
distillation loss functions are MSE [45,46,48,49], and mean absolute 
error (MAE) [43].

In SE, there exist a few studies leveraging KD. For example, MV-
AT [26] applied attention transfer [46] in waveform-domain SE. In [27],
a cross-layer connection strategy that combines multi-level information 
from the teacher and transfers it to the student using a frame-level 
similarity distillation loss was explored. ABC-KD [28] combines KD 
with a layer-wise cross-attention mechanism to compress knowledge 
from multiple teacher layers into a single student layer. The two-step 
KD method [50] first pre-trains the student using a fine-grained KD loss 
to match the student’s intra-activation Gram matrices to the teacher, 
and then it transits to a supervised training regime.

3. Cross-attention among Spectrum, Waveform and SSL Represen-
tations

This section presents the CA-SW-SSL model, which enhances the 
CSWA model by incorporating a dual-path cross-attention, DPCA, mod-
ule to introduce multi-layer SSL features effectively.

3.1. Cross spectrum and waveform attention

Fig.  1 shows the Cross Spectrum and Waveform Attention, CSWA, 
model, which is composed of five distinct components: Spectrum branch
(in purplish), waveform branch (in pink), context module (in beige), 
and two cross-attention modules with opposing directions (in gray). 
Given a noisy waveform 𝒙 ∈ R𝐿, the encoder in the waveform branch, 
which consists of 𝑁W stacked 1D convolutional blocks (Conv1Ds), 
outputs the 2D representation 𝑍𝑖 ∈ R𝑇W×𝐶W . The waveform encoding 
process can be described as follows: 
𝑍 = Conv1D1

(

⋯Conv1D𝑁W
(𝒙)

)

(1)

where 𝐿 is the length of the waveform. 𝑇W and 𝐶W represent the 
sequence length and the channel number of the encoded waveform 
embedding, respectively. The Conv1D is similar to the basic unit in 
ConvTasNet [12] and includes a 1 × 1 convolution (1 × 1-Conv) 
followed by a depthwise convolution (D-Conv), which projects the 
3 
input to a predetermined 𝐶W-channel space for decoupling noise and 
speech. Additionally, two 1 × 1-Convs serve as the residual path and 
the skip-connection path, respectively. For clarity, some normalization 
layers and activation functions have been omitted in our description, 
but details can be found in [12].

The spectrum encoder, which consists of 𝑁S stacked light-weight 
temporal convolution modules (TCMs) [21], learns the deep represen-
tation 𝑌 ∈ R𝑇S×𝐶S  from log-power spectra (LPS) features. The spectrum 
encoding process is described as follows: 

𝑌 = TCM1

(

⋯TCM𝑁S

(

log |𝑋|

2)
)

(2)

where 𝑋 ∈ C𝑇S×𝐶0  is the noisy spectrum, which is obtained by applying 
the STFT to the noisy waveform 𝒙, with 𝑇S and 𝐶0 denoting the number 
of frames and frequency bins in the spectrogram, respectively. 𝐶S is 
the number of channels in the spectrum encoder. Every TCM comprises 
two 1 × 1-Convs and two dilated depthwise convolutions (DD-Convs) 
with a gating mechanism. The first 1 × 1-Conv compresses the input 
into a more compact channel space, specifically to 𝐶S∕4 channels. 
Subsequently, the gated DD-Convs are applied, where a regular DD-
Conv is multiplied by another DD-Conv, with the sigmoid function 
scaling the output values into the range (0, 1). Finally, the output 
1 × 1-Conv restores the dimensionality to 𝐶S channels.

The spectrum embedding 𝑌  offers low temporal resolution and in-
tegrates expert knowledge but lacks phase information. In contrast, the 
waveform embedding 𝑍 contains both magnitude and phase informa-
tion but lacks useful harmonic content. To leverage the complementary 
nature of these embeddings, we introduce a waveform-to-spectrum 
(W2S) cross-attention module, where 𝑌  serves as the query input, 𝑍
serves as the key and value inputs, for integrating phase information 
from the waveform branch into the spectrum branch. The detailed 
process is as follows:

𝐴W2S
𝑛 = Sof tMax

(

𝑌 𝑄W2S
𝑛

(

𝑍𝐾W2S
𝑛

)⊤

√

𝐶W2S

)

(3)

𝐷W2S
𝑛 = 𝐴W2S

𝑛 𝑍𝑉 W2S
𝑛 (4)

𝐸 = Concat
(

𝐷W2S
1 ,… , 𝐷W2S

𝑁W2S
, 𝑌

)

𝑂W2S (5)

where 𝐸 ∈ R𝑇S×𝐶S  and 𝑂W2S ∈ R
(

𝑁W2S𝐶W2S+𝐶S
)

×𝐶S  denote the fused 
spectrum embedding and the projection matrices of the output, respec-
tively. 𝑁W2S attention heads are used, and 𝑛 ∈ {1, 2,… , 𝑁W2S} is the 
index of the head. For the 𝑛th attention head, 𝐷W2S

𝑛 ∈ R𝑇S×𝐶W2S  and 
𝐴W2S
𝑛 ∈ R𝑇S×𝑇W  denote the output and the attention weight, respec-

tively. 𝑄W2S
𝑛 ∈ R𝐶S×𝐶W2S , 𝐾W2S

𝑛 ∈ R𝐶W×𝐶W2S  and 𝑉 W2S
𝑛 ∈ R𝐶W×𝐶W2S  are 

the projection matrices of query, key and value. 𝐶W2S is the number of 
channel in the W2S cross-attention module.

Next, the fused spectrum embedding 𝐸 first undergoes local context 
modeling through the 𝑁L stacked TCMs, generating the local embed-
ding 𝐻 ∈ R𝑇S×𝐶L  to capture short-term dependencies. Subsequently, 
an 𝑁G-layer Conformer [51] takes over, modeling global contexts and 
incorporating long-term dependencies to obtain the global embedding 
𝑈 ∈ R𝑇S×𝐶G . The context modeling process is:

𝐻 = TCM1

(

⋯TCM𝑁L
(𝐸)

)

(6)

𝑈 = Conformer1
(

⋯Conformer𝑁G
(𝐻)

)

(7)

where 𝐶L and 𝐶G are the channel settings of the local-contextual and 
global-contextual modules, respectively. Each Conformer is composed 
of four modules stacked together, i.e, a feed-forward module, a self-
attention module, a convolution module, and a second feed-forward 
module in the end. More details can be found in [51].

