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Abstract—In this paper, we propose a novel approach to
structured pruning of neural network. Firstly, we extend the
original channel-level pruning from one-shot manner to iterative
manner. Then we further employ the learning rate rewinding
strategy in the lottery ticket hypothesis (LTH) to guide the
channel-level pruning, yielding a new algorithm named channel-
level pruning with learning rate rewinding (CPLR). Finally, we
apply CPLR to prune the audio and video networks for designing
compact audio-visual wake word spotting (AVWWS) system.
Tested on MISP-2021 AVWWS database, the results show that
the proposed CPLR approach performs better than either the
channel-level pruning approach or LTH approach in term of both
system performance and model efficiency. More interestingly, we
observe that while the network parameters are greatly reduced by
CPLR, the network generalization capability can be even better.

Index Terms: structured pruning, channel-level pruning, learn-
ing rate rewinding, lottery ticket hypothesis, audio-visual wake
word spotting

I. INTRODUCTION

Wake word spotting (WWS) can be regarded as a specific
case of keyword spotting (KWS), which plays a very important
role in human-computer interaction. The goal of the WWS
task is to recognize a predefined wake-up word [1]. Typical
WWS systems are based on audio modality [2, 3], one of
the main challenges is that the performance of these systems
usually declines a lot under noisy conditions [4–6]. In addition,
due to the interference of signal transmission, WWS is still a
challenging task under far-field conditions [7]. In the past few
years, research efforts have been made in detection of audio
wake-up words under noisy and far-field conditions, such as
introducing speech enhancement [6, 7] and the novel training
methods [8–10].

In [11–14], the authors demonstrate that visual information
from video can improve the system performance based on
clear and noisy audio signals. However, the introduction of
visual information also greatly increases the total amount
of parameters. For example in the audio-visual wake word
spotting (AVWWS) system [15], the model size of proposed
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video network is much larger than that of the audio-only
network, which will limit its application.

Accordingly, an effective pruning method for neural net-
work is essential for the feasibility of audio-visual systems.
Network pruning includes structured pruning and unstructured
pruning [16, 17]. Structured pruning can not only improve
the computational efficiency, but also effectively reduces the
number of network parameters, which has attracted more and
more attention [18, 19]. Filter pruning is one type of structure
pruning which can be realized by Taylor expansion, geometric
median (FPGM) and other methods [20–22]. Channel pruning
using the batch normalization (BN) layers can obtain better
results [23]. Moreover, the training and pruning strategy is
also very important. The classic strategy is the “weights
initialization - pruning - fine-tuning” procedure [24]. Then
the authors proposed a dynamic pruning approach, which
uses sparse training in convenient pruning operation [23]. In
2019, the lottery ticket hypothesis (LTH) [25] was proposed
by integrating existing pruning and training modes. Some
researchers have compared various strategies based on LTH
and one effective scheme is based on learning rate rewinding
[26].

So far, there are not many studies on the neural network
pruning for AVWWS task [15]. One remarkable work is
our previously proposed LTH-IF [27], namely LTH in an
iterative fine-tuning manner. In this study, we develop a new
structure pruning approach called Channel-level Pruning with
Learning rate Rewinding (CPLR) that integrates the channel-
level pruning method and the LTH strategy. Firstly, we improve
the original channel-level pruning method from the one-shot
pattern to an iterative pattern. Then we adopt the learning
rate rewinding strategy to guide the channel-level pruning.
CPLR can fully utilize the advantages of both channel-level
and the LTH pruning. Finally, we apply the proposed pruning
algorithm to the audio and video neural network architectures
for WWS. Evaluated on MISP-2021 AVWWS database, the
CPLR approach can yield consistent improvements in terms of
both system performance and model efficiency over the LTH-
IF approach.
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The remainder of this paper is organized as follows. Sec-
tion II gives a review of related works on network slimming
with their advantages and disadvantages. Section III elaborates
our proposed CPLR approach and presents the innovation
points. In Section IV we apply CPLR to the AVWWS system.
In Section V experimental results and analysis are discussed.
Finally, we conclude in Section VI.

II. RELATED WORK

In this section, we describe the two types of neural network
pruning approaches related to our work, namely channel-level
pruning and LTH-based pruning.

