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Abstract—A multi-level distortion measure (MLDM) is proposed
as an objective to optimize deep neural network-based speech
enhancement (SE) in both audio-only and audio-visual scenarios.
The aim is to achieve simultaneous performance improvements
in speech quality, intelligibility, and recognition error reductions.
Moreover, a comprehensive correlation analysis shows that these
three evaluation metrics exhibit high Pearson correlation coeffi-
cient (PCC) values with three commonly used optimization objec-
tives: the mean squared error between the ideal ratio and estimated
magnitude masks, scale-invariant signal-to-noise ratio, and cross-
entropy-guided measure. To further improve the performance, we
leverage the complementarities of the three objectives and propose
another correlated multi-level distortion measure (C-MLDM) de-
fined as a weighted combination of MLDM and an average corre-
lation measure based on the three PCCs. Experimental results on
the TCD-TIMIT corpus corrupted by additive noise demonstrate
that MLDM outperforms systems optimized with each objective
in both audio-visual and audio-only scenarios, offering improved
performances in all three metrics: speech quality, intelligibility, and
recognition performance. C-MLDM also consistently outperforms
MLDM in all test cases. Finally, the generalizability of both MLDM
and C-MLDM is confirmed through extensive testing across diverse
datasets, SE model architectures, and linguistic conditions.

Index Terms—Audio-visual, optimization objective, robust
speech recognition, speech enhancement, task-generic.

I. INTRODUCTION

S PEECH enhancement (SE) extracts clean speech from sig-
nals degraded primarily by noise [1]. SE serves various

applications and goals. In human-to-human communication,

Manuscript received 22 August 2023; revised 25 February 2024; accepted 8
April 2024. Date of publication 25 April 2024; date of current version 3 May
2024. This work was supported by the National Natural Science Foundation
of China under Grant 62171427. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Hakan Erdogan.
(Corresponding author: Jun Du.)

Hang Chen, Qing Wang, and Jun Du are with the National Engineer-
ing Research Center of Speech and Language Information Processing, Uni-
versity of Science and Technology of China, Hefei 230026, China (e-mail:
ch199703@mail.ustc.edu.cn; qingwang2@ustc.edu.cn; jundu@ustc.edu.cn).

Bao-Cai Yin and Jia Pan are with iFLYTEK Research, Hefei 230088, China
(e-mail: bcyin@iflytek.com; jiapan@iflytek.com).

Chin-Hui Lee is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail: chl@ece.
gatech.edu).

The source codes are publicly available. https://github.com/coalboss/
CMLDM.

Digital Object Identifier 10.1109/TASLP.2024.3393732

the focus is on speech quality and intelligibility. In contrast,
SE enhances automatic speech recognition (ASR) performance
in human-to-machine communication. While task-specific SE
achieves favorable results, its drawbacks include resource-
intensive development, limited generalizability and increased
complexity, hindering its applicability to diverse real-world
challenges. To overcome these limitations and cater to a broader
range of applications, developing a task-generic SE model
that simultaneously enhances speech quality, intelligibility and
recognition performance becomes crucial.

Conventional SE algorithms (e.g., [2], [3], [4]) often fail to
track unexpected nonstationary noise in real-world conditions.
In recent years, data-driven SE approaches (e.g., [5], [6],
[7]) using the powerful modeling capabilities of deep neural
networks (DNNs) [8], have attracted increasing attention. In-
tuitively, a task-generic DNN-based SE model can adopt an
optimization objective, such as the mean absolute error (MAE)
or mean squared error (MSE) between corresponding wave-
forms or spectrograms [9], [10], [11] of enhanced and clean
speech. Although achieving good results, studies have shown
that it is not directly related to speech quality [12], [13], [14]
or intelligibility. Moreover, previous works [15], [16], [17] have
noted that SE can lead to ASR performance degradation. Recent
papers [14], [18], [19], [20] have addressed these challenges by
exploring alternative optimization objectives. However, these
objectives are limited to demonstrating effectiveness in specific
evaluations, such as improving speech quality and/or intelligibil-
ity, which may inadvertently overlook ASR performance [18],
[21]. Alternatively, some algorithms [20], [22] have prioritized
enhancing ASR accuracy while sacrificing speech quality and
intelligibility. This makes achieving task-generic SE in audio-
only scenarios difficult.

The McGurk effect [23] suggests a strong influence of vision
on human auditory perception. Follow-up studies (e.g., [24],
[25], [26]) have shown that visual cues, such as lip movements,
can help speech perception, especially in noisy environments.
Recent studies [27], [28], [29] have also demonstrated that
adding the visual modality can substantially enhance the speech
quality and intelligibility of DNN-based SE models. Hence,
there is a solid motivation to explore the potential of task-generic
SE models in the audio-visual scenario, as it is more likely
to yield promising outcomes. However, limited attention has
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been given to investigating the impact of AVSE on audio-visual
speech recognition (AVSR) performance.

In this study, our primary focus is designing optimization
objectives to enhance speech with simultaneous improvements
in quality, intelligibility, and recognition performance. Our main
contributions can be summarized as follows:

1) conducting a comprehensive correlation analysis to
demonstrate complementarities among three commonly
used optimization objectives, namely, MSE between the
ideal ratio and estimated magnitude masks (MSE-M),
scale-invariant signal-to-noise ratio (SISNR), and cross-
entropy-guided measure (CEGM), together impacting all
three SE evaluation metrics, including speech quality,
intelligibility and recognition performances.

2) proposing a multi-level distortion measure (MLDM) that
combines MSE-M, SISNR, and CEGM in a novel sequen-
tial and weighted manner to leverage the complementarity
for matching objectives to multitask evaluation metrics.

3) proposing a correlated multi-level distortion measure (C-
MLDM) to augment the interactions among the three
objectives by adding an additional correlation term based
on the Pearson correlation coefficients to MLDM.

4) confirming the effectiveness and generalizability of
MLDM and C-MLDM via a series of experiments in both
audio-visual and audio-only scenarios and verifying the
benefit of adding a visual modality to SE and ASR.

The rest of the paper is organized as follows. Section II
introduces the related works. Section III presents the results
of the correlation analysis, which motivated our research. Sec-
tion IV describes our proposed methods, including MLDM and
C-MLDM. Section V analyzes the experimental results. Finally,
we summarize our findings in Section VI.

II. RELATED WORKS

A. Audio-Visual Speech Enhancement

AVSE has made significant progress since its inception, with
early works [27], [28], [29], [30], [31], [32], [33] laying the
foundation. Deep neural network-based AVSE models [34],
[35], [36] have gained attention. However, they were primarily
evaluated under constrained conditions, such as using fixed sets
of phrases or a limited number of known speakers.