Finally, the global embedding 𝑈 is fed to the spectrum decoder, 
which mirrors the spectrum encoder and thereby consists of 𝑁S TCMs 
for predicting complex mask 𝑀 ∈ C𝑇S×𝐶0 . Notably, considering the 
differences between the real and imaginary parts, the entire decoder is 
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Fig. 1. Illustration of the proposed CA-SW-SSL model, which adapts the CSWA model for cross-domain information exchange between the spectrum and waveform branches and 
employs a DPCA module to select SSL features from different layers. Finally, the MLDM loss supervises the individual branch and the fused outputs. 𝒙, 𝒔, 𝒔̂P, 𝒔̂R, and 𝒔̂F denote 
noisy, clean, waveform-branch predicted, the spectrum-branch reconstructed, and the fused waveforms, respectively. The cIRM is denoted by 𝑀 . 𝑌 , 𝑍, 𝐸, 𝐻 , 𝛹 , 𝑈 , and 𝑉  denote 
the noisy spectral, noisy waveform, fused, local context, second-fused, global context, target spectral, and target waveform embeddings, respectively. (𝒙) denotes the stacked 
outputs from all layers of the SSL model (⋅). ̂(𝒙), L(𝒙), and T(𝒙) represent the flattened, layer-averaged, and time-averaged versions of (𝒙), respectively.
designed as two parallel mirrored sections to predict them separately. 
The detailed process is as follows:
𝑀=TCM1(⋯TCM𝑁S∕2 (𝑈 ))

+ 𝑖TCM1(⋯TCM𝑁S∕2 (𝑈 )) (8)

Then, the predicted mask 𝑀 is used to filter the noisy spectrum 𝑋
and reconstruct the waveform 𝒔̂ ∈ R𝐿 by inverse short-time Fourier 
transform (iSTFT). The reconstruction process is briefly described as 
follows: 
𝒔̂R = iSTFT(𝑀 ⋅𝑋) (9)

The global embedding 𝑈 is fed back to the waveform branch by 
a spectrum-to-waveform (S2 W) cross-attention module. Specifically, 
the S2 W cross-attention module includes 𝑁S2W attention heads and 
takes the waveform embedding 𝑍 as the query input, with the global 
representation 𝑈 serving as the key and value inputs. The detailed 
feedback process is as follows:

𝐴S2W
𝑛 = Sof tMax

(

𝑍𝑄S2W
𝑛 (𝑈𝐾S2W

𝑛 )⊤
√

𝐶S2W

)

(10)

𝐷S2W
𝑛 = 𝐴S2W

𝑛 𝑈𝑉 S2W
𝑛 (11)

𝑉 = Concat
(

𝐷S2W
1 ,… , 𝐷S2W

𝑁S2W
, 𝑍

)

𝑂S2W (12)

where 𝑉 ∈ R𝑇W×𝐶W  and 𝑂S2W ∈ R
(

𝑁S2W𝐶S2W+𝐶W
)

×𝐶W  represent the fused 
waveform embedding and the output projection matrices, respectively. 
For the 𝑛th attention head, 𝐷S2W

𝑛 ∈ R𝑇W×𝐶S2W  and 𝐴S2W
𝑖,𝑛 ∈ R𝑇W×𝑇S

denote the output and the attention weight, respectively. 𝑄S2W
𝑛 ∈

R𝐶W×𝐶S2W , 𝐾S2W
𝑛 ∈ R𝐶G×𝐶S2W  and 𝑉 S2W

𝑛 ∈ R𝐶G×𝐶S2W  are the projection 
matrices of query, key and value, respectively. 𝐶S2W is the number of 
channels in the S2 W cross-attention module. The S2 W cross-attention 
module transfers long-term context information and harmonic details 
from the STFT to the waveform branch, serving as a complementary 
input to the waveform embedding.

The waveform decoder mirrors the waveform encoder and thereby 
consists of 𝑁W stacked Conv1Ds. It predicts the enhanced waveform 𝒔̂P
∈ R𝐿 from the fused waveform embedding 𝑉  using a 1D transposed 
convolution (Conv1DT): 
𝒔̂P=Conv1DT

(

Conv1D
(

⋯Conv1D (𝑉 )
))

(13)
1 𝑁W

4 
Finally, the waveform 𝒔̂𝐹 ∈ R𝐿 is generated by an equal combination 
of the output from the spectrum and waveform branches: 
𝒔̂𝐹 = 𝒔̂R + 𝒔̂P (14)

3.2. Multi-level distortion measure

Regarding the multiple outputs from the CSWA model, we use a 
multi-level distortion measure (MLDM) [52] as the overall loss func-
tion, which provides comprehensive and aligned supervision by de-
signing specific loss components for each output to measure distortions 
accurately. Specifically, the scale-invariant signal-to-noise ratio (SISNR) 
is adopted to measure the distortions of the predicted waveforms 𝒔̂𝑃
and the fused waveforms 𝒔̂𝐹  compared to the clean waveforms 𝒔 ∈
R𝐿. These loss components, referred to as SISNR-P and SISNR-F, are 
computed using the following formula:

𝑠̃P∕F𝜏 = 𝑠̂𝜏

(𝐿−1
∑

𝜏=0
𝑠2𝜏

)

∕

(𝐿−1
∑

𝜏=0
𝑠̂P∕F𝜏 𝑠𝜏

)

(15)


SISNR P∕F

= −10𝐥𝐨𝐠
∑𝐿

𝜏=1 𝑠
2
𝜏

∑𝐿
𝜏=1

(

𝑠̃P∕F𝜏 − 𝑠𝜏
)2

(16)

where 𝑠̂P𝜏 , 𝑠̂F𝜏  and 𝑠𝜏 are values at the 𝜏-th time step of the predict 
waveform 𝒔̂P, the fused waveform 𝒔̂F and the clean waveform 𝒔, re-
spectively. At the same time, the MSE between the complex ideal ratio 
mask (cIRM) [53] 𝑀 ∈ C𝑇S×𝐶0  and the predicted complex mask 𝑀̂𝑖 is 
used as the spectral similarity loss. These loss components, denoted as 
MSE-M, can be computed as follows: 


MSE M

= 1
𝑇S𝐶0

𝑇S
∑

𝑡=1

𝐶0
∑

𝑗=1

|

|

|

𝑚̂𝑡,𝑗 − 𝑚𝑡,𝑗
|

|

|

2
(17)

where 𝑚̂𝑡,𝑗 and 𝑚𝑡,𝑗 are the complex values at the 𝑡th frame and 𝑗th 
frequency bin of the predict mask 𝑀̂ and the cIRM 𝑀 , respectively. 
However, the raw values of MSE-M and SISNR-P exhibit a different 
order of magnitude; therefore, a scaling procedure is employed: 

̃MSE M=𝛿
MSE M

=10

⌊

log10
|SISNR P

|

|MSE M
|

⌋


MSE M

(18)

where 𝛿 is the zoom factor and ⌊⋅⌋ denotes the floor function. When 
computing the gradient, the zoom factor 𝛿 is treated as a constant, 
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ensuring that the magnitudes of ̃MSE−M and ̃SISNR−P are comparable. 
Finally, the MLDM MLDM, defined as a weighted combination of 
MSE-M, SISNR-P, and SISNR-F, is calculated as follows: 

MLDM= ̃MSE M+
SISNR P

+
SISNR F

(19)

where the contribution of each branch and their fusion is considered 
equal in this study.

3.3. DPCA with multi-layer SSL features

Given an SSL model (⋅) with 𝑁P layers, all candidate SSL features 
can be denoted as (𝒙) ∈ R𝑁P×𝑇P×𝐶P , where 𝑇P and 𝐶P represent the 
sequence length and the channel number, respectively.  Compared with 
the W2S and S2 W cross-attention modules, the DPCA module offers 
a significant improvement by integrating both temporal- and layer-
wise attention weights for selecting and fusing relevant SSL features 
across different layers. Specifically, DPCA first averages (𝒙) along the 
layer dimension to obtain L (𝒙) ∈ R𝑇P×𝐶P . Then, the local context 
embedding 𝐻 and L serve as query and key inputs to generate the 
temporal-wise attention matrix 𝐴T

𝑛 ∈ R𝑇S×𝑇P  as follows: 

𝐴T
𝑛 = Sof tMax

⎛

⎜

⎜

⎜

⎝

𝐻𝑄𝑛

[

L (𝒙)𝐾T
𝑛

]⊤

√

𝐶DP

⎞

⎟

⎟

⎟

⎠

(20)

where 𝑄𝑛 ∈ R𝐶L×𝐶DP  is the query projection matrix. 𝐾T
𝑛 ∈ R𝐶P×𝐶DP

represents the projection matrix of key in the temporal path. 𝐶DP is the 
number of channels in the DPCA module.