A. Channel-level neural network pruning

Channel-level pruning is a kind of structured pruning, which
was first proposed in [23]. The authors chose the scale factor
of BN layer γ as the indicators for two reasons. The one
is structured pruning can reduce both the parameter number
and the float point operations (FLOPS). The other is channel-
level pruning scheme has certain flexibility that can be applied
to most convolution neural networks (CNNs). The channel
with larger γ is considered more important for the network
and should be avoided from being pruned. In the training
process, sparse training was firstly adopted for pre-training the
network. Then an algorithm for pruned channels depending on
the absolute value (ABS) of the scale factor γ of BN layer was
developed. Finally, a smaller learning rate was set to fine-tune
the pruned network. This method can achieve a 20% to 70%
compression ratio on different networks.

However, the channel-level pruning method also has some
disadvantages: (1) The channel-level pruning method only
uses one round of training and one round of fine-tuning, the
preset pruning rate must be very high to get a satisfactory
compression ratio, making it a challenging task to fine-tune
the network. (2) An excessive pruning rate may destroy the
network structure, so the network can not achieve the perfor-
mance of the original network with a high compression ratio.
(3) The sparsity of channels is highly related to the results of
the sparse-training process, it is difficult to find the appropriate
default hyper-parameters.

B. LTH-based neural network pruning

LTH is a hypothesis that a randomly-initialized, dense neural
network contains a sub-network (winning lottery ticket) which
can match the test accuracy of the original network after
training in isolation for at most the same number of iterations
[25]. The original LTH strategy is based on weight pruning
belonging to unstructured pruning. First, the network is trained
to the early-stop point (the training epoch that reaches the
lowest loss on the development set). Then the same parameters
at the beginning of the training process are used to reset the
network. Afterward, the network is retrained using a smaller
learning rate. Finally, the above steps are repeated to reach
the required compression ratio. In the recent work on LTH,
the authors compare three training and adjustment strategies
for LTH, namely weight rewinding strategy (lottery strategy),

pruning and fine-tuning strategy, and learning rate rewinding
strategy. The conclusion is the learning rate fine-tuning strategy
is the best in most instances [26].

The LTH based method works well on some small-size
networks [25], which can even achieve the compression ratio of
more than 95%. But it still has following disadvantages: (1)
The LTH algorithm works very well on small-size network,
but it is difficult to find the wining lottery ticket in large-
scale network. Some training strategy may be used to solve
the problem above like using warmup strategy in the training
process [25], but these methods also increase the training cost.
(2) The original LTH strategy is based on weight pruning, and
this pruning method can not reduce the parameters efficiently
on normal hardware because although the pruned weights are
set to zero, they still exist on the hardware as floats, taking up
storage space [16, 17].

III. CHANNEL-LEVEL PRUNING WITH LEARNING RATE
REWINDING

Algorithm 1 CPLR algorithm
1 : Pre-train the initial network to the early-stop point
f(x; θ0; γ0) by using sparse-training.
2 : Set the pruning rate k = 30% per round.
3 : Create the mask m based on BN scale factor γ and the
pruning rate k.
4 : Prune 30% channels globally using the mask, obtain the
reinit network f(x; θ0 ⊙m; γ0 ⊙m).
5 : Use learning rate rewinding strategy to retrain the
network to obtain network f(x; θ1; γ1).
6 : Repeat 2 to 5 until the desired weight sparsity ratio is
reached.
7 : Fine-tune the pruned network using the same learning
rate as the last retraining process, return fine-tuned network
f(x; θN ; γN ).

In this section, we elaborate on the proposed CPLR al-
gorithm and compare it with channel-level pruning and LTH
strategy. The detailed process is illustrated in Fig. 1. Firstly,
the network without pruning is trained with sparse training to
the early stop point. Secondly, the pruning mask is created
based on the scale factor γ in the BN layer, which is used
to prune less important channels. To obtain a more compact
construction, learning-rate rewinding strategy is used to retrain
the pruned network and sparse training is still adapted. Repeat
the above steps to achieve the desired compression ratio.
Finally, the pruned network is fine-tuned using the same
learning rate as the last training round. The whole algorithm
is shown in Algorithm 1. The symbol f(x; θn; γn) represents
the network function given input data x, parameter set θn and
the BN scale factor set γn at round n.