To address the challenge of unknown speakers and noise
types, [37] introduced a deep AVSE model with separate mag-
nitude and phase subnetworks. The model minimizes the MAE
between the predicted magnitude spectrogram and the ground
truth while maximizing the cosine similarity between the phase
prediction and the ground truth. Another approach [38] directly
estimated the complex spectrogram using facial embeddings of
the source speaker. The optimization objective is based on MSE
between estimated and clean complex spectrograms. In [39], a
time-domain AVSE model was proposed using ConvTasNet [40]
to estimate the waveform directly. It was trained by optimizing
the SISNR between the enhanced and clean waveforms. In
another work, [41] utilized phone units as the classification
target, providing suitable visual embedding for time-domain
AVSE. Furthermore, [42] employed audio embeddings from

noisy multichannel speech to complement the visual embedding
in time-domain AVSE.

Recently, [43] presented a novel multimodal embedding-
aware speech enhancement (MEASE) technique that extended
the visual-only pretrained embedding extractor to an audio-
visual pretrained extractor. The MEASE model was optimized
using MSE-M. In [44], it was reported that the visual modality
can cause performance degradations at high SNR levels. To
address this, a late fusion model was proposed, which com-
bined two magnitude masks estimated by the audio and video
modalities. The optimization objective in this case is still MSE-
M. [45] introduced a two-stage audio-visual fusion strategy,
incorporating audio-visual deep clustering to minimize the MSE
between the embedding matrix and the affinity matrix of the
ideal binary mask (IBM) [46]. Furthermore, [47] utilized audio-
visual temporal synchronization as a direct and dominant cue to
transfer knowledge from a pretrained synchronization model to
a time-domain AVSE model. The model was trained using cross
entropy for speaker classification and the SISNR. Lastly, [48]
presented a unified framework to efficiently learn different types
of audio-visual correlation evidence. The framework generates
aligned audio-visual representations for time-domain AVSE and
active speaker detection.

In recent advancements, self-supervised learning has emerged
as a groundbreaking paradigm in AVSE. [49] uses a deep, multi-
instance, multi-label learning framework to derive audiovisual
object models from unlabeled video content and subsequently
leverages visual context to facilitate audio source separation in
novel videos. Similarly, [50] advocates cultivating an integrated
multisensory representation through self-supervised means by
orchestrating a neural network to determine the temporal align-
ment between video frames and corresponding audio segments.
This novel learned representation is then used to distinguish be-
tween on-screen and off-screen audio sources. Further advanc-
ing this field, [51] employs self-supervised learning techniques
to transform a video into a collection of discrete audiovisual
objects. This approach introduces a model that uses attention
mechanisms to localize and cluster sound sources while utilizing
optical flow to assemble information across temporal dimen-
sions, demonstrating the significant potential of self-supervised
learning to enhance AVSE capabilities.

B. Optimization Objectives in Speech Enhancement

Numerous DNN-based SE models have achieved state-of-
the-art performance by minimizing the MAE or MSE between
enhanced and clean waveforms or spectrograms. However, they
still suffer from the loss-metric mismatch problem [52]. Stud-
ies [13], [53] have indicated that MSE or MAE at the signal level
exhibits a limited correlation with speech quality. [54] demon-
strated that lower MSE or MAE scores do not necessarily guar-
antee higher perceptual evaluation of speech quality (PESQ) [55]
or improved short-time objective intelligibility (STOI) [56],
which are commonly used metrics to evaluate speech quality and
intelligibility, respectively. Furthermore, some SE models gener-
ate unnatural-sounding speech [57]. Additionally, optimizing for
MSE or MAE may not necessarily improve ASR performance,
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and can even increase the word error rate (WER) [9], [58], [59],
[60]. This semantic gap results in inefficient model training.

To address this, several studies have explored optimizing the
evaluation metrics directly to align model training with the final
goal. For instance, some studies have adopted the STOI as an op-
timization objective to enhance speech intelligibility [14], [61],
while others have proposed complex methods to approximate
the STOI [62]. However, some evaluation metrics, such as PESQ
and WER, are inherently nondifferentiable and discontinuous,
making direct gradient calculation and training challenging. To
address this challenge, [18], [19] explored using reinforcement
learning (RL) techniques to optimize SE models with PESQ and
WER as reward functions. However, RL-based methods often
encounter optimization difficulties and may result in limited
improvements in the target metric while potentially causing
degradation in other related metrics.

Other approaches focus on addressing the loss-metric mis-
match using the deep feature loss, which uses representations
learned from a different task to construct similarity metrics [63].
For example, [21] trained a PESQ prediction model to optimize
the SE model by improving the enhanced output. [64] introduced
a novel phone-fortified perceptual loss (PFPL) for comparing
enhanced and clean speech by utilizing the Wasserstein dis-
tance [65] between the latent representations extracted from
the wav2vec model [66]. Ref. [67] presented a DNN-based
estimator for 25 temporal acoustic parameters [68] and de-
fined a temporal acoustic parameter (TAP) loss, minimizing the
distance between estimated acoustics for clean and enhanced
speech. Furthermore, [69] proposed a phonetic-aligned acoustic
parameter (PAAP) loss that incorporates temporal parameters
into associating acoustic parameters and phonemes based on
the TAP loss. The aforementioned techniques enhanced quality
but with slight ASR improvement. Ref. [22] developed two
DNNs, one dedicated to SE and the other mimicking the WER
derived from an ASR system. Moreover, [20] introduced a
cross-entropy-guided measure (CEGM) formulated as the cross
entropy of the hidden Markov model (HMM) state posteriors
between the enhanced and clean outputs of the acoustic model.
However, these methods improve ASR accuracy at the expense
of perceptual quality.

In contrast to the aforementioned task-specific optimization
objects, our proposed MLDM and C-MLDM are designed
to simultaneously improve speech quality, intelligibility, and
recognition performance, thus facilitating a task-generic SE
model. Specifically, MLDM embodies a novel amalgamation
of MSE-M, SISNR and CEGM in a sequential and weighted
manner that outperforms any single target. Further advancing
this methodology, C-MLDM incorporates a correlation mea-
surement to enhance the synergistic interactions among the three
basic objectives, achieving remarkable improvements.

III. MOTIVATION

Elucidating the relationships between different optimization
goals and different evaluation metrics typically requires an
extensive and time-consuming training process. In an effort
to bypass this laborious training phase, we first conducted a

comprehensive correlation analysis among various optimization
objectives and evaluation metrics in both audio-only and audio-
visual scenarios. As shown in Fig. 1(a), experiments were per-
formed on the TCD-TIMIT corpus [70] corrupted by simulated
additive noises with the same process as in [43], denoted as
SNTCD-TIMIT. The baseline optimization objectives are the
commonly used SISNR and MSE between the ideal ratio and
estimated magnitude masks (MSE-M). Moreover, we extend
the audio-only CEGM to an audio-visual version as a baseline
optimization objective, an approach similar to the one described
in [20].