In terms of layer-wise attention, DPCA first averages (𝒙) along 
the temporal axis to produce T (𝒙) ∈ R𝑁P×𝐶P  as the query input, 
while retaining 𝐻 as the key input. The resulting layer-wise attention 
matrix 𝐴L

𝑛 ∈R𝑇S×𝑁P  is calculated as follows: 

𝐴L
𝑛 = Sof tMax

⎛

⎜

⎜

⎜

⎝

𝐻𝑄𝑛

[

T (𝒙)𝐾L
𝑛

]⊤

√

𝐶DP

⎞

⎟

⎟

⎟

⎠

(21)

where 𝐾L
𝑛 ∈ R𝐶P×𝐶DP  represent the projection matrices of key in the 

layer path.
Then, the Kronecker product is adopted to combine the temporal- 

and layer-wise attention matrices, yielding a dual-path attention matrix 
𝐴DP
𝑛 ∈ R𝑇S×𝑁P𝑇P  as follows: 

𝐴DP
𝑛 =

[

(

𝒂L𝑛,1 ⊗ 𝒂T𝑛,1
)⊤
,… ,

(

𝒂L𝑛,𝑇S ⊗ 𝒂T𝑛,𝑇S
)⊤

]⊤
(22)

where 𝒂L𝑛,𝑡 ∈ R1×𝑁P  and 𝒂T𝑛,𝑡 ∈ R1×𝑇P  are the row vectors of 𝐴L
𝑛  and 

𝐴T
𝑛 , respectively. Notably, the Kronecker product preserves the row-sum 

property, ensuring that each row still sums to 1.
Finally, 𝐴DP

𝑛  is applied to ̂ (𝒙) ∈ R𝑁P𝑇P×𝐶P , which is the flat-
tened version of (𝒙) along the channel dimension, for output the 
second-fused embedding 𝛹 ∈ R𝑇S×𝐶L :

𝐷DP
𝑛 = 𝐴DP

𝑛 ̂ (𝒙)𝑉 DP
𝑛 (23)

𝛹 = Concat
(

𝐷DP
1 ,… , 𝐷DP

𝑁DP ,𝐻
)

𝑂DP (24)

where 𝑂DP ∈ R
(

𝑁DP𝐶DP+𝐶L
)

×𝐶L  represents the output projection ma-
trix. 𝐷DP

𝑛 ∈ R𝑇S×𝐶DP  and 𝑉 DP
𝑛 ∈ R𝐶P×𝐶DP  denote the output and 

the value projection matrix of the 𝑛th attention head, respectively. 
𝑁DP is the number of attention heads in the DPCA module. In the 
CA-SW-SSL model, the fused representation 𝛹 replaces 𝐻 in the subse-
quent process. Notably, the parameters of (⋅) are not updated during 
training.
5 
4. Bidirectional knowledge distillation

Integrating the SSL model in CA-SW-SSL results in a substantial 
increase in parameters and computational load, posing significant chal-
lenges for real-world applications of the CA-SW-SSL model. In response 
to this challenge, we present an innovative bidirectional knowledge dis-
tillation (BiKD) framework for streamlining the SE model’s complexity 
while keeping the same SE quality. BiKD consists of a loss function with 
forward and backward processes, namely: 
BiKD = BKD + FKD (25)

where BKD and FKD represent the backward and forward distillation 
losses, respectively (see Fig.  2).

4.1. Backward knowledge distillation

Backward knowledge distillation (BKD) aims to transfer knowledge 
from SSL during the backward propagation process. Specifically, the 
enhanced waveform 𝒔̂ ∈ {𝒔̂P, 𝒔̂R, 𝒔̂F} and the target waveform 𝒔 are pro-
cessed by the SSL model (⋅) to obtain the enhanced and clean SSL rep-
resentations, (𝒔̂) and (𝒔), respectively. A baseline method for gauging 
the disparity between the enhanced and target SSL representations is 
to utilize the MSE loss. The MSE-SSL loss can be straightforwardly 
computed as follows:


MSE SSL

= 1
𝑁P

𝑁P
∑

𝑘=1

MSE−SSL
𝑘

= 1
𝑁P𝑇B𝐶𝑃

𝑁P
∑

𝑘=1

𝑇B
∑

𝑡=1

𝐶𝑃
∑

𝑗=1

[

(𝒔̂)𝑘,𝑡,𝑗−(𝒔)𝑘,𝑡,𝑗
]2 (26)

where MSE SSL
𝑘  is the MSE value calculated with the 𝑘th layer SSL 

representations. Accordingly, by replacing SISNR and MSE-M in MLDM 
with the MSE-SSL loss, the BKD loss can be formulated as: 
BKD MSE=MSE SSL P+MSE SSL R+MSE SSL F (27)

where MSE SSL P, MSE SSL R and MSE SSL F represent the MSE-SSL loss 
of predicted 𝒔̂P, reconstructed 𝒔̂R and fused  𝒔̂F waveform, respectively.

MSE-SSL presupposes that the distances across each layer’s SSL 
representation space carry equal significance. However, in practice, dif-
ferent layers may vary in their importance. To explore this possibility, 
we propose a novel adaptive layered distance measure (ALDM), defined 
as the negative log-likelihood between the enhanced and clean SSL 
representations, as follows: 
ALDM = −𝐥𝐨𝐠𝑝

[

 (𝒔) | (𝒔̂)
]

(28)

Next, by leveraging the conditional independence assumption,
𝑝[(𝒔)|(𝒔̂)] can be effectively factorized across the layers, results in 
the following multi-layer likelihood expression:
𝑝
[

 (𝒔) | (𝒔̂)
]

= 𝑝
[

 (𝒔)1 ,… , (𝒔)𝑁P
| (𝒔̂)

]

=
𝑁P
∏

𝑘=1
𝑝
[

 (𝒔)𝑘 | (𝒔̂)𝑘
]

(29)

where (𝒔)𝑘 ∈ R𝑇P×𝐶P  and (𝒔̂)𝑘 ∈ R𝑇P×𝐶P  denote the 𝑘-layer com-
ponents of enhanced and clean SSL representations, respectively. The 
𝑘-layer likelihood 𝑝[(𝒔)𝑘|(𝒔̂)𝑘] is defined as a Gaussian with mean 
given by (𝒔̂)𝑘 and an trainable noise parameter 𝜎𝑘:
𝑝
[

 (𝒔)𝑘 | (𝒔̂)𝑘
]

∼ 
(

 (𝒔̂)𝑘 , 𝜎2𝑘
)

= 1
√

2𝜋𝜎𝑘
𝐞𝐱𝐩

[

−
‖

‖

 (𝒔)𝑘 −  (𝒔̂)𝑘‖‖
2

2𝜎2𝑘

]

(30)

 Using Eq. (29) and (30), Eq. (28) can be rewritten as:

ALDM = −
𝑁P
∑

𝐥𝐨𝐠𝑝[(𝒔)𝑘|(𝒔̂)𝑘]

𝑘=1
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Fig. 2. Illustration of the proposed BiKD framework. The ALDM loss implements the backward process where 𝒔, 𝒔̂P, 𝒔̂R, and 𝒔̂F denote clean, waveform-branch predicted, the 
spectrum-branch reconstructed, and the fused waveforms, respectively. The forward process adopts the TSBT loss, where 𝑈 and 𝑉  denote target spectral, and target waveform 
embeddings, respectively.
∝
𝑁P
∑

𝑘=1
[ 1
2𝜎2𝑘

‖(𝒔)𝑘 − (𝒔̂)𝑘‖2 + 𝐥𝐨𝐠𝜎𝑘]

=
𝑁P
∑

𝑘=1

1
2𝜎2𝑘


MSE SSL
𝑘 + 𝐥𝐨𝐠

𝑁P
∏

𝑘=1
𝜎𝑘 (31)

 where 𝜎𝑘 can be interpreted as the homoscedastic uncertainty [29], 
serving as an adaptive layer-dependent weighting factor. As 𝜎𝑘 in-
creases, the contribution of MSE SSL

𝑘  to the overall loss is proportionally 
reduced. Accordingly, the loss of BKD can be rewritten as follows: 

BKD ALDM= ALDM R+ALDM P+ALDM F (32)

where ALDM P, ALDM R and ALDM F represent the ALDM loss of the 
predicted waveform 𝒔̂P, the reconstructed waveform 𝒔̂R and the fused 
waveform 𝒔̂F, respectively.

4.2. Forward knowledge distillation

Forward knowledge distillation (FKD) aims to transfer knowledge 
from the CA-SW-SSL model, as the teacher model, to the student 
models, including CSWA and its lite and tiny versions. Since the final 
output, which is traditionally used in KD, contains limited informa-
tion, we propose to use the outputs of the global context and S2 W 
cross-attention modules, specifically 𝑈 and 𝑉 , as knowledge sources.

∀𝛩 ∈ {𝑈, 𝑉 }, the MSE between the corresponding internal out-
puts of the teacher and student models is employed to quantify the 
knowledge transfer: 


MSE TS

= 1
𝑇B𝐶𝛩

𝑇B
∑

𝑡=1

𝐶𝛩
∑

𝑗=1

(

𝛩CA SW SSL
𝑡,𝑗 − 𝛩CSWA

𝑡,𝑗

)2
(33)

where 𝐶𝛩 is the corresponding channel number. Therefore, the baseline 
FKD loss can be expressed as a sum of the MSE-TS losses from the global 
context module (𝑈) and the S2 W cross-attention module (𝑉 ): 

FKD = 
MSE TS U

+
MSE TS V

(34)

where MSE TS U and MSE TS V represent the MSE-TS loss of the global 
embedding 𝑈 and the fused waveform embedding 𝑉 , respectively.

The MSE loss emphasizes absolute numerical differences and overall 
smoothness between embeddings. Due to the significant difference in 
the number of network layers, it has been observed that the abso-
lute numerical differences are challenging to reduce during training. 
Furthermore, the overall smoothness conceals local distortions, which 
can be amplified in subsequent network layers, ultimately deteriorating 
the final performance. Accordingly, we propose the use of the Barlow 
Twins [30] method to measure the cross-correlation matrix between 
6 
the corresponding internal outputs of the teacher and student models 
and ensure it is as close to the identity matrix as possible:

𝑗,𝑘 =

∑𝑇B
𝑡=1 𝛩

CA SW SSL
𝑡,𝑗 𝛩CSWA

𝑡,𝑘
√

∑𝑇B
𝑡=1(𝛩

CA SW SSL
𝑡,𝑗 )2

√

∑𝑇B
𝑡=1(𝛩

CSWA
𝑡,𝑗 )2

(35)

TSBT =
𝐶𝛩
∑

𝑗=1
(1 − 𝑗,𝑗 )2 + 𝜆

𝐶𝛩
∑

𝑗=1

∑

𝑘≠𝑗
2
𝑗,𝑘 (36)

where C is the cross-correlation matrix computed between the outputs 
of the teacher and student models along the batch dimension, with val-
ues ranging from −1 (perfect anti-correlation) to 1 (perfect correlation); 
𝜆 is positive constant trading of the importance of the first and second 
terms of the loss, set to 0.05 based on ablation studies from [30].

Intuitively, the TSBT loss functions by setting the diagonal elements 
of the cross-correlation matrix to 1 and the off-diagonal elements to 
0, ensuring that the embeddings are unaffected by both the teacher 
and student models. This approach circumvents the challenges linked 
to optimizing absolute numerical differences and allows for a more nu-
anced evaluation of each vector component of the embedding, thereby 
minimizing the risk of local distortions. By substituting MSE-TS with 
TSBT, the FKD loss becomes: 
FKD TSBT=𝛾TSBT U+(1 − 𝛾)TSBT V (37)

where TSBT U and TSBT V are the TSBT losses for 𝑈 , and 𝑉 , respec-
tively.

5. Experiments and results analysis

5.1. Implementation detail

5.1.1. Data preparation
CA-SW-SSL is first assessed on the DNS-Challenge dataset [54], 

which provides over 500 hours of clean speech clips spoken by 2150 
speakers, and more than 180 hours of noise clips for training. Using 
the official scripts, we have generated a training set of approximately 
3000 h of noisy-clean pairs, with SNR levels ranging from −5 dB to 15
dB. The dataset also includes a non-blind test set for model evaluation, 
consisting of 150 noisy-clean pairs. Around 300 h of material was split 
from the training set and used for preliminary validation experiments.

For a broader comparison, the Voicebank+Demand dataset [55] is 
also considered. This dataset includes 28 speakers in the training set 
and 2 unseen speakers in the test set. The training set consists of 11,572 
noisy-clean pairs, while the test set includes 824 pairs. In the training 
set, the utterances are corrupted with one of ten noise types, comprising 
two artificial noises and eight noises from the Demand dataset, across 
four SNR levels: 0 dB, 5 dB, 10 dB and 15 dB. The test set is generated 
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Table 1
Hyperparameter configurations for baselines, various versions of CSWA models, and CA-SW-SSL models with different self-supervised learned representations.
 Model 𝑁W, 𝐶W 𝑁S, 𝐶S 𝑁W2S, 𝐶W2S 𝑁L, 𝐶L 𝑁G, 𝐶G 𝑁S2W, 𝐶S2W 𝑁DP, 𝐶DP SSL #Param. (M) MACs. (G/s) 
 S-TCN – 4, 512 – 8, 512 – – – – 46.81 2.29  
 ConvTasnet 15, 128 – – – – – – – 7.8 7.72  
 CSWA 6, 128 4, 512 8, 64 2, 1024 3, 512 6, 64 – – 41.73 7.52  
 CSWA-Lite 4, 128 2, 512 8, 64 1, 1024 1, 512 4, 64 – – 22.49 4.28  
 CSWA-Tiny 2, 128 2, 256 6, 64 1, 512 1, 128 2, 64 – – 6.67 2.80  
 
CA-SW-SSL 6, 128 4, 512 8, 64 2, 1024 3, 512 6, 64 8, 64

wav2vec 2.0 370.64 26.64  
 Hubert 369.86 26.58  
 WavLM 259.55 21.72  
 

using five unseen noises selected from the Demand dataset, with SNR 
levels of 2.5 dB, 7.5 dB, 12.5 dB, and 17.5 dB.

