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Abstract—To advance audio-visual speech enhancement (AVSE)
research in low-quality video settings, we introduce the multimodal
information-based speech processing-low quality video (MISP-
LQV) benchmark, which includes a 120-hour real-world Mandarin
audio-visual dataset, two video degradation simulation methods,
and benchmark results from several well-known AVSE models. We
also propose a novel hybrid pixel and contour network (HPCNet),
incorporating a lip reconstruction and distillation (LRD) module
and a contour graph convolution (CGConv) layer. Specifically,
the LRD module reconstructs high-quality lip frames from low-
quality audio-visual data, utilizing knowledge distillation from a
teacher model trained on high-quality data. The CGConv layer
employs spatio-temporal and semantic-contextual graphs to cap-
ture complex relationships among lip landmark points. Extensive
experiments on the MISP-LQV benchmark reveal the performance
degradation caused by low-quality video across various AVSE
models. Notably, including real/simulated low-quality videos in
AVSE training enhances its robustness to low-quality videos but
degrades the performance of high-quality videos.The proposed
HPCNet demonstrates strong robustness against video quality
degradation, which can be attributed to (1) the reconstructed lip
frames closely aligning with high-quality frames and (2) the contour
features exhibiting consistency across different video quality levels.
The generalizability of HPCNet also has been validated through
experiments on the 2nd COG-MHEAR AVSE Challenge dataset.

Index Terms—Speech enhancement, audio-visual, graph convo-
lutional network, talking face generation, knowledge distillation.

I. INTRODUCTION

THE human perceptual system can isolate a singular voice
source even within highly noisy environments [1]. For
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instance, amidst the clamor of a restaurant, individuals are adept
at concentrating on the discourse of their dining companion;
during a fiery presidential debate, the ability to disentangle
overlapping speech is evident. This impressive capability is
rooted in the audio-visual nature of human language perception
and production [2], [3]. Specifically, the human perceptual sys-
tem heavily relies on visual cues to lessen noise in corrupted
speech [4] and to direct attention towards an active speaker
in a bustling environment [5]. The automation of this audio-
visual speech enhancement (AVSE) holds substantial potential,
with applications spanning from assistive technologies for the
hearing impaired to enhancing auditory capabilities in wearable
augmented reality devices and better transcription of spoken
content in real-world videos.

Traditional AVSE methods can be traced back to the pioneer-
ing work [6], which initially demonstrated the advantages of
incorporating visual features. Subsequently, more sophisticated
frameworks based on classical statistical approaches were pro-
posed, including [7], [8]. However, traditional AVSE algorithms
often encounter challenges in effectively tracking unexpected
nonstationary noise in real-world conditions. In recent years,
data-driven AVSE approaches [9], [10] have increasingly lever-
aged deep neural networks (DNNs) [11], significantly outper-
forming traditional statistical methods. Specifically, DNN-based
AVSE models build upon state-of-the-art (SOTA) audio-only
speech enhancement (AOSE) models, optimizing visual feature
selection and refining audio-visual fusion strategies. Common
visual features include raw pixel values from the lip region of
interest (ROI) [12], active appearance models [13], lip land-
mark points [14], [15], [16], and embeddings from the middle
layer of a pre-trained word-level lipreading model [17], [18],
[19], [20]. As for audio-visual fusion, concatenating audio and
visual representations into a shared hidden layer has been a
commonly used approach for AVSE. Other fusion strategies
include addition-based fusion [21], product-based fusion [22],
[23], squeeze-excitation fusion [24], [25], and attention-based
fusion [22], [26].

However, existing research on AVSE assumes that videos are
recorded in high quality. Nevertheless, video quality degradation
is a crucial and common problem in real-world scenarios [27],
[28], including resolution compression due to network latency
or hardware limitations and errors in lip tracking due to oc-
clusion or side-face views. Consequently, to advance research
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in AVSE with a focus on the robustness against low-quality
video, this study first introduces a benchmark named multimodal
information-based speech processing-low-quality video (MISP-
LQV), featuring a Mandarin audio-visual dataset, two video
degradation simulation methods, and benchmark results from
several AVSE models. The dataset comprises 24 hours of audio-
visual recordings from 263 native speakers in 26 homes, includ-
ing clean speech alongside paired high- and low-quality video.
Clean speech was mixed with real home noise at 5 different
signal-to-noise ratios (SNRs), resulting in 120 hours of noisy
data. Two simulation methods target missing and resolution
degradation of the lip ROI. Performance degradation due to
low-quality video is evident across different AVSE models. Ad-
ditionally, we propose a novel hybrid pixel and contour network
(HPCNet) that demonstrates strong robustness to low-quality
video. Specifically, the lip reconstruction and distillation (LRD)
module enhances video quality by utilizing noisy speech with
additional knowledge distillation from a high-quality teacher
model. The contour graph convolution (CGConv) layer utilizes
spatio-temporal and semantic-contextual graphs to capture com-
plex relationships among lip landmark points, which serve as
contour features that complement traditional pixel-based visual
features. Our main contributions can be summarized as follows:

1) releasing the MISP-LQV benchmark, which includes a
120-hour real-world Mandarin audio-visual dataset, two
low-quality video simulation methods, and the results of
several well-known AVSE models on this dataset.

2) proposing a novel hybrid pixel and contour network (HPC-
Net) that features a lip reconstruction and distillation
(LRD) module to enhance video quality by utilizing noisy
speech alongside the contour graph convolution (CG-
Conv) layers to capture the complex relationships among
lip landmark points.

3) confirming the challenges posed by low-quality video and
the effectiveness of HPCNet through a series of exper-
iments conducted on the MISP-LQV benchmark, along
with the generalizability of HPCNet through additional
experiments on the 2nd COG-MHEAR AVSE Challenge
dataset.

The remainder of the paper is organized as follows. Section II
reviews related works. Section III describes the released MISP-
LQV benchmark. Section IV presents our proposed HPCNet.
Section V analyses the experimental results. Finally, we sum-
marize our findings in Section VI.

II. RELATED WORK

Since its inception, AVSE has made significant progress,
with early works [29], [30], [31], [32], [33], [34], [35] laying
the foundation. In recent years, data-driven AVSE approaches
have increasingly leveraged deep neural networks (DNNs) to
process high-dimensional visual data [11]. Most DNN-based
AVSE models focus on visual feature selection and audio-visual
fusion strategies, building on SOTA AOSE models.