To evaluate speech quality and intelligibility, we employed
PESQ and STOI, respectively. PESQ applies an auditory trans-
form to compare the loudness spectrum of clean and enhanced
speech, yielding a score ranging from −0.5 to 4.5; higher scores
indicate better speech quality. In contrast, the STOI compares the
temporal envelopes of clean and enhanced speech in short-time
regions, providing values between 0 and 1, with higher values
representing better speech intelligibility. The recognition per-
formance is evaluated using in-domain automated speech recog-
nition (IdASR) and in-domain audio-visual speech recognition
(IdAVSR) models for audio-only and audio-visual scenarios,
respectively. IdASR and IdAVSR are hybrid DNN-HMM mod-
els that share a 2-gram phone-based language model, with the
main difference lying in their acoustic models. In IdASR, the
acoustic model comprises an audio processing module followed
by a sequence module. Additionally, the IdAVSR includes an
additional video process module running in parallel with the
audio process module. The outputs from these two process
models are concatenated and then fed to the subsequent se-
quence module. See [71] for details about the model structure
and training process. The phone error rate (PER) serves as
a metric and is calculated as follows, out of Nu units being
evaluated:

PER =
S + D+ I

Nu
(1)

where S,D and I denote the number of substitution, deletion and
insertion errors, respectively.

Inspired by previous studies (e.g., [20]), the Pearson corre-
lation coefficient (PCC) [72] is adopted to identify correlations
with sample pairs (yk, zk) of the evaluation metric and optimiza-
tion objective and can be calculated as follows:

ρ({yk}, {zk}) =
∑K−1

k=0 (yk − y)(zk − z)√∑K−1
k=0 (yk − y)2

√∑K−1
k=0 (zk − z)2

(2)

where K is the total number of samples. y =
∑K−1

k=0 yk/K and
z =

∑K−1
k=0 zk/K are means of the sample points in {yk} and

{zk}, respectively. Equation (2) can be considered an expres-
sion of the ratio of how much the two datasets vary together
instead of how much they vary separately. The magnitude indi-
cates the correlation’s strength and the sign indicates whether
the correlation is positive or negative.

We aim to establish a monotonic relationship between the
baseline optimization objectives (MSE-M, SISNR and CEGM,
MAE-M) and the evaluation metrics (PESQ, STOI and PER).
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Fig. 1. Our proposed framework: (a) The correlation analysis shows the complementarity of MSE-M, SISNR, and CEGM concerning PESQ, STOI and PER;
(b) a block diagram for calculating MLDM and C-MLDM; and (c) MLDM and C-MLDM are used to optimize the model parameters of DNN-based AVSE.

To achieve this, we employ a mapping technique that accounts
for the nonlinear relationship, allowing us to linearize the data
to utilize the PCC for correlation evaluation. Motivated by [73],
[74], [75], a logistic function is used here:

M = f(L) = c1
1 + exp(c2L+ c3)

(3)

where M represents the evaluation metric score (PESQ, STOI,
and PER) and L represents the optimization objective score
(MSE-M, SISNR and CEGM). The function f(·), with values
ranging from 0 to 1, can be regarded as an estimator of M
based on L, and the constants c1, c2, and c3 are used to balance
order-of-magnitude discrepancies. They are determined through
data-fitting using a least-squares method. It is worth noting that
the mapping is performed with a monotonic logistic function that

does not influence rankings. Subsequently, the evaluation met-
ric’s performance is represented using the PCC, applied to the
mapped objective scores, f(L). The MSE-M, SISNR, CEGM,
PESQ, STOI, and PER were computed for each utterance. This
procedure was utilized to calculate all the correlation coefficients
in our study. We are interested in the correlation strength; thus,
only the PCC magnitudes, ranging from 0 to 1, are presented in
the experimental results.

Fig. 2 illustrates the average PCCs between one of the three
metrics and another of the three objectives on the SNTCD-
TIMIT test set. We observe varying degrees of correlation
between objective-metric pairs. Specifically, MSE-M shows the
highest PCC with PESQ (0.92), while SISNR demonstrates the
highest PCC with STOI (0.89). CEGM exhibits the highest PCC
with PER for both audio-only and audio-visual scenarios, with

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2024 at 04:51:37 UTC from IEEE Xplore.  Restrictions apply. 



2512 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

Fig. 2. Average PCC comparisons between a pair of one evaluation metric
(PER, PESQ or STOI) and one optimization objective (MSE-M, SISNR or
CEGM) calculated in (a) audio-only and (b) audio-visual scenarios.

values of 0.83 and 0.79, respectively. This highlights the com-
plementary nature of MSE-M, SISNR, and CEGM concerning
the three performance metrics in both scenarios. Leveraging
this complementarity, we can design near-optimal objectives to
achieve task-generic SE.

Nonetheless, when comparing the PCCs with PER between
audio-only and audio-visual scenarios, we observed a notable
decrease in PCCs for MSE-M and SISNR, with reductions of
0.3 and 0.22, respectively, when using the AVSR backend. This
decrease in PCCs can be attributed to the fact that the AVSR’s
performance is jointly influenced by both audio and video inputs,
making it less sensitive to partial audio input distortion. In
contrast, CEGM incorporates both audio and video components
as inputs to the optimization objective, establishing a more direct
link to the final evaluation metric. The difference between the
audio-only and audio-visual scenarios also illustrates that adding
the visual modality enhances the complementarity of MSE-M,
SISNR, and CEGM regarding all three objectives.

This analysis leads us to consider two essential questions:

Q1 How can we leverage the complementarity to design an
effective optimization objective for AVSE to improve speech
quality, intelligibility, and AVSR performance?

Q2 How will the individual characteristics of MSE-M, SISNR,
and CEGM affect the optimization process?

Motivated by Q1, we propose MLDM with more detail in
Section V-C. Motivated by Q2, we also observed a discrepancy
in the convergence speeds of MSE-M, SISNR, and CEGM
during training using MLDM, leading us to propose C-MLDM
in Section V-D for further improvements.

IV. PROPOSED TECHNIQUES

Inspired by the concept of function smoothing [76], which
is a commonly used approach to approximate nondifferentiable
functions with differentiable functions, we adopt a similar strat-
egy by weighting MSE-M, SISNR, and CEGM to leverage
their complementarity for matching evaluation metrics from

multiple tasks. As a result, we define MLDM as an iterative
combination of these three selected objectives. Furthermore,
our novel C-MLDM surpasses MLDM by not only considering
the individual values of the three optimization objectives but
also incorporating the correlations among them. Fig. 1(b) illus-
trates the calculation framework of our proposed MLDM and
C-MLDM. In the following sections, we elaborate on MLDM
and C-MLDM.