A. Iterative pruning strategy

In order to prune the network more accurately, we introduce
iterative pruning into the original channel-level pruning method
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Fig. 1. Channel-level pruning with learning rate rewinding (CPLR).

to replace one-shot pruning. Assuming that percentage α of
all the channels are pruned in each round, after n rounds, the
compression ratio (CR) and weight sparsity ratio (WSR) are
shown in the following equation.

CR(n) = (1− α)n (1)

WSR(n) = 1− CR = 1− (1− α)n (2)

where CR(n) is the rate of remaining parameters to the
original parameters, and WSR(n) is the rate of the pruned
parameters with the original parameters. Then, we introduce
sparse-training strategy to every training rounds, whose prin-
ciple is as follows:

L =
∑
(x,y)

l(f(x, θ, γ), y) + λ
∑

γ∈BN

h(γ) (3)

h(γ) = |γ| (4)

The sparse regular term λ
∑

h(γ) (L1-norm was selected in
our algorithm) is added to the normal training loss function.
f(x, θ, γ) is the network function given input data x, parameter
set θ and the BN scale factor set γ. y repesents the label of
each input sample.

∑
(x,y) l(f(x, θ, γ), y) is function of the

binary cross entropy (BCE) loss used as our loss function.
Sparse training has been proved to be effective for dynamic

pruning networks [23]. In the training process, the scale factor
γ will become more and more discriminative (the closer γ is
to 0, the less important is the channel).

Using iterative pruning instead of one-shot pruning has the
following superiorities. First, a small pruning rate in each
round can avoid a great deal of destruction on the original net-
work, so the degradation process of the network generalization
performance will be slower using iterative pruning. Second, the
fine-tuning process is easier because we only prune off a small

proportion of total parameters, and also iterative pruning can
get better performance than one-shot pruning. In addition, the
adjustment of the compression ratio is more flexible using an
iterative way because we can change the number of training
rounds to get a different compression ratio. Finally, the sparse-
training is used during each round of training other than only
one round in the original channel-level pruning method, which
is more sufficient to obtain the higher weight sparse ratio.

B. Leaning-rate rewinding strategy

In our algorithm, we use the LTH leaning-rate rewinding
strategy to guide the training and pruning process, the process
is as follows:

W0
α1−→Wα1

1
m1−−→ W1

α2−→ ...
αn−−→ Wαn

n
mn−−→ Wn

αn+1−−−→ ... (5)

αn+1 = αn × k (6)

k =

{
1 (CR(n) ≥ 0.2)

[2, 10] (CR(n) < 0.2)
(7)

where αn represents the learning rate used in the n-th round.
Wαn

n represents the parameters trained in the n-th round using
the learning rate αn, mn represents the generated pruning
mask after n rounds and Wn represents the parameters of the
pruned network. k is the amplification factor of the learning-
rate controlled by CR(n).

When the preset pruning-rate is too small, the weights of
the network change slightly, and the similar structure may be
utilized by using the same learning rate to retrain the network,
makes the network converge faster to the early-stop point
with the similar performance as the original network [26]. In
addition, when the compression ratio is less than 20%, the
learning rate increases by 2-times to 10-times, as shown in
(7).
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Fig. 2. The architecture of audio-visual wake word spotting system using the proposed CPLR, “CRC” represents “Compression Ratio Calculator”

IV. APPLICATION ON AVWWS NETWORK

The proposed CPLR approach is evaluated on audio-visual
wake word spotting task based on the MISP2021 challenge
dataset [15]. Fig. 2 shows the our architecture, which mainly
consists of three parts: audio-only system, video-only system
and fusion part. The details will be elaborated in the following
subsections.

A. Audio-only WWS system
Audio system officially provided by the challenge [15]

was selected, which consists of two layers of 2D-convolution
layers, one long short term memory (LSTM) layer and three
convolution layers. We added one batch normalization layer
after per convolution layer.