In terms of visual features, early DNN-based AVSE mod-
els [12], [36] effectively harness raw pixel values from the target
speaker’s lip region of interest (ROI), allowing for practical

visual information extraction through end-to-end training. De-
spite achieving notable advancements over audio-only baselines,
these models demand extensive amounts of paired audio-visual
data for training [37], [38] and face optimization challenges
due to the high-dimensional input [25]. Consequently, various
dimensionality reduction techniques have been introduced, in-
cluding the active appearance model (AAM) [39] and the 2D dis-
crete cosine transform (2D-DCT) [40]. However, dimensionality
reduction leads to loss of details, potentially hindering AVSE
performance. Lip landmark points [14] have been employed
as low-dimensional visual features due to their sparse nature.
Furthermore, the motion of these landmark points [15], [16]
has proven beneficial. Nevertheless, traditional DNNs, recurrent
neural networks (RNNs), and convolutional neural networks
(CNNs) consistently struggle to effectively model the spatial
relationships between these discrete landmark points, highlight-
ing an area for improvement.

Currently, various pre-trained models are widely adopted to
extract low-dimensional features from the raw pixel space. These
pre-training methods can be categorized into supervised pre-
training and self-supervised learning. Supervised pre-training
includes tasks such as face recognition [9], word-level lipread-
ing [17], phone-level lipreading [18], audio-visual articulation
place recognition [19], and audio-visual phone and articula-
tion place recognition [20]. On the other hand, self-supervised
learning approaches include models for learning audio-visual
correlation evidence [41], audio-visual temporal synchroniza-
tion [42], [43], deep multi-instance, multi-label learning [44],
and audio-visual object segmentation [45].

For audio-visual fusion strategies, while certain studies have
demonstrated DNN’s capacity to perform both early fusion [15]
and late fusion [13], [36], the most common approach is to inte-
grate audio and visual representations into a shared hidden layer,
known as intermediate fusion [46]. Specifically, concatenation
has been a popular method [10], [21], [47], [48], [49], [50].
Other fusion strategies include addition-based fusion [13], [21],
product-based fusion [22], [23], [51], and squeeze-excitation
fusion [24], [25]. Attention-based fusion has also been inves-
tigated to select the more informative modality [26] flexibly,
including additive attention [22], temporal attention [48], [52],
spatial-wise attention [52], factorized attention [53], and rule-
based attention [53].

III. MISP-LQV BENCHMARK

The introduced MISP-LOV benchmark is curated explicitly
for home scenarios and consists of paired high- and low-quality
video recordings captured by two cameras positioned at varying
distances. In addition, this research proposes two methods for
simulating low-quality video based on real-world data analysis:
missing frames and resolution degradation. A detailed descrip-
tion of the design process, statistical information, and simulation
methods is presented herein.

A. Dataset Design

As shown in Fig. 1, a group of people is engaged in conversa-
tion while watching television in a cozy living room. Meanwhile,
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Fig. 1. An example of the recording venue and the used devices.

an AVSE system strives to enhance the clarity and quality of each
speaker’s speech before transmitting it to communication chan-
nels or intelligent assistants. However, capturing video in real
home settings presents numerous challenges, including potential
blurriness, furniture obstructions, and low lighting conditions.
These factors often result in diminished video quality, making it
an ideal scenario for evaluating the resilience of AVSE systems
in handling low-quality video. In the context of home settings,
we constructed the MISP-LQV dataset using two cameras posi-
tioned at varying distances to capture paired video recordings of
both high and low quality. Furthermore, we employed two sets of
microphones to separately record clean speech and background
noise, followed by traditional noisy speech simulation tech-
niques to generate precisely aligned noisy-clean speech pairs
for SE model training and evaluation.

Specifically, a wide-angle camera was situated 3 to 5 meters
away from the speaker for low-quality recording, with a field
of view of 141◦ diagonally, 120◦ horizontally, and 63◦ verti-
cally. It recorded video at a resolution of 1920× 1080 pixels
at a rate of 25 frames per second, encompassing the entire
indoor environment. However, this configuration resulted in a
low-resolution lip region of interest (ROI) frequently obstructed
by surrounding objects. Conversely, a high-definition camera
was positioned 0.5 to 0.8 meters in front of the speaker to capture
high-quality video, with a field of view of 116◦ diagonally, 99◦

horizontally, and 53.4◦ vertically, recorded at 1280× 720 reso-
lution and 25 frames per second. The near-field camera focused
solely on the speaker, ensuring a visible and high-resolution lip
ROI. All cameras were synchronized by connecting them to a
central computer utilizing Vicando software. Each speaker was
equipped with a high-fidelity directional microphone attached
under the chin, recording at a sampling rate of 44.1 kHz and
a bit depth of 16 bits. The clean speech was seldom interfered
with by off-target sources and had a signal-to-noise ratio (SNR)
exceeding 25 dB. Each speaker used a high-fidelity directional
microphone under the chin, recording at a 44.1 kHz sampling
rate and 16-bit depth. This setup ensured minimal interference
from other sources, achieving an SNR greater than 25 dB. An
omnidirectional microphone near the television on the opposite
side of the room also captured ambient noise. Both microphones

TABLE I
DETAILS OF CLEAN DATA IN MISP-LQV BENCHMARK

were connected to a ZOOM F8n sound card for clock synchro-
nization. Manual alignment was employed to synchronize audio
and video: at the start of each session, a distinct synchronization
cue was produced by tapping a cup, and during post-processing,
the frame showing the contact was aligned with the correspond-
ing impact sound in the waveform.

Upon completing the recording process, we compiled ap-
proximately 100 hours of raw audio-visual data and transcribed
the accompanying text. Data cleaning was performed utilizing
DNSMOS P.835 [54], an objective metric to evaluate speech
quality in wideband scenarios. The long-duration recordings
were segmented and segments exhibiting an overall quality score
exceeding 4.2 were preserved, yielding 27 hours of high-quality
speech. A secondary manual inspection was conducted to ensure
the absence of discernible noise artifacts, resulting in 24 hours
of clean speech data. These clean speech recordings and their
corresponding video were subsequently categorized into train-
clean, dev-clean, and eval-clean sets with no overlap in speakers
or rooms. Detailed statistics for each subset are summarized
in Table I. Then, we mixed 4 hours of background noise with
70,215 utterances from the train-clean set at signal-to-noise
ratios (SNRs) of 10, 5, 0, −5 and −10 dB. The noise came from
18 rooms in the train-clean set, resulting in a 101.35-hour train-
ing set. We applied the same method for the development and
evaluation sets. In the dev-clean set, we mixed 6,255 utterances
with 0.8 hours of noise from the same rooms, creating a 9.3-hour
development set. In the eval-clean set, we mixed 5,730 utterances
with 1.1 hours of noise, leading to an 8.85-hour evaluation set.