A. Multi-Level Distortion Measure

As shown in Fig. 1(b), the AVSE model takes B pairs of
noisy spectrogram features {Xi ∈ RT×C} and the lip frame
sequence {Vi ∈ R

T
4 ×H×W } as inputs to estimate the magnitude

mask {M̂i ∈ RT×C}. The process is described as follows:

{M̂i} = F({Xi}, {Vi};W ) (4)

where F and W denote the AVSE model and its parameter set.
i = 0, 1, . . . , B − 1 and B is the batch size. T and C denote
the number of frames and frequency bins for the spectrogram,
respectively. H and W denote the length and width of the lip
frame, respectively. Here, we use B = 32, C = 201 and H =
W = 96 by default.

We first adopted the average MSE-MLMSE−M
between {M̂i}

and the ideal ratio mask (IRM) {Mi ∈ RT×C} to compare the
spectral similarity between the enhanced speech and the clean
speech. MSE-M can be computed as follows:

LMSE−M
=

∑B−1
i=0 LMSE−M

i

B

=

∑B−1
i=0

∑T−1
t=0

∑C−1
j=0 (m̂i,t,j −mi,t,j)

2

BTC
(5)

whereLMSE−M
i denotes the MSE-M score of one sample. m̂i,t,j

and mi,t,j are the values at the t-th frame and j-th frequency bin
of M̂i and Mi, respectively.

Then, we use SISNR to measure the distortions of the en-
hanced speech on the waveform. In a waveform reconstruction
module U , M̂i is used to filter the noisy spectrum Xspec

i ∈
C

T×C , and the filtered spectrum is fed to a 1D transposed
convolution layer to reconstruct waveform ŝi ∈ RL. The whole
reconstruction process is briefly described as follows:

{ŝi} = U({Xspec
i }, {M̂i};Wstft) (6)

where Wstft denotes the forward weight of the STFT, which is
also the parameter set of the 1D transposed convolution layer. L

is the length of the waveform. Then, the average SISNR LSISNR

between {ŝi} and the clean waveform {si ∈ RL} is calculated
as follows:

s̃i,τ = ŝi,τ

(
L−1∑
τ=0

s2i,τ

)
/

(
L−1∑
τ=0

ŝi,τsi,τ

)

LSISNR
=

∑B−1
i=0 LSISNR

i

B
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= −10

B

B−1∑
i=0

log

∑L−1
τ=0 s

2
i,τ∑L−1

τ=0[s̃i,τ − si,τ ]2
(7)

where LSISNR
i denotes the SISNR score of one sample. ŝi,τ and

si,τ are waveform values at the τ -th time step of estimated ŝi
and clean si, respectively.

Finally, we notice that low-level acoustic features such as
spectrum and waveform are not directly correlated with AVSR
accuracies. Inspired by CEGM, we adopt a DNN-HMM audio-
visual acoustic model for extracting high-level representations
derived from low-level acoustic and visual features. By utilizing
valuable acoustic knowledge from the backend AVSR model,
we believe that the high-level representations can better assess
the AVSR performances. Given {ŝi} and {Vi}, the audio-visual
acoustic model outputs the clustered HMM state posterior prob-
abilities {p(Ĥi|ŝi, Vi) ∈ RT×I}. The extraction process can be
summarized as follows:

{p(Ĥi|ŝi, Vi)} = G({ŝi}, {Vi};Wam) (8)

where G and Wam denote the audio-visual acoustic model
and the corresponding parameter set, respectively, p(Ĥi|si,
Vi) denotes the state posteriors of one sample, Ĥi =

[ĥi,0, ĥi,1, . . . , ĥi,T−1] is a random process of length T , and
ĥi,t is a random variable whose values range over all clustered
HMM states {0, 1, . . . , I}. The acoustic model also maps the
clean waves si and Vi to the high-level label p(Hi|si, Vi).

Next, we adopt an average cross entropy to measure the
similarity between enhanced and clean high-level features:

LACEGM
=

∑B−1
i=0 LACEGM

i

B

=−
B−1∑
i=0

T−1∑
t=0

I−1∑
j=1

pt(hi,t=j|si,Vi)logpt(ĥi,t=j|ŝi,Vi)

TB
. (9)

Notably, unlike [20], which solely outputs FBANK features
desired by the backend, our method allows reconstructing wave-
forms from the mask outputted by the SE front-end, and coupling
with the backend is realized through an online DNN-based
feature extractor. To distinguish our method from previous
approaches, we refer to it as the audible cross-entropy-guided
measure (ACEGM). LACEGM

i denotes the CEGM score of one
sample. There is a total of I clustered HMM states and j denotes
the j-th state.

However, the raw values of MSE-M, SISNR, and ACEGM
exhibit significant differences in their order of magnitude. To
address this disparity, we perform a normalization as follows:

L̃MSE−M = 10
�log10

1

|LMSE−M |
�LMSE−M

(10)

where �·� is the floor function. The normalization factor cMSE−M

is treated as a constant when computing the gradient. cSISNR and
cACEGM are also calculated in the same way for normalizing
LSISNR and LACEGM to L̃SISNR and L̃ACEGM, respectively.
The normalization operation ensures the magnitude of L̃MSE−M,
L̃SISNR and L̃ACEGM in the range of 0 to 1. Then, MLDM can

be calculated as follows:

LMLDM=αL̃MSE−M+βL̃SISNR+(1−α−β)L̃ACEGM (11)

where the weights α and β are determined as hyperparameters,
which are discussed in Section V.

MLDM is differentiable and thus can be easily used as
the objective function to optimize DNN-based AVSE. MLDM
focuses on distortions contained in the magnitude spectrum,
degraded speech waveform, and in the high-level representation
extracted by the audio-visual acoustic model. Clearly, in contrast
to baselines, MLDM provides a more comprehensive similarity
measure between enhanced and clean speech.

The MLDM framework for optimizing the DNN-based AVSE
is also shown in Fig. 1(c). The model is trained with gradient
descent by back-propagation [77].

B. Correlated Multi-Level Distortion Measure

The critical contribution of C-MLDM lies in its incorpora-
tion of the values of the three similarity measures and explicit
modeling of their correlations. This motivation stems primarily
from our observation of the experimental results obtained from
MLDM. While the MLDM-optimized AVSE model demon-
strated consistent improvements across the three evaluation
metrics regarding overall average results, the sample-level im-
provements displayed an inconsistent trend. In particular, certain
samples demonstrated significant PER reduction but showed less
noticeable improvements in PESQ and STOI. Conversely, other
samples exhibited the opposite pattern.

Accordingly, we propose a correlation measure (CM) between
three basic optimization objects in the MLDM. During the
training stage, it is imperative not only to minimize the values
of these three basic optimization objects but also to ensure their
synchronized variation. To achieve this, we use the data in a batch
to calculate the correlation coefficient between any pair of the
basic optimization objects. By averaging these three coefficients,
we derive the final correlation measure.