Waveforms are sampled at 16 kHz. A 40 ms square-root Hann 
window is applied for both analysis and synthesis, with a 50% overlap 
between adjacent frames. This setup results in a 640-point FFT, giving 
321 frequency bands.

5.1.2. Evaluation metrics
For the DNS-Challenge dataset, we evaluate the effectiveness of our 

model using three objective metrics: perceptual evaluation of speech 
quality (PESQ) [56], short-time objective intelligibility (STOI) [57], 
and scale-invariant signal-to-noise ratio (SISNR) [58]. PESQ is a widely 
recognized metric for assessing speech quality, with scores ranging 
from −0.5 to 4.5, and its wide-band version (WB-PESQ) is employed 
for evaluation on both datasets. STOI serves as an effective measure of 
speech intelligibility, with values between 0 and 1. SISNR is commonly 
used to quantify the level of noise introduced in the estimated speech 
and overcomes the disadvantage that SNR is susceptible to variations in 
the energy of the input signal. Three mean opinion score (MOS) related 
metrics [59], namely CSIG, CBAK, and COVL, are also employed in the 
Voicebank+Demand experiments. For all these metrics, higher values 
indicate better speech quality.

5.1.3. Hyperparameter configurations and training
Table  1 summarizes the hyperparameter configurations used in this 

work, together with their respective parameter counts and multiply-
accumulate operations (MACs). The CSWA model configuration is de-
rived from multiple rounds of exploratory trials. Building upon this 
optimal CSWA setup, we construct CA-SW-SSL with three large-scale 
SSL models (wav2vec 2.0, HuBERT, and WavLM). Subsequently, CSWA-
Lite and CSWA-Tiny are obtained by proportionally reducing layers and 
channels to approximate the parameter count and MACs of the current 
SOTA model.

It should be noted that S-TCN [21] (highlighted in purple in Fig. 
1) and ConvTasnet [12] (highlighted in pink) serve as the spectral and 
waveform baselines, respectively. These baselines incorporate more ba-
sic modules than their original implementations to ensure comparable 
parameter counts and MACs with the proposed CSWA.

The training procedure closely follows that of the previous study [60]
and the baseline method [12]. Specifically, we train for 100 epochs 
using the Adam optimizer [61]. The learning rate, initially set to 
3 × 10−4 based on a ‘‘learning-rate range test’’ [62], is halved if 
there is no validation improvement over 3 consecutive epochs, and 
early stopping is triggered if there is no improvement for 10 epochs. 
Each experiment conducted 3 independent training runs with distinct 
random seeds and reported the mean performance of three optimal 
checkpoints. All experiments were performed on an NVIDIA A100 GPU 
cluster (4 × 80GB).1

5.2. Performance analysis of CSWA

To validate the effectiveness of our proposed CSWA model, we 
present a comprehensive comparison of the average WB-PESQ, PESQ, 

1 Source code will be available at link available upon acceptance.
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Table 2
Comparison of average WB-PESQ, PESQ, STOI and SISNR among noisy, baselines, CASW 
and CA-SW-SSLs with different SSL representations on the DNS challenge non-blind test 
set. All models were trained using the 300-hour subset.
 Model SSL WB-PESQ PESQ STOI (%) SISNR 
 Noisy – 1.58 2.45 91.52 9.07  
 S-TCN – 2.04 2.88 93.72 13.34  
 ConvTasnet – 2.09 2.96 94.03 14.21  
 CSWA – 𝟑.𝟎𝟔 𝟑.𝟓𝟎 𝟗𝟕.𝟑𝟕 𝟏𝟗.𝟔𝟓  
 
CA-SW-SSL

wav2vec 2.0 3.19 3.60 97.73 20.28  
 HuBert 3.22 3.61 97.79 20.35  
 WavLM 𝟑.𝟐𝟕 𝟑.𝟔𝟒 𝟗𝟕.𝟗𝟑 𝟐𝟎.𝟓𝟒  

Fig. 3. Comparison of average (a) WB-PESQ gain, (b) PESQ gain, (c) STOI gain and 
(d) SISNR gain among the CSWA model and its ablation versions on the DNS challenge 
non-blind test set. Notably, there are three results: one from the spectrum branch, one 
from the waveform branch, and the fused result. All models were trained using the 
300-hour subset.

STOI, and SISNR among S-TCN, ConvTasnet and CSWA models on 
the DNS challenge non-blind test set, as illustrated in Table  2. For 
convenience, all models were trained using the 300-hour subset. The 
CSWA model outperforms both the spectrum-based and waveform-
based baselines, namely S-TCN and ConvTasnet. Under comparable 
parameters and computational complexity, the CSWA achieves absolute 
improvements of 0.97, 0.54, 3.34%, and 5.44 dB in WB-PESQ, PESQ, 
STOI, and SISNR, respectively, when compared to the best baseline 
results. This observation demonstrates that the performance gains of 
CSWA are not merely due to an increase in parameter count or com-
putational load but rather from the innovative structural design that 
fully leverages the respective advantages of spectrum and waveform 
modeling.

Further, we conducted ablation experiments on the key CSWA 
modules, including the W2S cross-attention module, the S2 W cross-
attention module and the conformer module.  Results for the spectrum, 
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Fig. 4. Comparison of average (a) WB-PESQ gain, (b) PESQ gain, (c) STOI gain and 
(d) SISNR gain among the MLDM loss and its ablation versions on the DNS challenge 
non-blind test set. Notably, there are three results: one from the spectrum branch, one 
from the waveform branch, and the fused result. All models were trained using the 
300-hour subset.

waveform and fused branches are presented through bar charts with 
error bars in Fig.  3, illustrating the mean performance metrics and their 
standard deviations across multiple runs. The relatively small error 
bars indicate that our findings remain stable under repeated trials. We 
can observe that as the W2S cross-attention module is ablated, results 
related to the spectrum branch have a significant degradation, with ab-
solute reductions of 0.29, 0.24, 2.08%, and 2.23 dB in WB-PESQ, PESQ, 
STOI, and SISNR, respectively. The waveform branch also experiences 
degradation, with reductions of 0.25, 0.2, 1.91%, and 1.79 dB in WB-
PESQ, PESQ, STOI, and SISNR, respectively. However, this degradation 
is less pronounced than that observed in the spectrum branch. The 
intuitive explanation is that the spectrum branch depends on the W2S 
cross-attention module to acquire the missing phase information from 
the waveform branch, making its performance more reliant on this 
module. However, the degradation trend is reversed when ablating the 
S2 W cross-attention module. Specifically, the absolute reductions in 
WB-PESQ, PESQ, STOI, and SISNR for the waveform branch compared 
to the spectrum branch are 0.34 vs. 0.25, 0.23 vs. 0.15, 1.27% vs. 
0.98%, and 1.85 dB vs. 0.74 dB, respectively. These results can be 
explained by recalling that the S2 W cross-attention module introduces 
global context information in the waveform branch, enhancing its 
performance. Finally, when the Conformer module is ablated, both 
the spectrum and waveform branches experience a relatively consis-
tent degradation, with absolute reductions of approximately 0.15, 0.1, 
0.45%, and 0.5 dB in WB-PESQ, PESQ, STOI, and SISNR, respectively. 
This observation further underscores the importance of global con-
text information in both spectrum-domain and waveform-domain SE 
methods.