B. Video-only WWS system
Same as the audio system, the corresponding video system

[15] officially provided was selected, which consists of a
ResNet-18, a LSTM layer and three convolution layers. The
ResNet-18 has been pre-trained on the lip-reading task with
the details can be referred to [15]. There are two kinds of the
convolution layers in the residual block (ResBlock) of ResNet-
18, one kind of convolution layers are connected with other
convolution layers, called “cross-layer connections”, while the
other do not connect with any other convolution layers [28].
Some changes have been designed to prune the ResNet-18
when implementing channel-level pruning. Specifically, for the
cross-layer connections, which cannot be pruned because they
must be the same as the convolution layers connected with
them [28]. Accordingly, we only prune the channels not in
cross-layer connections.

C. Audio-visual fusion
Consistent with [15], we adopted the decision-level fusion

combining the posterior probabilities from separate audio and
visual WWS subsystem, as shown in the following formula:

PAV = α× PA(yA|fA) + β × PV(yV|fV) (8)

where PA(yA|fA) and PV(yV|fV) are the posterior probabilities
of wake word presence (yA or yV) generated by input the audio
features fA and the video features fV, respectively. α and β are
the weights of audio-only and video-only systems. The output
of systems is compared with the preset threshold (thA, thV,
thAV) after the sigmoid operation.

V. EXPERIMENTS AND RESULTS

A. Dataset and metric

We conduct the experiments on the MISP2021 AVWWS
dataset [15], which contains about more than 120 hours of
audio-visual data and has been divided with non-overlapping
speakers across the training, development and evaluation sets.
The wake word is “Xiao T Xiao T”. The combination of false
reject rate (FRR) and false alarm rate (FAR) is adopted as
the evaluation metric, which is defined as follows:

Score = FRR+ FAR =
NFR

Nwake
+

NFA

Nnon−wake
(9)

where Nwake and Nnon−wake denote the number of samples
with the wake word and without the wake word in the evalua-
tion set, respectively. NFR denotes the number of samples that
include the wake word but where the WWS system erroneously
does not detect it. NFA is the number of samples that do not
contain the wake word but where the WWS system erroneously
detect it. The lower Score, the better the system performance.

B. Results for audio-only system

Considering the complexity and challenge of far-field envi-
ronment, we evaluated the proposed approach on far-field au-
dio. Some data augmentation methods mentioned in [15] were
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Fig. 3. Performance curves of different pruning methods
on the evaluation set for audio-only system.

adopted. The original one-shot channel-level pruning, LTH-
IF and the proposed CPLR approach were used to prune the
audio-only system separately. The results are shown in Fig. 3.
The x-axis represents the WSR and the y-axis represents the
Score on the evaluation set.

According to Fig. 3, the proposed CPLR can not only
achieve better performance when pruning but also obtain a
higher WSR. With the decreasing of the parameters, the scores
of the networks compressed by the above three methods all
show a tendency of falling first and then rising. When the WSR
is more than 0.8, the performance of all these three networks
degrades rapidly. Compared to the other two methods, CPLR
achieves the best score (0.2611) with a highest WSR of 0.8.

C. Results for video-only system

For the video-only system, we use the mid-field data and the
far-field data. Same data augmentation methods used in [15]
were also adopted.

1) Video-only WWS results on mid-field: The original one-
shot channel-level pruning, LTH-IF approach and the proposed
CPLR approach were used to prune the video-only system
separately. The results are shown in Fig. 4.

According to Fig. 4, the proposed CPLR achieves the best
performance compared to the other two methods. When the
WSR is about 73%, the score of 0.4732 is obtained. Finally
we can reach the maximum WSR of 0.83 at round 6 without
performance degradation. Compared with the original channel-
level pruning method, the minimum score decreases by 0.0527
and the WSR increases by 0.15. In comparison to the LTH-IF
method, the proposed CPLR achieves better performance with
a higher WSR.

The introduction of sparse-training per round makes the
weights of the network more sparse, making it easier to
identify the important channels, so the proposed CPLR can
achieve better performance than the LTH-IF and one-shot
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Fig. 4. Performance curves of different pruning methods
on the mid-field evaluation set for video-only system.
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Fig. 5. Performance curves of different pruning methods
on the far-field evaluation set for video-only system.

channel-level pruning, especially when WSR is high. Besides,
the iterative manner performs better than the one-shot manner
and the effectiveness of the learning-rate rewinding strategy
has been proved by this experiment.

