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Abstract. In this paper, we propose a novel structured pruning ap-
proach based on channel-level pruning with learning-rate rewinding (CPLR)
for designing the compact and low latency audio-visual wake word spot-
ting (AVWWS) system. First, an efficient operation that aims at reduc-
ing network parameters is explored by integrating blueprint separable
convolution (BSConv). Next, the channel-level pruning with learning-
rate rewinding strategy is applied to the improved network to prune
network parameters and obtain a compact system. Finally, a binary reg-
ulation (BR) strategy is further proposed for reducing the inference time
of the above compact system, called BS-CPLR. Tested on the MISP2021
AVWWS database, the results show that the proposed BS-CPLR ap-
proach achieves better system performance with fewer model param-
eters being used. We further tested the compact systems on the TB-
RK3399ProD development board. The results show that the proposed
BS-CPLR approach also achieves lower delay than BSConv and CPLR.

Keywords: AVWWS, CPLR, BSConv, binary regulation, development
board

1 Introduction

Wake word spotting (WWS) plays a very important role in man-machine in-
teraction. The goal of the WWS task is to recognize a predefined wake word
[1]. Typical WWS systems are based on audio modality [2, 3], one of the main
challenges is that the performance of these systems usually declines a lot under
noisy conditions [4-6]. In the recent years, research efforts have been made in
detection of wake word spotting under noisy and far-field conditions, including
the use of speech enhancement (SE) module [6,7], the design of new network
structures, the design of novel architecture and new training strategy [8-10]. Re-
cently, the authors demonstrate that visual information can improve the system
performance based on clear and noisy audio signals [11,12].
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However, the introduction of visual information also greatly increases the
total amount of network parameters and the computation cost, which will limit
its application on lightweight devices.

Accordingly, effective pruning methods for neural network is essential for the
feasibility of audio-visual systems. Generally, there are two efficient approaches
to compress the complex network, including network pruning and network struc-
ture modifying. Network pruning includes structured pruning and unstructured
pruning [13, 14]. Structured pruning can not only improve the computational effi-
ciency, but also effectively reduces the number of network parameters, which has
attracted more and more attention [15, 16]. Filter pruning is one type of structure
pruning which can be realized by Taylor expansion, geometric median (FPGM)
and other methods [17-19]. Channel pruning using the batch normalization (BN)
layers has also been proven effective [20]. In our previous work, a more advanced
compression method call CPLR [21] that based on channel-level pruning [20]
and leaning-rate rewinding [22] was proposed. The network structure modifying
method includes low-rank approximation and heterogeneous convolution. Low-
rank approximation regards the weight matrix in the network as non-singular
matrix that can be decomposed into the combination of several low-rank matri-
ces [23]. The heterogeneous convolution method attempts to change the struc-
ture of the convolution layers in the network, transform the regular convolution
into the combination of depth wise convolution and point wise convolution and
MobileNets are successful applications of the heterogeneous convolution [24]. Re-
cently, a new approach of heterogeneous convolution called blueprint separable
convolution(BSConv) have been proposed [25]. BSConv explains the efficiency
of heterogeneous convolution and performs better than MobileNets on several
tasks.

Moreover, the training and pruning strategy is also very important. The clas-
sic strategy is the “weights initialization - pruning - fine-tuning” procedure [26].
Then the authors proposed a dynamic pruning approach, which uses sparse train-
ing in convenient pruning operation [20]. In 2019, the lottery ticket hypothesis
(LTH) [27] was proposed by integrating existing pruning and training modes. In
recent years, some researchers have compared various strategies based on LTH
such as learning rate rewinding [22].

In this study, we proposed a new network compression approach called blueprint
separable convolution channel-level pruning with learning rate rewinding (BS-
CPLR) that integrates the channel-level pruning method, BSConv and LTH
strategy. Firstly, the BSConv was adopted to transform all the convolution lay-
ers in the original network into BSConv layers. Next the CPLR strategy was used
to prune and fine-tune the transformed network, slimming the network further.
Then, binary regulation was introduced to the number of channels, proposed an-
other version of BS-CPLR called BRBS-CPLR. Finally, we apply the proposed
algorithm to neural network architectures of WWS. Evaluated on MISP-2021
AVWWS database and TB-RK3399ProD, the BS-CPLR approach yields consis-
tent improvements, obtains better performance and reduces the time delay on
development board.
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2 Related Work

In this section, we describe the two different types of neural network pruning ap-
proaches related to our work, namely blueprint separable convolution (BSConv)
and channel-level pruning with learning-rate rewinding (CPLR).