Next, we carried out a set of ablation experiments to investigate the 
specific contributions of MSE-M, SISNR-P, and SISNR-F.  Results for the 
spectrum branch, waveform branch, and fused outputs are presented 
through bar charts  with error bars in Fig.  4, illustrating the mean 
performance metrics and their standard deviations across multiple runs. 
The relatively small error bars indicate that our findings remain stable 
under repeated trials. We can observe a consistent degradation trend. 
Specifically, when MSE-M is ablated, the spectrum branch shows the 
largest degradation, with absolute reductions of 0.16, 0.10, 0.58%, and 
0.61 dB in WB-PESQ, PESQ, STOI, and SISNR, respectively. Conversely, 
when SISNR-P is ablated, the waveform branch exhibits the most sig-
nificant degradation, with absolute reductions of 0.3, 0.19, 1.04%, and 
1.89 dB in WB-PESQ, PESQ, STOI, and SISNR, respectively. Another 
8 
Fig. 5. Visualization of attention weights for the (a) W2S, (b) S2 W, and (c) and 
(d) dual-path cross-attention modules. Notably, the dual-path cross-attention modules 
include two types of weights: temporal-wise and layer-wise weights. 𝑇S, 𝑇W and 𝑇P
denote the time steps of the spectrum, waveform and SSL representations, respectively. 
𝑁P denotes the number of layers in the SSL models.

interesting observation is that, on the one hand, SISNR-F prevents 
the fused output from being disproportionately influenced by either 
branch, experiencing the most severe degradation. On the other hand, 
without SISNR-F, the degradations from the spectrum and waveform 
branches accumulate in the fused output. Therefore, we highlight the 
importance of SISNR-F in intelligently and automatically regulating the 
contributions of the spectrum and waveform branches, functioning akin 
to a weight factor but without the need for manual adjustment.

A more thorough understanding of the model’s prediction can be 
gained by visualizing the attention weights for the W2S and S2 W cross-
attention modules using heatmaps for a randomly selected utterance 
from the DNS challenge non-blind test set, as shown in Fig.  5(a) and 
(b).  The clearly visible diagonal patterns indicate a successful tem-
poral alignment between the spectrum and waveform representations, 
implying that the W2S attention helps supplement missing information, 
while the S2 W attention extends long-term dependencies from lower to 
higher temporal resolutions. And we found that the diagonal alignment 
patterns remain consistent across varied runs and test samples.

5.3. Performance analysis of CA-SW-SSL

In this section, we analyze the CA-SW-SSL model on the DNS-
Challenge non-blind test set and compare it with the CSWA model, as 
shown in Table  2. Three CA-SW-SSL models are built on top of the 
CSWA model using a different SSL architecture, namely wav2vec2.0-
large, Hubert-large, or WavLM-large. CA-SW-SSL models exhibit consis-
tent improvements over the CSWA model, with the CA-SW-SSL-WavLM 
model achieving the best performance. Specifically, CA-SW-SSL-WavLM 
attains absolute improvements of 0.21, 0.14, 0.56%, and 0.89 dB in 
WB-PESQ, PESQ, STOI, and SISNR, respectively, over the CSWA model.

Figs.  5 (c) and (d) visualize attention weights of the DPCA mod-
ule to gain a better understanding of the observed improvements. 
DPCA includes two types of weights: temporal- and layer-wise weights. 
First, Fig.  5(c) demonstrates a clear temporal alignment between the 
spectrum and SSL representations; moreover, Fig.  5(d) shows another 
interesting pattern: At all time steps, the lower-layer SSL representa-
tions exhibit larger layer-wise weights, indicating that the performance 
of speech enhancement primarily stems from the abundant acoustic 
details present in those lower layers rather than the more abstract 
acoustic knowledge in the higher layers. These patterns are consistent 
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Fig. 6. Comparison of average (a) WB-PESQ gain, PESQ gain, STOI gain and SISNR 
gain among S-TCN, ConvTasnet, CSWA and CA-SW-SSL model trained with different 
training set sizes (300 h, 1000 h and 3000 h) on the DNS-Challenge non-blind test set.

Fig. 7. An utterance example comparing the outputs of different models, including (a) 
clean, (b) noisy, (c) S-TCN-enhanced, (d) ConvTasnet-enhanced, (e) CSWA-enhanced 
and (f) CA-SW-SSL-enhanced spectrum features.

across different runs and test samples, providing further evidence of the 
effectiveness of the CA-SW-SSL model.

We hypothesize that the SSL representations serve a role similar to 
data augmentation, and we verify our idea via comparative experiments 
with different sizes of training sets. Results are given in Fig.  6. It can be 
observed that the performance gap between the CA-SW-SSL and CSWA 
models gradually narrows as the training set size increases. When the 
training duration grows from 300h to 3000h, the absolute differences 
between the CA-SW-SSL and CSWA models in terms of WB-PESQ, PESQ, 
STOI, and SISNR decrease from 0.21, 0.19, 0.56%, and 0.89 dB to 
0.03, 0.03, 0.10%, and 0.18 dB, respectively. This finding provides 
preliminary evidence that the performance boost from the SSL block 
diminishes as the amount of training data increases, leading us to think 
of the SSL module as a data augmentation technique.

Another interesting observation is that the CSWA model demon-
strates more consistent performance as the training set size increases 
than the S-TCN and ConvTasnet models. Specifically, as the training 
duration increases from 300h to 1000h, the S-TCN and ConvTasnet mod-
els exhibit similar significant improvements of approximately 0.7, 0.4, 
4.7% and 4.5 dB across WB-PESQ, PESQ, STOI, and SISNR, respectively. 
In contrast, the CSWA model only shows gains of 0.14, 0.13, 0.4% and 
0.18 dB in WB-PESQ, PESQ, STOI, and SISNR, respectively. Hence, the 
CSWA model effectively uses data via joint spectrum and waveform 
modeling, demonstrating robustness in low-resource scenarios.
9 
Fig. 8. Visualization of layer-wise distance weights in ALDM. All weights are normal-
ized such that their sum equals 1 for clearer comparison.

Table 3
Comparison of average WB-PESQ, PESQ, STOI (%) and SISNR (dB) between the CA-
SW-SSL and CSWA model with different BKD losses on the DNS challenge non-blind 
test set.
 Model BKD WB-PESQ PESQ STOI(%) SISNR(dB) 
 Noisy – 1.58 2.45 91.52 9.07  
 
CA-SW-SSL

– 3.29 3.65 97.99 20.65  
 MSE 3.39 3.69 98.23 21.06  
 ALDM 𝟑.𝟓𝟏 𝟑.𝟕𝟕 𝟗𝟖.𝟕𝟐 𝟐𝟏.𝟕𝟔  
 
CSWA

– 3.26 3.62 97.89 20.47  
 MSE 3.33 3.65 97.97 20.62  
 ALDM 𝟑.𝟒𝟎 𝟑.𝟕𝟏 𝟗𝟖.𝟏𝟑 𝟐𝟎.𝟗𝟓  

Finally, we present a compelling visual comparison illustrating the 
enhancement results yielded by the S-TCN, ConvTasnet, CSWA, and 
CA-SW-SSL models in Fig.  7. We utilized a randomly selected example 
utterance from the DNS challenge non-blind test set, with all spectral 
features normalized at an utterance level. In the clean spectrum, the 
white and green boxes highlight activated time-frequency units, which 
unfortunately become obscured by noise in the noisy spectrum. The S-
TCN model eliminates both noise and activated time-frequency units, 
indicating an issue of over-suppression. Conversely, the ConvTasnet-
enhanced spectrum retains both the noise and the activated units, 
suggesting residual noise exists. Moreover, the CSWA model showcases 
improved discrimination by removing noise while preserving the orig-
inal activated time-frequency bands. Notably, the CA-SW-SSL model 
excels in retaining spectral details, uniquely recovering the weaker 
activation band on the left side of the white box.