B. Low-Quality Video Simulation

Fig. 2 serves as an example illustrating a comparison between
a pair of high- and low-quality videos. We can observe two
primary degradation patterns:
� Missing Lip ROI: The lip ROI could not be detected due

to factors such as lighting conditions, changes in pose, and
transmission channel issues.

� Lip ROI Resolution Degradation: The resolution of the lip
ROIs was reduced due to factors such as camera quality
and shooting distance.

Based on these observations, we developed two low-quality
video simulators to augment the availability of training data.
Fig. 2 illustrates the simulated lip frames that have undergone
frame missing and low resolution simulations. A visual evalu-
ation indicates that no distinguishable difference between real
and simulated low-quality lip frames.
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Fig. 2. An example comparing high-quality, low-quality, and simulated lip
frames. Combining two low-quality video simulation methods involving lip
ROI missing and resolution degradation has resulted in a high degree of visual
similarity between the simulated and real low-quality lip frames.

In the frame missing simulator, given a sequence of high-
quality lip frames V H = [vH1 , . . . , v

H
t , . . . , v

H
TV

], covering TV

frames, each vt ∈ RH×W represents a gray-scale lip image.
The simulator first generates a mask sequence D = [d1, . . . ,
dt, . . . , dT ], where dt ∈ {0, 1}: “0” indicates a dropped frame
and “1” indicates a retained frame. The simulated lip frames
Ṽ L ∈ RTV×H×W is calculated as follows:

Ṽ L = V H �D (1)

where � denotes the Hadamard product. There are three ways
to generate D:
� Segment: For each vHt , a missing probabilityαt is randomly

sampled from a uniform distribution. The corresponding dt
is calculated as follows:

dt =

{
1, ut > β
0, ut ≤ β

(2)

where β ∈ [0, 1] presents the preset frame missing rate.
� Utterance: For each sample V H, a missing probability α

is randomly sampled from a uniform distribution. The
corresponding D is calculated as follows:

D =

{
[1, . . . , 1, . . . , 1], u > α
[0, . . . , 0, . . . , 0], u ≤ α

(3)

� Interval: For each sample V H, a missing probability αt is
randomly sampled from a uniform distribution. dt ∈ D, it
is calculated as follows:

dt =

{
1, other
0, αt ≤ β and t mod �1/β� = 0

(4)

where mod and �·� denote the modulo operation and the
ceiling function, respectively.

By enriching the patterns and frequencies of lip frame
omissions, our simulation method effectively covers real-world

missing scenarios, including lip occlusion, changes in camera
angles, and transmission/memory issues.

In the low resolution simulation, each vHt undergoes blurring,
downsampling, and noise injection sequentially. The entire pro-
cess can be formulated as follows:

ṽLt = fS(vHt ∗K) + V N (5)

Where K represents a square Gaussian blur kernel, the size
of the kernel directly impacts the level of blurring, with larger
sizes resulting in more pronounced blurring effects. Addition-
ally, fS(·) denotes a bicubic downsampling function, where the
downsampling factor dictates the extent of pixel reduction. A
higher downsampling factor leads to a more substantial decrease
in pixels. Furthermore, V N refers to visual noise, encompassing
Gaussian or salt-and-pepper noise, and its variance determines
the impact on image details. A higher variance obscures more
image details.

IV. HYBRID PIXEL AND CONTOUR NETWORK FOR AVSE

This section presents an in-depth overview of the proposed
HPCNet designed for AVSE. We will first highlight the holistic
framework of HPCNet, showcasing its network architecture and
training process. Then, we will dive into two pivotal components
of HPCNet: the detailed structure and pre-training methodology
of the LRD module along with the structural specifics of the
CGConv layer.

A. Overall Framework

As shown in Fig. 3(a), given the low-quality gray-scale lip
frames V L ∈ RTV×H×W and the noisy FBANK feature FN ∈
RTA×CM , the pre-trained LRD module utilizes an audio-visual
embedding extractor (AVEE) followed by a reconstructor to
produce reconstructed grayscale lip frames V R ∈ RTV×H×W :

V R = Reconstructor
(
AVEE

(
V L, FN

))
(6)

where TA and CM represent the audio sequence length and
the number of mel filters, respectively. In this study, CM = 40
are set as default. V R are subsequently fed back into the LRD
module and combined with FN to yield the refined audio-pixel
embedding ER ∈ RTA×CE via the internal AVEE module:

ER = AVEE
(
V R, FN

)
(7)

where CE denotes the channel number of the audio-pixel em-
bedding, set to 512 by default. Then, ER is sent to 10 stacked
ResConv1D blocks for learning the high-level audio-pixel rep-
resentation Z ∈ RTA×CE as follows:

Z = ResConv1D10

(· · ·ResConv1D1

(
ER
))

(8)

where each ResConv1D block consists of a 1D convolution layer
with a residual connection, followed by a pReLU activation
and batch normalization, as described in [19]. Additionally, 5
stacked ResConv1D blocks are employed to extract deep speech
representationX ∈ RTA×CE from the noisy log power spectrum
(LPS) feature U ∈ RTA×CS as follows:

X = ResConv1D5 (· · ·ResConv1D1(U)) (9)
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Fig. 3. Illustration of the proposed HPCNet for AVSE, including (a) The overall framework and the training process of the HPCNet, (b) Detailed structure
and pre-training process of the LRD module, (c) Detailed structure of the CGConv layer and (d) Detailed structure of the DQCA module. V L, V H and V R:
high-quality, low-quality and reconstructed gray-scale lip frames. FN and FC: noisy and clean FBANK features. EH, EL and ER: high-quality, low-quality and
refined audio-pixel embeddings. Gi: i-layer contour feature. U : noisy LPS feature. X , Y , Z and O: deep speech, contour, audio-pixel and fused representations.
M̂ and M : predicted magnitude and ideal ratio masks.

where CS represents the number of frequency bins in the spec-
trogram, set to 257 by default in this study.