As outlined in Section III, we initially employ the PCC to
quantify the correlation between two basic optimization objec-
tives and a logistic function to capture the nonlinear relationship
and linearize the data. The calculation process can be briefly
described as follows:

LCM =
1

3
[ρ({f(L̃MSE−M

i )}, {f(L̃SISNR
i )})

+ ρ({f(L̃MSE−M
i )}, {f(L̃ACEGM

i )})
+ ρ({f(L̃SISNR

i )}, {f(L̃ACEGM
i )})] (12)

where L̃MSE−M
i , L̃SISNR

i and L̃ACEGM
i represent the normalized

versions of LMSE−M
i , LSISNR

i and LACEGM
i , respectively. The

normalization and ρ(·) are the same as in (10) and (2), respec-
tively. f(·) is the same as in (3) with c1 = c2 = c3 = 1.

We notice that all three PCCs are positive and would like to
make (1− LCM) as small as possible. Accordingly, C-MLDM
is defined as follows:

LC−MLDM = (1− γ)LMLDM + γ(1− LCM) (13)
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where γ is a hyperparameter to control the correlation measure
weight; discussed in Section V-C2.

C-MLDM emphasizes the correlation between each basic
objective in MLDM, explicitly demanding a similar changing
trend among them. This prevents the model from converging
to a minimum point that is solely associated with a specific
objective. The framework of C-MLDM for guiding the front-end
DNN-based AVSE is also illustrated in Fig. 1(c). Similar to
previous approaches, the model is trained with gradient descent
by back-propagation.

V. EXPERIMENTAL AND RESULTS ANALYSES

A. Implementation Detail

We first performed a series of experiments on the SNTCD-
TIMIT. MEASE and its audio-only version, no embedding-
aware speech enhancement (NoEASE) [43] were adopted as
SE models. As shown in Fig. 1(c), the MEASE model consists
of a pretrained multimodal embedding extractor (MEE) module
and three stacks of ConvBlock1Ds. Each ConvBlock1D includes
a 1D convolution layer with a residual connection, a ReLU
activation, and a batch normalization, as in [37]. The MEE
module combines the noisy filter bank (FBANK) feature and the
lip frames to generate a multimodal embedding. This embedding
is processed by the orange stack consisting of 10 ConvBlock1Ds.
The noisy log power spectra (LPS) feature is processed by
the green stack consisting of 5 ConvBlock1Ds. The outputs
of these stacks are concatenated along the channel dimension
and fed into the top stack (blue-violet), which consists of 15
ConvBlock1Ds, to obtain a magnitude mask. In comparison, the
NoEASE model lacks the pre-trained MEE module and the or-
ange ConvBlock1Ds stack. For training, we used the Adam [78]
optimizer for 100 epochs, implementing early stopping if there
was no improvement in the validation loss for 10 consecutive
epochs. The initial learning rate was set to 0.0003 and halved
during training if there is no improvement for 3 epochs in the
validation loss. The best model was selected with the lowest
validation loss.

B. Complementarity Analysis

To further validate the complementarity of MSE-M, SISNR,
and CEGM regarding speech quality, intelligibility and recog-
nition errors, as discussed in Section III, we first compare the
average PER (in %), PESQ, and STOI (in %) among the un-
processed system (“noisy”) and the SE models optimized using
MSE-M, SISNR and CEGM on the SNTCD-TIMIT test set in
audio-only and audio-visual scenarios. The results are depicted
in Fig. 3.

A key finding is the strong agreement between the correlation
analysis and the optimization results in both audio-only and
audio-visual scenarios. Specifically, the optimization objective
that exhibits a higher correlation with a specific metric tends
to yield a greater improvement for that metric. For instance,
MSE-M gives the highest PCC of 0.92 for PESQ, as shown
in the middle of Fig. 2(a) and (b), and achieves the highest
PESQ gain of 0.37 and 0.60, respectively, in the middle of

Fig. 3. Comparison of average PER, PESQ and STOI among noisy and SE
models optimized by MSE-M, SISNR and CEGM on the SNTCD-TIMIT test set
in audio-only (a) and audio-visual scenarios (b). Note that CEGM solely outputs
FBANK features desired by the back end, which cannot perfectly reconstruct
the waveform for calculating PESQ and STOI.

Fig. 3(a) and (b) for both audio-only and audio-visual scenarios.
Similarly, SISNR shows the highest PCC of 0.89 in the right part
of Fig. 2(a) and (b) and obtains the highest STOI gains of 4.45%
and 9.19%, respectively, in the right part of Fig. 3(a) and (b)
for both scenarios. Moreover, CEGM exhibits the highest PCCs
of 0.83 and 0.79, with PER shown on the left of Fig. 2(a) and
(b), which also achieved the highest PER reductions of 2.78%
and 3.86%, respectively, on the left of Fig. 3(a) and (b) for both
cases.

Moreover, the inclusion of the visual modality leads to great
improvements in speech quality, intelligibility and recognition
accuracies. Specifically, MSE-M and SISNR demonstrate supe-
rior performances to the noisy baseline across all SNR levels,
with average extra reductions in PER of 2.61% (from 0.15%
in Fig. 3(a) to 1.91% in Fig. 3(b)) and 3.01% (from 1.09%
in Fig. 3(a) to 3.00% in Fig. 3(b)), respectively. This indicates
that including unprocessed visual input helps mitigate the data
mismatch between training and testing for the backend AVSR
model. While CEGM consistently achieves PER reductions from
the noisy baseline at all SNR levels, it can be inferred that the
visual modality amplifies the advantages of MSE-M, SISNR,
and CEGM and their complementarity.

C. Performance Analysis of MLDM

1) Overall Comparisons: To evaluate the effectiveness of our
proposed MLDM, we present a comparison of average PER (in
%), PESQ, and STOI (in %) among noisy, three baseline objec-
tives (MSE-M, SISNR, and CEGM) and our proposed MLDM in
both audio-only and audio-visual scenarios, as shown in Table I.
From the results, we can observe that the MLDM-optimized
AVSE model effectively combines the advantages of the three
baselines, resulting in top performances across all evaluation
metrics in both scenarios. Additionally, we also calculate the
average PCCs between the three evaluation metrics and MLDM
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Fig. 4. Average performance comparisons of MLDMs with different α and β parameter values in (11) evaluated on the SNTCD-TIMIT test set in the audio-visual
scenario for (a) PER (in %), (b) PESQ and (C) STOI (in %).

TABLE I
COMPARISON OF AVERAGE PER, PESQ AND STOI AMONG NOISY AND SE

MODELS OPTIMIZED BY MSE-M, SISNR, CEGM, MLDM AND C-MLDM ON

THE SNTCD-TIMIT TEST SET IN AUDIO-ONLY AND AUDIO-VISUAL

SCENARIOS

on the SNTCD-TIMIT test set and list them in the bottom row of
Table I. Notably, when compared with the PCC results in Fig. 2,
MLDM consistently exhibits the highest PCCs for all evaluation
metrics in both scenarios.