5.4. Performance analysis of BKD

To demonstrate the effectiveness of the proposed BKD framework, 
we have showcased the WB-PESQ, PESQ, STOI, and SISNR results for 
the CSWA and CA-SW-SSL models trained with two different BKD losses 
in Table  3. BKD-MSE enables the CSWA model to achieve comparable 
performance with the CA-SW-SSL model without increasing the amount 
of parameters, or the computational load, achieving absolute improve-
ments of 0.04 and 0.005 in WB-PESQ and PESQ, respectively, while 
maintaining comparable results in STOI and SISNR, specifically 97.97% 
vs. 97.99% and 20.62 dB vs. 20.65 dB. Moreover, the CA-SW-SSL model 
also delivered absolute improvements of 0.10, 0.04, 0.24% and 0.41 dB 
in WB-PESQ, PESQ, STOI, and SISNR, demonstrating the effectiveness 
and generalizability of the BKD framework in enhancing speech quality 
and intelligibility across various model backbones.

Furthermore, BKD-ALDM outperforms BKD-MSE, achieving absolute 
improvements of 0.07, 0.06, 0.16%, and 0.33 dB in WB-PESQ, PESQ, 
STOI, and SISNR, respectively, in the CSWA case. In the CA-SW-
SSL case, BKD-ALDM achieves larger absolute improvements of 0.12, 
0.08, 0.49%, and 0.70 dB across the same metrics. These findings 
demonstrate the importance of distance metrics at different layers, 
further confirming the effectiveness and generalizability of the BKD 
framework. In the following sections, we simply use BKD to refer to 
BKD-ALDM.
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Table 4
Comparison of average WB-PESQ, PESQ, STOI (%) and SISNR (dB) across different sizes 
of CSWA models with various FKD losses on the DNS challenge non-blind test set.
 Model FKD WB-PESQ PESQ STOI(%) SISNR(dB) 
 Noisy – 1.58 2.45 91.52 9.07  
 CA-SW-SSL+BKD – 3.51 3.77 98.72 21.76  
 
CSWA

- 3.26 3.62 97.89 20.47  
 MSE 3.34 3.64 97.92 20.55  
 TSBT 𝟑.𝟒𝟏 𝟑.𝟕𝟏 𝟗𝟖.𝟑𝟖 𝟐𝟏.𝟐𝟎  
 
CSWA+BKD

– 3.40 3.71 98.13 20.95  
 MSE 3.43 3.72 98.15 21.01  
 TSBT 𝟑.𝟓𝟎 𝟑.𝟕𝟕 𝟗𝟖.𝟓𝟓 𝟐𝟏.𝟑𝟖  
 
CSWA-Lite+BKD

– 3.16 3.57 97.24 18.72  
 MSE 3.21 3.61 97.26 18.89  
 TSBT 𝟑.𝟒𝟓 𝟑.𝟕𝟒 𝟗𝟖.𝟎𝟐 𝟐𝟎.𝟏𝟗  
 
CSWA-Tiny+BKD

– 2.76 3.36 95.95 17.94  
 MSE 2.88 3.43 95.99 17.96  
 TSBT 𝟑.𝟑𝟕 𝟑.𝟔𝟗 𝟗𝟕.𝟓𝟖 𝟏𝟗.𝟓𝟎  

To further elucidate the selectivity of the BKD framework regarding 
distances across different layers, we analyzed a randomly selected 
example utterance from the DNS challenge non-blind test set, visu-
alizing its layer-wise distance weights in Fig.  8. Notably, the lower 
layers exhibited larger weights, consistent with the layer-wise attention 
weights observed in the dual-path cross-attention visualization. This 
finding implies that distance at the lower layers, which capture finer 
acoustic details, plays a pivotal role in enhancing both speech quality 
and intelligibility.

5.5. Performance analysis of FKD

In the following analysis, we examine the effectiveness of the FKD 
framework by comparing two FKD losses under the BKD scenario for 
the CSWA model, as well as its Lite and Tiny variants. As shown in 
Table  4, the FKD loss narrows the performance gap between the CSWA 
student and the CA-SW-SSL teacher, while the proposed FKD-TSBT 
loss surpasses the FKD-MSE baseline. Specifically, with FKD-MSE, the 
CSWA model improves by 0.08, 0.02, 0.03%, and 0.08 dB in WB-PESQ, 
PESQ, STOI, and SISNR, respectively. The FKD-TSBT loss achieves even 
more significant gains of 0.15, 0.09, 0.49%, and 0.73 dB, underscoring 
the effectiveness of focusing on inter-layer distance correlations rather 
than absolute values. Furthermore, when combined with BKD, these 
gains increase to 0.24, 0.15, 0.66%, and 0.91 dB, offering preliminary 
evidence for the robustness of both FKD and BiKD. For brevity, we use 
FKD to refer to FKD-TSBT in the subsequent discussion.

Another noteworthy observation is that the improvements increase 
as the complexity of the student models decreases. Concretely, CSWA-
Lite reduces 19.24 M parameters and 3.24 G/s relative to CSWA yet still 
achieves gains of 0.24, 0.13, 0.76%, and 1.30 dB in the metrics above. 
CSWA-Tiny trims an additional 15.82 M parameters and 1.48 G/s, 
yielding even larger improvements of 0.49, 0.26, 1.59%, and 1.54 dB. 
These trends validate the adaptability of FKD across different model 
sizes and especially highlight substantial gains for lower-complexity 
variants. Although these lightweight models remain slightly behind CA-
SW-SSL in overall accuracy, the substantial reductions in parameter 
count and computational overhead justify a moderate trade-off in 
performance for many resource-limited applications.

To further analyze the impact of the FKD framework on model 
predictions, we randomly selected an example utterance from the DNS 
Challenge non-blind test set and conducted a T-SNE visualization of 
frame-level hidden representations, denoted as 𝑈𝑡 and 𝑉𝑡. As illustrated 
in Fig.  9, without FKD, the hidden representations from the CSWA+BKD 
model, i.e., 𝑈CSWA

𝑡  and 𝑉 CSWA
𝑡  appear more dispersed and exhibit a less 

coherent structure. Notably, some predictions deviate from the high-
performance subspace enveloped by the hidden representations of the 
CA-SW-SSL+BKD model, i.e., 𝑈CA−SW−SSL

𝑡  and 𝑉 CA−SW−SSL
𝑡 . However, 

after applying FKD, both 𝑈CSWA
𝑡  and 𝑉 CSWA

𝑡  are effectively aligned 
within this high-performance subspace.
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Fig. 9. Comparative t-SNE analysis of frame-level representations in CA-SW-SSL and 
CSWA models: With and Without FKD.