2) Video-only WWS results on far-field: The one-shot
channel-level pruning, LTH-IF and the proposed CPLR were
compared in Fig. 5.

According to Fig. 5, the lowest score (0.5260) is obtained
by the proposed CPLR with a WSR of about 0.51. Compared
with the original channel-level pruning method, the minimum
score decreases by 0.034 and the final WSR increases by 0.1.
In addition, compared to the LTH-IF algorithm, the proposed
CPLR performs worse in the first few rounds, but performs
better when WSR is more than 0.40. The minimum score
decreases by 0.022 and the WSR increases by 0.39 from
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TABLE I
FUSION PERFORMANCE OF DIFFERENT PRUNING METHODS.

Fusion Audio Video Audio-Video

Pattern Para Score Para Score Para Score

Original network

Far+Middle 2.68M 0.2620 13.07M 0.5130 15.75M 0.2190

Far+Far 2.68M 0.2620 13.07M 0.5840 15.75M 0.2510

CPLR algorithm

Far+Middle 0.56M 0.2611 2.21M 0.4935 2.77M 0.2092

Far+Far 0.56M 0.2611 1.85M 0.5855 2.41M 0.2432

CP algorithm

Far+Middle 1.32M 0.2805 4.20M 0.5259 5.52M 0.2206

Far+Far 1.32M 0.2805 4.20M 0.5692 5.52M 0.2653

LTH-IF algorithm

Far+Middle 0.56M 0.2656 6.25M 0.5076 6.81M 0.2174

Far+Far 0.56M 0.2656 6.91M 0.5631 7.47M 0.2500

LTH-IF to CPLR. The proposed CPLR not only obtains better
performance but also achieves higher WSR compared with the
other two methods.

With the decreasing of the parameters in the network, the
scores of the pruned networks all tend to fall first and then
rise. The performance of LTH-IF deteriorates rapidly when
WSR is more than 0.4 while the performances of CP and
CPLR deteriorate more steadily. The reason may be that the
performance of the LTH-IF approach largely depends on the
effectiveness of the pre-train process, and if the pre-train
process does not achieve good performance, some important
connections in the network may be pruned inaccurately leading
to worse performance. If it drops into a vicious circle, the
performance will deteriorate rapidly. While CPLR approach
considers all connections in a layer, the deteriorating process
of the system performance will be slower.

D. Results for audio-visual fusion systems

Besides the above results, we also conduct audio-visual
fusion, and the results under multiple hybrid configurations
are shown in TABLE I. “Pattern” indicates the data type com-
bination of audio and video inputs. For example, “Far+Middle”
means the combination of far-field audio and mid-field video.
“Para” denotes the size of model parameters in Bytes.

CPLR algorithm achieves the best fusion performance with
the highest WSR of 0.83, significantly outperforming the
other two algorithms. Benefiting from the proposed CPLR
compression algorithm, a score gain of 0.0528 compared with
the original audio-only WWS system is obtained, and the
size of parameter set only increases by 0.09M Bytes in the
setting of using mid-field video. The proposed CPLR algorithm
makes it possible to introduce visual information to the audio
WWS system, improves the performance of the WWS system
significantly without increasing a large amount of parameters.

E. Brief summary

Based on the results of the compression of audio-only,
video-only and audio-visual fusion system using the above-
mentioned three methods CP, LTH-IF and CPLR, we can give
a brief summary of the advantages and disadvantages of each
method. As a one-shot pruning method, CP only needs one
training and pruning round. CPLR usually needs 5 to 8 training
and pruning rounds to reach the maximum WSR and LTH-IF
approach needs over 10 rounds, takes up the most training
cost of above three methods. When WSR is low, LTH-IF and
CPLR method can obtain better performance. When the WSR
is high, CPLR can achieve the best performance, which is the
most notable advantage of CPLR.

VI. CONCLUSIONS

In this article, we propose a structured pruning approach
CPLR, which combines channel-level pruning and the learning
rate rewinding strategy. Specifically, we extend the original
channel-level pruning from one-shot manner to iterative man-
ner. Then, we further introduce the learning rate rewinding
strategy to the iterative channel-level pruning. Verified on the
evaluation set of the MISP2021 AVWWS challenge dataset
in both single modalities and fusion systems, the proposed
approach yields consistent improvements.
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