The strong alignment between the performance of MLDM-
optimized SE models and the results of correlation analysis
highlights the robust alignment of MLDM with quality, intel-
ligibility and recognition performance. Further, it demonstrates
the effectiveness of MLDM as an optimization objective. These
consistent results provide additional support for the effectiveness
of MLDM as an optimization objective in various evaluation
scenarios.

2) An Ablation Study on Hyperparameter Setting: We also
investigate the impact of the hyperparameters α and β in (11) on
the AVSE performance. Fig. 4(a), (b), and (c) present the average
PER, PESQ, and STOI of MLDM values with different hyperpa-
rameter settings on the SNTCD-TIMIT test set, respectively. The
hyperparameters α and β are constrained to satisfy 0 ≤ α ≤ 1
and 0 ≤ β ≤ 1− α. We systematically vary the values of α and
β with a step size of 0.2, resulting in a total of 21 experimental
configurations.

An important observation is the varying complementarity
among the three components of the MLDM. As the weights
α and β increase, both PESQ and STOI consistently exhibit an
upward trend. The highest PESQ score is achieved at α = 0.6
andβ = 0.4, while the highest STOI score is obtained atα = 0.4
and β = 0.6, closely aligning with the trends observed in the
correlation analysis. Specifically, MSE-M demonstrates a higher
correlation with PESQ, whereas SISNR shows a stronger corre-
lation with STOI. Conversely, as the weight of CEGM increases,
the perceptual quality degrades. We hypothesize that the deep
feature extraction process for calculating CEGM is irreversible.
Reducing the distortion of high-level audio-visual represen-
tations does not necessarily imply reducing the distortion of
low-level acoustic features.

The lowest PER is achieved when α = 0.2 and β = 0.4, lead-
ing us to conjecture that CEGM primarily reduces distortion in
high-level audio-visual representations. Additionally, MSE-M
and SISNR focus on minimizing distortion in low-level acoustic
features, such as spectrum and waveform. This combination
helps alleviate the mismatch between auditory and visual inputs
to the AVSR backend, ultimately reducing the distortion of
high-level audio-visual representations. Therefore, a comple-
mentary relationship exists among MSE-M, SISNR, and CEGM
concerning PER. These insightful findings shed light on the
intricate relationships among the MLDM components and their
impact on the overall AVSE performance. Understanding the
individual MSE-M, SISNR, and CEGM contributions in shap-
ing the system’s effectiveness provides valuable insights into
optimizing hyperparameters α and β to achieve top audio-visual
speech enhancement results.

3) Optimization Differences Between Audio-Only and Audio-
Visual Scenarios: To compare the optimization performance
of MLDM between audio-only and audio-visual scenarios, we
visualized the learning curves of the MLDM and its three compo-
nents (MSE-M, SISNR, and CEGM) on the development set, as
illustrated in Fig. 5(a), (b), (c), and (d), respectively. Remarkably,
the inclusion of visual modalities consistently results in lower
MSE-M, higher SISNR, and lower CEGM values across all
epochs, leading to lower MLDM values throughout the training
process. The optimization process and the final results, as shown
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Fig. 5. Learning curve comparisons in audio-only and audio-visual cases for
models optimized by (a) MLDM, (b) MSE-M, (c) SISIR, and (d) CEGM. Red
arrows denote convergence points.

Fig. 6. A comparison of the average PER, PESQ and STOI among the top
10 out of 100 PESQ groups on the SNTCD-TIMIT test set enhanced by the
(a) MLDM-optimized and (b) C-MLDM-optimized AVSE models. PESQ scores
in the x-axis range from high to low, right to left.

in Table I, strongly support the superiority of MLDM over all
other evaluation metrics.

Upon further analysis of the learning curves, it becomes
evident that there is a discrepancy in the convergence speed
of MSE-M, SISNR, and CEGM. Specifically, MSE-M reaches
its lowest point at the 64-th epoch in the audio-visual scenar-
ios, while SISNR and CEGM converge after 92 epochs. This
discrepancy in convergence speech may potentially impact the
final MLDM model performance.

D. Performance Analysis of C-MLDM

1) Comparisons of MLDM and C-MLDM Results: First, we
explore the impact of the discrepancy in the convergence speed
of MSE-M, SISNR, and CEGM on performance. We first divide
all samples in the test set into 100 groups based on their PESQ
scores, ranging from high to low. We then select the top 10 PESQ
groups to calculate their average PER and STOI scores within
each group. Fig. 6(a) illustrates a comparison of the average
PER and STOI among the top 10 groups on the SNTCD-TIMIT
test set for the MLDM-optimized AVSE model. Interestingly,
as PESQ declines in the x-axis, the changing trend of STOI and
PER becomes chaotic. Consequently, we propose C-MLDM for
explicitly enforcing the correlation among MSE-M, SISNR and

Fig. 7. Average PER, PESQ and STOI comparisons of C-MLDMs with various
γ values on the SNTCD-TIMIT test set in the audio-visual scenario.

CEGM and display the changing trends of PER and STOI scores
for the C-MLDM-optimized model in Fig. 6(b). Both STOI and
PER trends are negatively correlated with PESQ. As the PESQ
score decreases, STOI decreases, while PER increases.

To assess the effectiveness of our proposed C-MLDM-
optimized model, shown in the result row below MLDM in
Table I, we discuss the average PER, PESQ, and STOI values
on the SNTCD-TIMIT test set, covering both audio-only and
audio-visual scenarios. In the audio-visual setting, C-MLDM
consistently outperforms MLDM across all evaluation metrics.
Notably, C-MLDM achieves a good average PER reduction of
2.65%, with an improved average PESQ score of 0.11 and an
increased average STOI of 1.14% compared to MLDM. These
improvements are also observed in the audio-only scenario, with
C-MLDM exhibiting an average PER reduction of 4.19%, an
improved average PESQ score of 0.09, and an increased average
STOI of 1.07% over MLDM.

2) An Ablation Study on Hyperparameter Setting: Next, we
study the impact of γ in (13) on the AVSE performance. Fig. 7
illustrates the average PER, PESQ, and STOI of C-MLDM on
the SNTCD-TIMIT test set. γ varies from 0 to 1 in increments
of 0.1 to obtain 11 sets of results.

Our analysis reveals that as the hyperparameter γ increases,
the enhanced speech shows a mixed trend in the three evaluation
metrics. Specifically, the SE performance improves initially and
then deteriorates with increasing γ. Notably, when γ reaches 1,
indicating that only CM is used for optimization, the enhanced
speech performs worse than unprocessed speech across PER,
PESQ, and STOI. This intriguing finding suggests that while in-
corporating the correlation-based objective can initially improve
AVSE performance, an excessive emphasis on this objective
might lead to suboptimal results because CM does not provide
constraints on the rise or fall of the optimization objectives.
We select γ = 0.4 in our proposed algorithm based on these
observations.