To incorporate lip contour, we select NL landmark points in
the lip ROI and the pixel coordinates of each point are input to a
2D convolution layer to extract the initial contour feature G0 ∈
RTV×K×CE :

G0 = Conv2D
(
LandmarkPoints

(
V R
))

(10)

where NL is set to 20 by default. The kernel size and stride
of the 2D convolution are (5, 7) and (1, 1), respectively. Tra-
ditional CNNs often fall short of capturing the intricate rela-
tionships between discrete points. However, graph convolutional

networks (GCNs) excel in modeling these complex interactions.
Leveraging this advantage, we propose a novel contour graph
convolutional (CGConv) layer to extract meaningful insights
from lip contour features. In the HPCNet, eight stacked CG-
Conv layers followed by a global average pooling (GAP) layer
transform the initial contour feature G0 into a deep contour
representation Y ∈ RTV×CE :

Y = GAP (CGConv8 (· · ·CGConv1 (G0))) (11)

Next, a novel dual-query cross-attention (DQCA) module is
proposed to fuse the intermediate representations generated by
different branches, namely the contour representation Y , the
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audio-pixel representation Z, and the speech representation X .
Specifically, Y and Z serve as query inputs, whereas X acts as
both the key and value inputs. The detailed fusion process is
carried out as follows:

O=Repeat-Concat
(
DP

1 , D
C
1 ,· · ·, DP

NA
, DC

NA
, X
)
WO (12)

DP
n , D

C
n = WP

n XWV
n ,W

C
n XWV

n (13)

WP
n = SoftMax

(
ZQP

n

(
XWK

n

)	
√
CA

)
(14)

WC
n = SoftMax

(
YQC

n

(
XWK

n

)	
√
CA

)
(15)

where O ∈ RTA×CE and WO ∈ R(2NACA+CE)×CE denote the
fused representation and the output projection matrix, respec-
tively. NA attention heads are used, and n ∈ {1, . . . , NA} is the
index of the head. For the n-th attention head, DP

n ∈ RTA×CA

and DC
n ∈ RTV×CA denote the output feature maps. WP

n ∈
RTA×TA and WC

n ∈ RTV×TA denote the attention weight.
QP

n ∈ RCE×CA , QC
n ∈ RCE×CA , WK

n ∈ RCE×CA and WV
n ∈

RCE×CA are the projection matrices of query, key and value. CA

is the number of channel in the DQCA module. The mismatch in
sequence length betweenDP

n andDC
n , i.e.,TA �= TV , is resolved

by repeating each frame of DC
n across multiple frames of DP

n .
Finally, O is passed through a stack of 15 ResConv1D blocks

to predict a magnitude mask M̂ ∈ RTA×CM :

M̂ = Sigmoid (ResConv1D15 (· · ·ResConv1D1(O))) (16)

The predicted mask M̂ can be used to filter the noisy
spectrum and reconstruct the waveform by inverse short-
time Fourier transform (iSTFT). The MSE between the ideal
ratio mask (IRM) [55] M ∈ RTA×CM and M̂ is used as
the loss function, denoted as MSE-M, which is computed
as follows:

LMSE−M =
1

TACM

TA∑
t=1

CM∑
j=1

|m̂t,j −mt,j |2 (17)

where m̂t,j and mt,j are the values at the t-th frame and
j-th frequency bin of M̂ and M , respectively. Note that the
LRD model does not update its parameters during training with
MSE-M. In subsequent experiments, we also constructed two
models using only contour features as input: the contour graph
network (CGNet) and the contour convolution cetwork (CCNet).
Specifically, CGNet differs from HPCNet by excluding the LRD
module, the audio-pixel embedding ER, and the following 10
ResConv1D blocks, while CCNet replaces the 8 CGConv layers
in CGNet with 8 ResConv1D blocks.

B. Lip Reconstruction and Distillation

As shown in Fig. 3(b), the LRD module comprises an AVEE
module, a classifier, and a reconstructor. The AVEE module
encompasses visual, audio, and fusion branches, utilizing a
dual-tower architecture as outlined in [19]. The visual branch

incorporates a spatiotemporal convolution, followed by an 18-
layer ResNet. Similarly, the audio branch adopts a compara-
ble structure, with 1D kernels replacing the 3D kernels in the
spatiotemporal convolution and ResNet18 utilizing 1D kernels
instead of 2D kernels. The outputs from the visual and au-
dio branches are concatenated and channeled into a 2-layer
multi-scale temporal convolutional network (MS-TCN), acting
as the fusion branch. Architectural details have been omit-
ted in our description, but more information can be found
in [19].

And the classifier consists of a 2-layer MS-TCN [56] followed
by a softmax activation function and predicts the posterior prob-
ability of the articulation place p(s|EL) ∈ RTA×NP based the
audio-pixel embedding EL ∈ RTA×CE , which is extracted with
the low-quality lip frames and noisy speech data. The prediction
process can be described as follows:

p(s|EL) = SoftMax
(
MSTCN2

(
MSTCN1

(
EL
)))

(18)

where s = [s1, . . . , sTA
] represents the articulation places se-

quence, and NP denotes the size of the dictionary.
We also integrated a reconstructor parallel to the classi-

fier with 10 stacked ResConv1D blocks to predict improved
grayscale lip frames V R ∈ RTV×H×W . Furthermore, we incor-
porated a residual connection from the original low-quality lip
frames V L to ease the training process:

V R = V L +ResConv1D10

(· · ·ResConv1D1

(
EL
))

(19)

MSE measure the distortion of V R compared to the high-quality
lip frames V H, referred to as MSE-V:

LMSE−V =
1

TVHL

Tv∑
τ=1

H∑
h=1

H∑
h=l

∣∣vRt,h,l − vHt,h,l
∣∣2 (20)

where vRt,h,l and vHt,h,l are the values at the t-th frame, h-th row
and l-th column of V R and V H.