5.6. Comparison with SOTA

Table  5 presents a thorough comparison between our method and 
prior SOTA methods on the DNS Challenge non-blind test set. Our 
CSWA-Lite+BiKD model has demonstrated remarkable improvements 
in WB-PESQ, PESQ, and STOI metrics compared to the previous SOTA 
TaEr model, with absolute improvements of 0.19, 0.14, 0.46% and 
0.79 dB. These improvements were achieved while maintaining com-
parable computational complexity despite a higher parameter count. 
Furthermore, our CSWA-Lite+BiKD model has showcased still signif-
icant absolute gains of 0.11, 0.09, 0.02% and 0.10 dB in WB-PESQ, 
PESQ, and STOI, with similar parameter counts and only half the com-
putational load. These experimental results emphasize the superiority 
and efficiency of our proposed method.

However, most recent SOTA methods for the DNS-Challenge non-
blind test set essentially utilize spectrum-domain models. To support 
the comparison with similar methods and showcase the generalization 
capability of our methods, we conducted supplementary experiments 
using the Voicebank+Demand dataset. In Table  6, we present a compar-
ison of average WB-PESQ, CSIG, CBAK and COVL among several well-
known joint spectrum-waveform methods, SSL-based methods and our 
methods. It is evident that our CA-SW-SSL+BKD model outperforms the 
top-performing SSL-based method, yielding absolute improvements of 
0.06, 0.05, 0.44 and 0.01 in WB-PESQ, CSIG, CBAK, and COVL, respec-
tively. Moreover, our CSWA-Tiny+BiKD model outperforms the top-
performing joint spectrum-waveform methods, demonstrating absolute 
improvements of 0.05, 0.08, 0.08 and 0.07 in WB-PESQ, CSIG, CBAK, 
and COVL, respectively. These results not only show the superiority 
of our methods over similar ones but also underline its generalization 
across diverse datasets.

6. Conclusion

This work presented an innovative CA-SW-SSL model that inte-
grates spectrum, waveform, and SSL features for SE. Experimental 
findings highlight that cross-domain information exchange between 
spectrum and waveform branches significantly improves individual and 
fused performance. The performance gains from using SSL features as 
inputs, similar to data augmentation, diminish as the training data 
size increases. Moreover, lower-level SSL features capture essential 
acoustic details crucial for SE. We have also introduced a novel BiKD 
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Table 5
Comparison of average WB-PESQ, PESQ, STOI (%) and SISNR (dB) between previous SOTA methods and our methods on the DNS challenge 
non-blind test set.
 Model Features #Param. (M) MACs (G/s) WB-PESQ PESQ STOI (%) SISNR (dB) 
 NSNet [63] Mag 1.26 – 2.15 2.87 94.47 15.61  
 DTLN [64] Mag 0.99 – – 3.04 94.76 16.34  
 DCCRN [65] Real+Imag 3.67 14.06 – 3.27 – –  
 PoCoNet [66] Real+Imag 50.00 – 2.75 – – –  
 FullSubNet [67] Mag 5.64 14.92 2.78 3.31 96.11 17.29  
 TRU-Net [68] Mag 0.38 – 2.86 3.36 96.32 17.55  
 DCCRN+ [69] Real+Imag 3.30 – – 3.33 – –  
 CTS-Net [70] Mag+Real+Imag 4.35 5.57 2.94 3.42 96.66 17.99  
 GaGNet [71] Real+Imag 6.01 1.64 3.17 3.56 97.13 18.91  
 FRNet [72] Real+Imag 7.52 2.81 3.14 3.52 96.91 18.75  
 FullSubNet+ [73] Mag+Real+Imag 8.67 – 2.98 3.50 96.69 18.34  
 FS-CANet [74] Mag 4.21 – 3.02 3.51 96.74 18.08  
 FRCRN [75] Real+Imag 10.27 241.98 3.23 3.60 97.69 19.78  
 STSubNet [76] Mag 5.66 – 3.00 – 97.03 19.64  
 TaEr [77] Real+Imag 6.42 4.36 3.26 3.60 97.56 19.40  
 CA-SW-SSL+BKD Mag+Wave+SSL 259.55 21.72 3.51 3.77 98.72 21.76  
 CSWA+BiKD Mag+Wave 41.73 7.52 3.50 3.77 98.55 21.38  
 CSWA-Lite+BiKD Mag+Wave 𝟐𝟐.𝟒𝟗 𝟒.𝟐𝟖 𝟑.𝟒𝟓 𝟑.𝟕𝟒 𝟗𝟖.𝟎𝟐 𝟐𝟎.𝟏𝟗  
 CSWA-Tiny+BiKD Mag+Wave 𝟔.𝟔𝟕 𝟐.𝟖𝟎 𝟑.𝟑𝟕 𝟑.𝟔𝟗 𝟗𝟕.𝟓𝟖 𝟏𝟗.𝟓𝟎  
Table 6
Comparison of average WB-PESQ, CSIG, CBAK and COVL among several well-known 
joint spectrum-waveform methods, SSL-based methods and our methods on the Voice-
bank+Demand test set.
 Model Features WB-PESQ CSIG CBAK COVL

 Noisy – 1.97 3.35 2.44 2.63

 TFT-Net [14] Mag+Wave 2.75 3.93 3.44 3.34
 MDPhD [13] Mag+Wave 2.70 3.85 3.39 3.27
 WMPNet [33] Mag+Wave 3.05 4.27 3.53 3.68
 WSFNet [34] Real+Imag+Wave 𝟑.𝟎𝟗 𝟒.𝟑𝟐 𝟑.𝟓𝟏 𝟑.𝟕𝟐

 [18] SSL 2.80 – – –
 [19] Mag+SSL 3.20 4.53 3.60 3.88
 [41] Mag+SSL 2.79 4.10 2.68 3.44
 PFPL [38] Real+Imag+SSL 3.15 4.18 3.60 3.67
 PCS-CS-WavLM [20] Mag+SSL 𝟑.𝟓𝟒 𝟒.𝟕𝟓 𝟑.𝟓𝟒 𝟒.𝟐𝟓

 CA-SW-SSL+BKD Mag+Wave+SSL 𝟑.𝟔𝟎 𝟒.𝟖𝟎 𝟑.𝟗𝟖 𝟒.𝟐𝟔
 CSWA+BiKD Mag+Wave 3.46 4.63 3.83 4.09
 CSWA-Lite+BiKD Mag+Wave 3.27 4.47 3.70 3.90
 CSWA-Tiny+BiKD Mag+Wave 𝟑.𝟏𝟒 𝟒.𝟒𝟎 𝟑.𝟓𝟗 𝟑.𝟕𝟗

framework to address the increased parameter count and computa-
tional complexity caused by the SSL model. Results have illustrated the 
strong correlation between the distance measure in the lower-level SSL 
representation space and speech quality. Furthermore, optimizing the 
cross-correlation matrix of intermediate-layer features has enhanced 
knowledge transfer to smaller models more effectively than optimizing 
numerical differences. In future work, we plan to expand the CA-SW-
SSL model by incorporating additional data sources, e.g., video, and 
explore pruning techniques to reduce model complexity further.

Although the model performs well on the tested datasets, challenges 
remain when encountering more diverse noise conditions and unseen 
languages. Future work will thus focus on extending CA-SW-SSL to 
handle broader data modalities (e.g., multimodal inputs such as video) 
and exploring pruning or quantization techniques to further reduce its 
computational footprint.
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