3) Perceptual Analysis: In addition to PESQ and STOI, we
evaluated the subjective quality of the enhanced speech through
a carefully designed psychophysical experiment. In this experi-
ment, 10 subjects with normal hearing were asked to rate the
auditory quality of the enhanced speech sounds. Due to the
inherent limitations of human psychophysical experiments, 25
samples were randomly selected from the SNTCD TIMIT test
set to ensure a distribution of 5 samples in each SNR level. Partic-
ipants were instructed to rate the quality of the noisy utterances
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TABLE II
COMPARISONS OF MEAN OPINION SCORE (MOS ↑) AMONG NOISY AND

MEASE MODELS OPTIMIZED BY MSE-M, SISNR AND CEGM, MLDM AND

C-MLDM ON THE 25 SELECTED UTTERANCES FROM THE SNTCD-TIMIT
TEST SET

along with those processed using different MEASE models,
including MSE-M, SISNR, CEGM, MLDM, and C-MLDM.
The evaluation was performed on a scale from 1 (indicating
“poor”) to 5 (“excellent”), with a pristine utterance first provided
as a benchmark to represent the maximum achievable score, i.e.,
a score of 5. Subsequently, the samples processed by MSE-M,
SISNR, CEGM, MLDM, and C-MLDM were presented to the
participants in a randomized order. The mean opinion score
(MOS) for each of the 25 utterances was calculated by averaging
the ratings provided by the 10 subjects.

A comprehensive comparison of the MOS between the
Noisy and MEASE models optimized by MSE-M, SISNR,
CEGM, MLDM, and C-MLDM on the 25 carefully selected
samples is systematically described in Table II. It is evi-
dent from the analysis that the MLDM model significantly
outperforms the MSE-M and SISNR models in subjective
quality, manifesting absolute enhancements of 0.03 and 0.04,
respectively. Moreover, the MOS for the C-MLDM model is
markedly higher than that for the MLDM model, with this
superiority manifesting consistently across most SNR levels.
This trend aligns with the comparative outcomes observed
for the PESQ and STOI, further substantiating the efficacy
of the MLDM and C-MLDM models in enhancing speech
quality.

And in Fig. 8, we also present an illustrative comparison of the
results of the SE models optimized by MSE-M, SISNR, and C-
MLDM in both audio-only and audio-visual scenarios. An exam-
ple utterance was randomly selected from the SNTCD-TIMIT
test set, and all spectral features were subjected to utterance-level
mean normalization. Notably, the MSE-M-enhanced speech in
Fig. 8(c) and (d) shows a lack of detail in the non-silence
segment, while the SISNR-enhanced speech in Fig. 8(e) and (f)
retains broadband noise in the silence segments at the beginning
and end. Conversely, the C-MLDM-enhanced speech in Fig. 8(g)
and (h) not only preserves finer details but also significantly re-
duces high-frequency noise at the ends of the utterance, resulting
in a spectral structure very similar to that of the clean speech in
Fig. 8(a).

A consistent pattern emerges when comparing audio-only
and audio-visual scenarios across different optimization targets.
Significant changes in lip movements are evident within the
non-silence segments, highlighting the role of visual acoustic

Fig. 8. An utterance example comparing the outputs of different optimization
objects, including (a) clean spectrum features; (b) noisy spectrum features;
MSE-M-enhanced spectrum features in (c) audio-only and (d) audio-visual sce-
narios; SISNR-enhanced spectrum features in (e) audio-only and (f) audio-visual
scenarios; and C-MLDM-enhanced spectrum features in (g) audio-only and
(h) audio-visual scenarios.

information in enriching articulation. Conversely, during silence
intervals, the lips remain closed, highlighting the ability of the
visual modality to provide distinctive cues that reduce residual
noise and improve overall speech quality.

E. Generalizability of MLDM and C-MLDM

1) Dataset Diversity and Performance Impact: In a compre-
hensive effort to assess the generalizability of the proposed
MLDM and C-MLDM models across different datasets, we
extended our evaluation scope to include the prestigious Oxford-
BBC Lip Reading Sentences 2 (LRS2) benchmark [79]. The
LRS2 dataset, taken from BBC broadcasts, contains 144,482
video clips. It is systematically organized into pre-training,
training, validation, and test sets, with allocations of 96,318
(195 hours), 45,839 (28 hours), 1,082 (0.6 hours), and 1,243
(0.5 hours) video clips, respectively. For this experiment, the
pre-training and training segments were combined to formulate
a comprehensive training dataset. Following the established
simulation protocol applied to the SNTCD-TIMIT dataset, this
resulted in a training set of approximately 1115 hours, supported
by a validation set of 9 hours and a test set of 7.5 hours. This
specially constructed, noisy version of the dataset was, therefore,
named the SN-LRS2 dataset.

Following the training process and the best configure above,
we retrained the ASR/AVSR backends and all SE models uti-
lizing the SN-LRS2 dataset. Table III systematically presents
a comparison of average WER, PESQ, and STOI among Noisy
and MEASE models optimized by MSE-M, SISNR, and CEGM,
MLDM, and C-MLDM on the SN-LRS2 test set in both audio-
only and audio-visual scenarios.
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TABLE III
COMPARISONS OF AVERAGE WER, PESQ AND STOI AMONG NOISY AND

MEASE MODELS OPTIMIZED BY MSE-M, SISNR AND CEGM, MLDM AND

C-MLDM ON THE SN-LRS2 TEST SET IN AUDIO-ONLY AND AUDIO-VISUAL

SCENARIOS

The results are in concordance with the outcomes derived
from our SNTCD-TIMIT experiments, wherein MLDM con-
sistently outperforms the three baseline objectives, with the
C-MLDM model achieving even more significant improvements
across all metrics. Notably, within the audio-visual evaluation
framework, MLDM realizes an average WER reduction of
0.99%, alongside gains of 0.07 in PESQ and improvements of
0.72% in STOI compared to the best baseline. The C-MLDM
model further elevates these metrics, manifesting additional
WER reductions of 1.09%, augmented PESQ improvements of
0.08, and average STOI enhancements of 1.27%. This consistent
trend of superiority is replicated in the audio-only scenario,
reinforcing the outstanding effectiveness and adaptability of
MLDM and C-MLDM across diverse evaluation benchmarks.