We further introduce an intermediate distillation framework.
As illustrated in Fig. 3(b), the teacher model also features an
AVEE module followed by a classifier and takes high-quality
lip frames V H and clean FBANK feature FC ∈ RTA×CM as
inputs, resulting in high-quality audio-pixel embeddings EH ∈
RTA×CE and an accurate posterior probability estimation of
the articulation place p(s|EH) ∈ RTA×NP . The entire teacher
model is trained to minimize cross-entropy loss:

LCE = −
TA∑
t=1

log p(st|eHt ) (21)

where eHt ∈ RNP is the t-th feature vector of EH.
In the distillation process, EH and p(s|EH) serve as carriers

of valuable knowledge. The knowledge transfer is quantified
using a triplet loss LTri between EH and EL, as well as a
Kullback-Leibler (KL) divergence loss LKL between p(s|EL)
and p(s|EH). Specifically, for ∀eLt ∈ EL, the temporally corre-
sponding feature vectoreHt inEH are treated as positive samples,
while others are considered negative. The triplet loss is computed
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as follows:

LTri = max

(
0,

TA∑
t=1

(
CE∑
υ=1

(eLt,υ − eHt,υ)
2−

1

TA − 1

TA∑
ϕ=1∧ϕ �=t

CE∑
υ=1

(eLt,υ − eHϕ,υ)
2 + α

⎞⎠⎞⎠
(22)

where eLt,υ and eHt,υ denote the values at the υ-th channel bin of
eLt and eHt , respectively.α represents the margin, which controls
the gap between the distance to positive and negative samples.
Additionally, LKL can be described as follows:

LKL =

TA∑
t=1

p(st|yL
t ) log

p(st|eLt )
p(st|eHt )

(23)

Finally, the total loss function is defined as a combination of
MSE-V, triplet loss, and KL divergence, calculated as follows:

LTol = LMSE−V + LTri + LKL (24)

By minimizing LTol, the reconstructed lip frames steadily ap-
proach high-quality standards.

C. CGConv Layer

We explore the intricate relationships between lip landmark
points from two distinct perspectives. The first perspective
delves into the spatial-temporal relationships among landmark
points, which rely heavily on the current articulated content.
Consequently, we define spatio-temporal graph adjacency ma-
trices as sample-dependent graph adjacency matrices. The other
perspective focuses on the semantic contextual relationships,
contingent on the statistical findings of semantic context from
the training data. As a result, we define articulation context
graph adjacency matrices as sample-independent graph adja-
cency matrices. Based on the above analysis, the CGConv layer
is ingeniously designed to incorporate a spatio-temporal graph
(STG) and a semantic-contextual graph (SCG) to capture their
respective relationships effectively. Both graph structures are
meticulously parameterized and can be optimized in conjunction
with other network parameters end-to-end. Furthermore, the
CGConv layer features a fully connected layer and a residual
connection, enhancing feature representation and facilitating the
training of the entire network. Consequently, we can articulate
the forward process of the i-th CGConv layer as follows:

Gi = (Gi−1 +ΔGi)W
FFN
i (25)

where Gi−1 ∈ RTV×K×CE and Gi ∈ RTV×K×CE represent the
input and output feature maps, respectively. WFFN

i ∈ RCE×CE

denotes the parameters of the fully connected layer. ΔGi ∈
RTV×K×CE represents the output of the graph convolution on
the input feature Gi−1 and can be formulated as:

ΔGi = ΛST
i

− 1
2
(
AST

i + I
)
ΛST
i

− 1
2Gi−1W

Δ
i +

ΛSC
i

− 1
2
(
ASC

i + I
)
ΛSC

i
− 1

2Gi−1W
Δ
i (26)

where AST
i ∈ RTV×K×K and ASC

i ∈ RK×K represent the ad-
jacency matrix of the SCG and STG, respectively. As previously
described, AST

i is sample-dependent, meaning each frame has
its dedicated adjacency matrix. In contrast, ASC

i is sample-
independent, with all frames sharing the same adjacency matrix.
I is the identity matrix with the same dimensions as the adjacency
matrix and WΔ

i ∈ RCE×CE represents the feature transforma-
tion matrix. ΛST

i ∈ RTV×K×K and ΛSC
i ∈ RK×Kare degree

matrices of AST
i + I and ASC

i + I, respectively, which are used
to normalize the adjacency matrices. The normalized adjacency
matrices ĀST

i and ĀSC
i can be expressed as follows:

ĀST
i = ΛST

i
− 1

2
(
AST

i + I
)
ΛST
i

− 1
2

ĀSC
i = ΛSC

i
− 1

2
(
ASC

i + I
)
ΛSC

i
− 1

2 (27)

Accordingly, (26) can be rewritten as:

ΔGi = (ĀST
i + ĀSC

i )Gi−1W
Δ
i (28)

From (28), CGConv calculation can be divided into two steps:
node features are transformed by a learnable parameter matrix
WΔ

i and nodes features are aggregated by a specific normalized
adjacency matrix ĀST

i + ĀSC
i .

STG captures the changing shape of speakers’ lips over time.
The normalized adjacency matrix ĀST

i is created by comparing
the similarity between pairs of nodes. To do this, we use a soft
attention mechanism to calculate node spatial similarity. The
formula for computing ĀST

i is as follows:

ĀST
i = SoftMax

[(
Gi−1W

θ
i

) (
Gi−1W

φ
i

)]	
(29)

where Wθ
i ,W

φ
i ∈ RCE×CG are the parameters of the embed-

ding spaces θ and φ, respectively. CG represents the dimension
of the embedding space, set to 256 by default.

Regarding the semantic contextual relationship is inherent of
the talking mouth, we assume that the SCG is a fully connected
graph, and all parameters of the normalized adjacency matrix
ĀSC

i are learned from the training data without any prior as-
sumption. Therefore, we initialize ĀSC

i with a constant value,
as shown below:

ĀSC
i = cJ (30)

where J represents the all-ones matrix. c represents the initial-
ized constant, set to 0.000001 by default.

V. EXPERIMENTS AND RESULTS ANALYSIS

To evaluate speech quality and intelligibility, we employed
PESQ and STOI, respectively. PESQ [57] applies an auditory
transform to compare the loudness spectrum of clean and en-
hanced speech, yielding a score ranging from −0.5 to 4.5;
higher scores indicate better speech quality. The STOI [58]
compares the temporal envelopes of clean and enhanced speech
in short-time regions, providing values between 0 and 1, with
higher values representing better speech intelligibility.

For the training strategy, we used the Adam [59] optimizer
for 100 epochs, implementing early stopping if there was no
improvement in the development loss for 10 consecutive epochs.
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Fig. 4. Comparison of the missing rate (upper panel) and pixel count (lower
panel) of the lip ROI between paired high- and low-quality videos in the MISP-
LQV evaluation set. HQV: high-quality video, LQV: low-quality video.

The initial learning rate was set to 0.0003 and halved during
training if there was no improvement for 3 epochs in the devel-
opment loss. Regarding training data, we adopted a 1 : 1 ratio of
real high-quality and low-quality videos in each training batch to
balance the model’s performance. Additionally, we employed an
online simulation strategy for generating simulated data, where
each training batch randomly selects one simulation method and
configuration.

A. Performance Analysis of Data

1) Quantitative Analysis of Video Quality Degradation: We
initially performed comprehensive quantitative analyses to iden-
tify the differences between high- and low-quality videos.
Specifically, through the results obtained from lip ROI detection
and tracking, we derived the proportion of frames in each video
where the lip ROI was undetectable, as well as the average pixel
count within the lip ROI. The bar charts in Fig. 4 compare these
two metrics between paired high- and low-quality videos in the
MISP-LQV evaluation set. Based on Fig. 4(a), it’s clear that most
high-quality video frames successfully detect the lip ROI, with
only 205 samples exhibiting missing lip ROIs, accounting for
just 3.5% of the evaluation set. In contrast, low-quality videos
show 395 problematic samples with a missing rate in the range
of (0, 0.2], nearly double the number of problematic samples in
high-quality videos. The total number of problematic samples in
low-quality videos is 710, representing 12.4% of the evaluation
set. Among the most severe 55 problematic samples, over 80%
of video frames failed to detect a valid lip ROI, leading to a
complete loss of crucial visual semantic information for AVSE.
Meanwhile, Fig 4(b) presents a more pronounced gap between
high- and low-quality videos in terms of lip ROI pixel count.
In high-quality videos, the lip ROI is typically represented by
2,000 to 10,000pixels, whereas in low-quality videos, the pixel
count drops to around 200− 500. This reduction in pixel count

TABLE II
COMPARISON OF PESQ AND STOI (IN %) AMONG NOISY, NOEASE,

AVPL-VIR, MTMEASE AND MEASES WITH DIFFERENT TRAINING VIDEO

ON THE MISP-LQV EVALUATION SET

leads to the blurring of lip movement details, which may degrade
performance in AVSE.

2) Performance Comparison Between High- and Low-
Quality Videos: We assessed the performance of various AVSE
models in both high- and low-quality video conditions. Table II
presents the comparison of PESQ and STOI (in %) for the
unprocessed system denoted as Noisy, NoEASE, AVPL-VIR,
MTMEASE, and MEASE on the MISP-LQV evaluation set.
It is evident that several well-known AVSE models, including
AVPL-VIR, MTMEASE, and MEASE, experienced signifi-
cant performance degradation when evaluated with low-quality
video, which resulted in PESQ declines of 0.40, 0.41, and 0.39,
respectively, while their STOI scores dropped by 4.27%, 4.33%
and 4.17%, respectively. The decline in performance demon-
strates the considerable influence of video quality on AVSE
effectiveness, highlighting the critical importance of improving
AVSE systems’ robustness to low-quality video. Given that
MEASE achieved the best overall performance, the subsequent
experiments will primarily focus on it.

To gain deeper insights into the factors affecting AVSE per-
formance in low-quality videos, we categorized all samples
in the low-quality evaluation set into 5 groups based on their
missing rate of the lip ROI and 6 groups based on the number
of pixels in the lip ROI. Fig. 5 presents a comparison of PESQ
and STOI (in %) across different missing rate and pixel number
groups enhanced by MEASE. Our observations reveal a clear
downward trend in both PESQ and STOI as the lip ROI missing
rate increases and the pixel count decreases, underscoring the
detrimental impact of lip ROI absence and reduced pixel count
on AVSE performance.

3) Analysis of Training With Low-Quality Videos: Further,
we assessed the impact of incorporating low-quality video dur-
ing training, including real and simulated samples. Table II also
provides PESQ and STOI scores (in %) for MEASEs trained
with real and simulated low-quality videos on the MISP-LQV
evaluation set. Our findings revealed that integrating real low-
quality video into training improved the robustness of MEASE
under low-quality video evaluation, which resulted in absolute
improvements of 0.19 in PESQ and 1.32% in STOI, respectively.

However, mixed-quality training presented a new challenge
that the quality and intelligibility of the enhanced speech
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Fig. 5. Comparison of PESQ and STOI (in %) among different missing rate
and pixels number groups on the on the MISP-LQV low-quality evaluation set
enhanced by MEASEs with different training video: (a) PESQ vs. missing rate,
(b) STOI (%) vs. missing rate, (c) PESQ vs. pixels number and (d) STOI (%)
vs. pixels number.

TABLE III
COMPARISON OF PESQ AND STOI (IN %) BETWEEN MEASES AND HPCNETS

WITH LRD ABLATIONS ON THE MISP-LQV EVALUATION SET

deteriorated under high-quality video, with decreases of 0.14 in
PESQ and 2.38% in STOI. This decline could be attributed
to the shared labels between paired high- and low-quality
videos, which caused an average output across different-quality
video inputs. Moreover, incorporating simulated low-quality
video consistently improved the performance of MEASE in
both high-quality and low-quality evaluations, yielding absolute
gains of 0.06 and 0.07 in PESQ, and 1.51% and 0.43% in
STOI, respectively. Further results in Fig. 5 reveal that these
improvements were consistently observed across different levels
of video degradation. These findings highlight varying degrees
of degradation help bridge the gap between real high- and
low-quality videos, contributing to a balance between robustness
and performance under varying video quality conditions.

B. Performance Analysis of HPCNet

1) Overall Comparison: We first explore the performance of
the proposed HPCNet and present a comparison of PESQ and
STOI (in %) results for MEASE and HPCNet in Table III. It is
evident that HPCNet significantly outperforms MEASE across

various video quality levels. Specifically, in evaluations with
high-quality video, HPCNet achieves absolute gains of 0.13 in
PESQ and 1.57% in STOI compared to MEASE. Furthermore, in
evaluations with low-quality video, the improvements facilitated
by HPCNet are even more pronounced, with enhancements of
0.16 in PESQ and 2.92% in STOI, respectively. These findings
underscore the superior robustness of HPCNet against low-
quality video compared to MEASE. Furthermore, considering
that HPCNet involves an increase in parameters compared to
MEASE, we also developed a large version of the MEASE
model by proportionally increasing the number of ResConv1D
blocks by 62%. However, MEASE-Large performed worse than
MEASE, with PESQ and STOI reductions of 0.01 and 0.16%
under high-quality video, and 0.02 and 0.12% under low-quality
video, respectively. This degradation suggests that simply in-
creasing the parameter count may not improve performance.
By contrast, thoughtful architectural design, namely HPCNet
with the LRD module and CGConv layer, delivers substantial
performance gains compared to MEASE-Large at a similar
parameter scale. Specifically, HPCNet achieves PESQ and STOI
improvements of 0.14 and 1.73% under high-quality video and
0.18 and 3.04% under low-quality video, respectively. In the
following sections, we will conduct ablation experiments to
analyze the contributions of two key components in the HPCNet:
the LRD module and the CGConv layer.