2) Model Architecture Sensitivity Analysis: We further eval-
uated the robustness of our two advocated optimization goals,
MLDM and C-MLDM, across various model architectures using
the SNTCD-TIMIT dataset. Specifically, we instantiated a clas-
sic Conv-FavsNet [41], conceptually rooted in the Conv-TasNet
framework described in [40]. The architecture of Conv-TasNet
is built around three core elements: 1D convolution and de-
convolution to encode audio waveforms and decode masked
coded sequences, while a stack of 3× 8 temporally dilated
convolutional blocks tasked with estimating masks for isolating
the target speech. As an extension of the Conv-TasNet model,
Conv-FavsNet incorporates a pre-trained video encoder similar
in structure to the MEE above but differs in its training target,
which focuses on the classification of phonemes.

Regarding training, we applied the optimal hyperparameters
outlined in [41] and ensured that the training process was con-
sistent with that detailed in Section V-A. A comparative analysis
of the average PER (in %), PESQ and STOI (in %) among
the Noisy and Conv-FavsNet models, optimized by MSE-M,
SISNR, CEGM, MLDM, and C-MLDM, on the SNTCD-TIMIT
test set, is systematically presented in Table IV.

As evident from the tabulated results, MLDM and C-MLDM
demonstrate superior performance over the three baseline
objects, with C-MLDM consistently showing more excellent
benefits across all metrics. Within the context of audiovisual
evaluations, MLDM secures notable improvements, achieving

TABLE IV
COMPARISONS OF AVERAGE PER, PESQ AND STOI AMONG NOISY AND

CONV-FAVSNET MODELS OPTIMIZED BY MSE-M, SISNR AND CEGM,
MLDM AND C-MLDM ON THE SNTCD-TIMIT TEST SET IN AUDIO-ONLY

AND AUDIO-VISUAL SCENARIOS

reductions in PER of 1.72%, improvements in PESQ of 0.06,
and increases in STOI of 0.65%, when compared to the baseline
results. The C-MLDM model extends these gains, with further
reductions in PER of 2.57%, additional improvements in PESQ
of 0.11, and increases in STOI of 1.46%. This consistent pattern
of performance improvement is also evident in the audio-only
evaluations, underscoring the exceptional robustness of both
MLDM and C-MLDM to different model architectures.

3) Cross-Linguistic Robustness Evaluation: We further as-
sess and confirm the generalizability of the proposed MLDM
and C-MLDM against the cross-linguistic scenario by evalu-
ating on an extensive in-house audio-visual Mandarin corpus
called SN-Mandarin. The SN-Mandarin corpus consists of 7,081
videos recorded by various speakers in everyday environments
using mobile phones. For training, we randomly select 6,900
utterances, while 85 utterances were used for validation and
an additional 96 utterances for testing. Real noise data from
bathrooms, kitchens, balconies, and living rooms are adopted to
create noisy-clean pairs. This results in approximately 81 hours
of training data, 3 hours for validation, and 3 hours for testing.
Importantly, there is no overlap in terms of speakers or noise
recording rooms among the training, validation, and test subsets.
Five SNR levels, 15, 10, 5, 0 and−5 dBs, are used to evaluate the
performances of the models. A notable aspect to emphasize is
that we have made the SN-Mandarin corpus publicly accessible1.
to ensure transparency and reproducibility.

We employ high-performance ASR (HpASR) and high-
performance AVSR (HpAVSR) models for training and eval-
uating recognition performances using the character error rate
(CER). HpAVSR is a hybrid DNN-HMM AVSR model consist-
ing of a deeper audio-visual acoustic model, a 4-gram word-
based language model, and an extensive pronunciation dictio-
nary containing over 600,000 Chinese words. The audio-visual
acoustic model consists of 20 ResBlocks [80] and a visual
encoder, followed by a 12-layer transformer. The visual encoder
includes a deep spatiotemporal convolution, ResNet18 (identity
mapping version [81]), and a 6-layer transformer. On the other
hand, HpASR consists of an acoustic model with 20 ResBlocks,
a 12-layer transformer and the same language model as the

1[Online]. Available: https://github.com/coalboss/CMLDM/data
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TABLE V
COMPARISONS OF AVERAGE CER, PESQ AND STOI AMONG NOISY AND

MEASE MODELS OPTIMIZED BY MSE-M, SISNR AND CEGM, MLDM AND

C-MLDM ON THE SN-MANDARIN TEST SET IN AUDIO-ONLY AND

AUDIO-VISUAL SCENARIOS

HpAVSR model. For training, we first train the acoustic model
with over 100,000 hours of Mandarin audio data collected
in real-world conditions. Then, we fine-tune the audio-visual
acoustic model using approximately 5,000 hours of Mandarin
audio-visual data. The language model is trained with over 500
million sentences. The extensive coverage of diverse acoustic
environments in the training data significantly improves the
noise robustness of HpASR and HpAVSR. However, due to the
achieved robustness through the extensive training data, further
improvements in the recognition performances of enhanced
speech become challenging.

Table V lists a comparison of average CER (in%), PESQ, and
STOI (in%) among noisy, MSE-M, SISNR and CEGM, MLDM
and C-MLDM on the SN-Mandarin test set in both audio-only
and audio-visual scenarios. Remarkably, MLDM consistently
outperforms the three baseline objectives, and C-MLDM con-
sistently exceeds MLDM. Specifically, in the audio-visual sce-
nario, MLDM achieves an average CER reductions of 1.49%,
PESQ gains of 0.03, and STOI gains of 0.59% compared to
the three baseline objectives. C-MLDM further improves over
MLDM, achieving additional CER reductions of 0.82%, higher
PESQ gains of 0.08, and average STOI gains of 0.81%. The
same trend is observed in the audio-only scenario, reaffirming
the remarkable effectiveness and generalizability of MLDM and
C-MLDM in both evaluation scenarios. Interestingly, CEGM
leads to an average CER increase of 2.97% when compared to
noisy across all SNR levels. Similarly, an average CER increase
of 1.96% in the audio-only scenario is observed. We hypothesize
that the deep architecture of the high-performance backend
model makes the gradients prone to vary freely, resulting in
instability in AVSE model training.

VI. CONCLUSION

In this study, we develop effective optimization objectives,
MLDM and C-MLDM, for AVSE that simultaneously improve
speech quality, intelligibility and recognition performance. A
comprehensive correlation analysis shows a complementarity
among the MSE-M, SISNR and CEGM objectives. Accordingly,
MLDM iteratively combines MSE-M, SISNR, and CEGM to
match evaluation metrics from multiple tasks. C-MLDM further

enhances their interactions by adding an additional correlation
measure based on the Pearson correlation coefficient on top
of MLDM. Experimental results demonstrated MLDM’s supe-
rior performance over the three individual objectives in both
audio-visual and audio-only scenarios. Moreover, C-MLDM
consistently outperforms MLDM, highlighting the effectiveness
of the additional correlation measures. Integrating the visual
modality also amplifies the benefits of MSE-M, SISNR, and
CEGM, enhancing their complementarity. These observations
support our proposed MLDM and C-MLDM, which effectively
improve the performance of the SE models across all evaluation
metrics.
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