2) Ablation Study on LRD Module: Table III also presents
a comparison of PESQ and STOI (in %) results for MEASEs
and HPCNets with and without the LRD module. The findings
unequivocally demonstrate that the LRD module significantly
improves performance across various models and video quality
levels. Notably, in the evaluation with high-quality video, the
MEASE model achieved absolute gains of 0.04 in PESQ and
0.61% in STOI, after incorporating the LRD module. In com-
parison, the ablation of the LRD module resulted in a noticeable
performance decline for HPCNet, with a loss of 0.03 in PESQ
and a 0.4% decrease in STOI, respectively. Moreover, in the
evaluation with low-quality video, the LRD module yielded even
more pronounced improvements, which narrowed the perfor-
mance gap between high-quality and low-quality evaluations.
When added to MEASE, it shows enhancements of 0.08 in PESQ
and 1.98% in STOI, whereas its removal from HPCNet results
in declines of 0.05 in PESQ and 0.53% in STOI. These findings
underscore the contribution of the LRD module in fortifying the
robustness of AVSE models to low-quality video, demonstrating
its generalizability across different models. Additionally, higher
SNR speech cues enable the reconstruction of higher-quality
lip frames, further improving AVSE performance. More exper-
imental results can be found in our released code repository.

Furthermore, we analyzed the specific benefits of the LRD
module under low-quality video conditions by conducting abla-
tion experiments on its key components, including the two-pass
extraction (TPE) and intermediate knowledge distillation (IKD).
The results in Table III show the PESQ and STOI (in %) scores
for the MEASE and HPCNet when these key modules are
ablated. It was observed that under low-quality video evaluation
conditions, the TPE with the reconstructed lip frames signifi-
cantly improved the performance of both MEASE and HPCNet.
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Fig. 6. A example comparing low-quality, reconstructed, and high-quality lip
frame sequences: (a) LQV, (b) HQV, (c) LRD w./o. IKD and (d) LRD.

Fig. 7. Comparative t-SNE analysis of audio-pixel and contour embeddings
for low-quality, reconstructed and high-quality lip frames: (a) audio-pixel em-
bedding and (b) contour embedding.

Specifically, MEASE showed increases of 0.04 in PESQ and
1.62% in STOI, while HPCNet exhibited absolute gains of
0.03 in PESQ and 0.32% in STOI. These results highlight the
reconstructed lip frames provided an enriched visual context,
which can effectively bridge the quality gap under challenging
conditions. Moreover, the application of IKD led to further
improvements of 0.04 in PESQ and 0.36% in STOI for MEASE,
and 0.05 in PESQ and 0.53% in STOI for HPCNet. We speculate
that intermediate distillation helps to generate more precise
reconstructed video frames.

Fig. 6 shows a comparison of low-quality, reconstructed, and
high-quality lip frame sequences. The reconstructed lip frames
successfully restore a complete lip structure. Moreover, through
the integration of intermediate distillation, the reconstructed
frames exhibit markedly crisper lip details, demonstrating a
substantial enhancement in visual fidelity.

We also analyzed the differences between these lip sequences
as they passed through HPCNet. Fig. 7 presents a comparison
of audio-pixel and contour embeddings among the low-quality,
reconstructed, and high-quality lip frames. Note that the audio-
pixel and contour embeddings corresponding to the missing lip
frames in the low-quality video are omitted for clarity. It is evi-
dent that the difference in audio-pixel embeddings between the
raw low-quality and high-quality frames is striking. However,
the reconstructed audio-pixel embeddings closely mirror the
high-quality ones, demonstrating the effective restoration of de-
tails lost due to video quality degradation, such as missing frames
and reduced resolution. The negligible differences between
low-resolution and high-resolution contour embeddings validate
our previous findings about lip landmarks. This confirms the

TABLE IV
COMPARISON OF PESQ AND STOI (IN %) AMONG MEASE, CCNET, CGNET

AND HPCNETS WITH CGCONV ABLATIONS ON THE

MISP-LQV EVALUATION SET

robustness of contour features to resolution degradation. Signif-
icantly, the reconstructed contour embeddings closely mirror the
original high-quality ones, affirming that the reconstructed lip
frame sequences align with high-quality sequences both visually
and in the information extracted by the model. These findings
underscore the effectiveness of the proposed LRD module.

3) Ablation Study on CGConv Layer: We first conducted
ablation experiments on the key components of the CGConv
layer, including ASG and STG. Table IV also shows the PESQ
and STOI (in%) results for HPCNets when the ASG or STG was
removed. It is evident that removing the ASG led to degradations
across different video qualities, with absolute reductions of 0.02
in PESQ and 0.08% in STOI under high-quality video evaluation
and reductions of 0.03 in PESQ and 0.76% in STOI under
low-quality conditions. Conversely, ablating the STG resulted in
even more significant declines, with absolute reductions of 0.05
in PESQ and 0.40% in STOI during evaluations of high-quality
video. For low-quality conditions, the reductions were 0.05
in PESQ and 1.04% in STOI. These findings emphasize the
effectiveness of the CGConv layer in extracting valuable infor-
mation from contour features, indicating that the spatiotemporal
relationships are more crucial than the semantic relationships.

To better understand the advantages of contour features in
HPCNet, we also conducted a comprehensive comparison of
the average PESQ and STOI (in %) scores between the MEASE
and CGNet, which exclusively utilize pixel and contour features
as inputs, respectively. Regrettably, as illustrated in Table IV,
CGNet declined compared to MEASE across all video quality
conditions. Specifically, PESQ and STOI decreased by 0.03
and 0.57% under high-quality video, respectively. However, this
decline was less pronounced under low-quality video conditions,
with reductions of 0.01 in PESQ and 0.26% in STOI. These
findings lead us to speculate that contour features may offer
significant robustness only against specific video degradation
scenarios. Furthermore, Table IV compares different modeling
approaches using the same contour feature input, specifically
CGNet using CGConv layers versus CCNet using ResConv1D
blocks. We can observe that CGNet outperforms CCNet, where
PESQ and STOI improved by 0.06 and 1.36% under high-quality
video and by 0.13 and 0.41% under low-quality video. This
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Fig. 8. Comparison of PESQ and STOI (in %) among different missing rate
and pixels number groups on the on the MISP-LQV low-quality evaluation set
enhanced by MEASE, CGNet and HPCNet: (a) PESQ vs. missing rate, (b) STOI
(%) vs. missing rate, (c) PESQ vs. pixels number and (d) STOI (%) vs. pixels
number.

improvement demonstrates the superiority of GCNs over tra-
ditional CNNs for modeling complex relationships among lip
landmarks.

To verify this hypothesis, we divided all samples in the low-
quality evaluation set into 5 groups based on the missing rate of
the lip ROI and 6 groups based on the number of pixels in the
lip ROI. Fig. 8 compares average PESQ and STOI (in %) across
different missing rate and pixel number groups, which were en-
hanced by the MEASE, CGNet, and HPCNet. We observed that
CGNet showed greater robustness to low-resolution degradation
than MEASE. Specifically, in the 200− 400 pixel range, CGNet
outperformed MEASE with improvements of 0.04 in PESQ and
0.30% in STOI, respectively. In the 0− 200 pixel range, CGNet
exhibited even more significant improvements with gains of
0.08 in PESQ and 1.13% in STOI, respectively. In contrast,
for pixel number ranges above 400, the MEASE surpassed
CGNet, attaining higher PESQ and STOI scores. These findings
highlight the complementary relationship between contour and
pixel features across varying resolution conditions. HPCNet
effectively leverages this complementary nature, achieving the
highest PESQ and STOI scores across all resolution levels.

The observations can be attributed to the inherent character-
istics of contour and pixel features. The contour feature relies
on spatial relationships among lip landmarks and offers sparse
yet consistent descriptions even at reduced resolutions. Fig. 9
illustrates an example of paired high- and low-resolution sam-
ples, showing that the lip landmark distribution remains nearly
unchanged across different resolutions. In contrast, the pixel
feature excels at capturing detailed information with its dense
nature, providing richer cues as resolution increases.

4) Generalizability Study: To evaluate the generalizability
of the proposed HPCNet across different datasets, we ex-
tended our assessment to include the 2nd COG-MHEAR AVSE
Challenge [61] dataset. The challenge provides approximately
113 hours of mixed speech and video for the training set and
8.5 hours for the development set. Audio tracks of interferers

Fig. 9. A frame example comparing lip landmark distribution across videos
with different quality: (a) Landmarks in HQV and (b) Landmarks in LQV.

TABLE V
COMPARISON OF PESQ AND STOI (IN %) AMONG ALL SUBMISSIONS, MEASE

AND HPCNET ON THE 2ND COG-MHEAR AVSE CHALLENGE

EVALUATION SET

are composed of a single competing speaker or a noise source in
the following ranges: −15 dB to 5 dB (competing speaker) and
−10 dB to 10 dB (noise). The videos of the target speakers and
the competing speakers in the training set are selected from the
LRS3 dataset [62]. Noise data mainly comes from Clarity Chal-
lenge (1st) [63], Freesound [64], and DNS Challenge (2nd) [65].
There are 650 target speakers, 405 competing speakers and 7,346
noise files in the training set. The development set has 85 target
speakers, 30 competing speakers and 1825 noise files. All audio
files are monaural speech with a 16 kHz sampling frequency and
16-bit depth.

Table V compares PESQ and STOI (in %) among all submis-
sions, MEASE, and HPCNet on the official evaluation set. The
evaluation set has 1,389 extracted sentences from 30 speakers
(15 females and 15 males). Approximately half of the mixed
speech in the evaluation set has a competing speaker scenario
while the other half has noise. There are six competing speakers
(3 females and 3 males). The noise types used in the evaluation
set are a subset of the noise types used in the training and devel-
opment sets. The results clearly show that HPCNet outperformed
the MEASE baseline, yielding gains of 0.31 in PESQ and 3.06%
in STOI, respectively. Notably, HPCNet achieved the highest
STOI score and the second-highest PESQ score compared to
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other submissions. Specifically, compared to the MERL team,
HPCNet had a 0.51 higher STOI but a 0.04 lower PESQ. It’s
important to highlight that HPCNet still maintained a significant
advantage in the PESQ score compared to all submissions except
MERL. This consistent trend of superiority underscores the
outstanding effectiveness and adaptability of HPCNet across
diverse evaluation benchmarks. Additionally, upon manually
inspecting the videos in the evaluation set, we found that most
videos were high-quality, featuring low frame-missing and high
resolutions. Consequently, the pixel features captured more de-
tailed lip movements, explaining why HPCNet did not achieve
even more significant improvements in this scenario.

VI. CONCLUSION

This study advances AVSE research for real-world low-
quality video scenarios by releasing the MISP-LQV benchmark
and proposing HPCNet. The MISP-LQV benchmark comprises
120 hours of paired high- and low-quality Mandarin audio-visual
recordings from 263 speakers across 26 homes, along with
two video quality degradation simulators: frame missing and
resolution reduction. Experimental findings demonstrate that
(1) several well-known AVSE models exhibit consistent per-
formance degradation under low-quality video conditions, and
(2) training with real and simulated low-quality videos improves
robustness against low-quality videos but degrades performance
for high-quality videos. HPCNet exhibits strong robustness
to video quality degradation, thanks to the LRD module and
CGConv layer. The LRD module enhances video quality by
leveraging noisy speech with additional knowledge distillation
from a high-quality teacher model. The CGConv layer captures
complex relationships among lip landmark points using spatio-
temporal and semantic-contextual graphs, remaining reliable at
low resolutions. In future work, we plan to explore integrat-
ing pretrained foundation models into our audio-visual feature
extraction pipeline to capitalize on their rich representational
capacity. While this approach promises further performance
gains, it substantially increases parameter counts and compu-
tational overhead. We will investigate strategies such as model
compression and knowledge distillation to maintain a practical
balance between enhanced performance and resource efficiency.
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