2.1 Blueprint separable convolution (BSConv)

Blueprint separable convolution can be regarded as one kind of heterogeneous
convolution [25]. All the original convolution layer in the network are splitted
into two kinds of convolution kernels: One point-wise convolution layer followed
by one depth-wise group convolution layer. Compared with depth-wise separa-
ble convolution (DSC) [24], BSConv is a reversed DSC, changes the order of
the the point-wise and group-wise convolution because intra-kernel correlations
are considered more important than cross-kernel correlations. BSConv outper-
forms better than DSC on several image classification tasks and can reduce the
parameters in the network to about 70% without performance loss.

2.2 Channel-level pruning with learning-rate rewinding (CPLR)

Channel-level pruning is one kind of structured pruning method. Proposed in
[20], channel-level pruning focus on reduce the number of channels in convolution
layers. The channels in the convolution layers represent several feature filters to
generate feature map. Some filters are considered less important than others, can
not extract powerful features to offer information gain, can be pruned off without
performance loss. The authors added a BN layer after each convolution layer, and
considered that the importance of channel are highly correlated with the absolute
value (ABS) of the scale factor . The channel with smaller « is considered less
important for the network and can be pruned freely. Leaning-rate rewinding is a
train and pruning strategy [22]. Based on the LTH [27], authors compare three
training and adjustment strategies for LTH, namely weight rewinding strategy
(lottery strategy), pruning and fine-tuning strategy, and learning rate rewind-
ing strategy. The conclusion is the learning rate fine-tuning strategy is the best
in most instances [22]. In our previous work [21], we combined the aforemen-
tioned two methods, proposed CPLR. Firstly, the original channel-level pruning
method was improved from the one-shot pattern to an iterative pattern. Then
the learning rate rewinding strategy was adopted to guide the channel-level prun-
ing. CPLR can fully utilize the advantages of both channel-level and the LTH
pruning. Evaluated on MISP-2021 AVWWS database, the CPLR approach can
yield consistent improvements in terms of both system performance and model
efficiency.

3 Proposed Methods

Fig. 1 shows the complete architecture of the proposed (BR)BS-CPL approach
on AVWWS system.
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Fig. 1: The overall architecture of the audio-visual wake word spotting system
using the proposed BS-CPLR.
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Fig. 2: The application process of BS-CPLR on BSConv-BN block.

3.1 Blueprint separable convolution CPLR (BS-CPLR)

When the original convolution layers are transformed into BSConv layers, the
number of the channels remains the same. So we can use CPLR to prune the
transformed network. The main process of applying BSConv on convolution and
BN (ConvBN) block is shown in Fig. 2. Firstly, we transform all the convolution
layers in the network into blueprint separable convolution (BSConv). Then we
add one BN layer after each depth-wise group convolution layers. Afterwards,
we design a iterative channel-level pruning method to prune the point-wise and
depth-wise convolution layers in BSConv based on scale factor « of BN layers. We
adopt the same training and pruning process as CPLR, using the same learning-
rate to retrain the pruned network. Sparse-training method is also adopted to
optimize the pruning process, making the unimportant channels easier to be
identified.
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3.2 Binary Regulation for BS-CPLR (BRBS-CPLR)

To enhance the efficiency of our compressed system working on board, we im-
proved the channel-pruning method used in CPLR. The memory space and
threads in standard board are always the power of 2. Similarly, we always set
our channel numbers and batch size to be the power of 2 to fully occupy the
memory space and threads on board, so the network will work more efficiently
on board. Inspired by this, we constraint the channel numbers in the obtained
pruning mask to be 2V (N represents natural number). Then we arrange the
channels and prune off the unimportant channels based on the pruning mask.
The full algorithm is shown in Algorithm 1.

Algorithm 1 BIBS-CPLR algorithm

1 : Transform all the convolution layers in network into BSConv layers, generate the
initial network f(6;~).

2 : Pre-train the initial network to the early-stop point f(z;60;70) by using sparse-
training.

3 : Set the pruning rate k& = 30% per round.

4 : Create the initial mask m = {m1,ma, ..., m;, ...,m,} based on BN scale factor y
and the pruning rate k.

5 : Traverse the initial mask, constraint every element m; to be the nearest 27V,
generate a new mask m = {2™1,2N2 2N 2Nn}

6 : Arrange and prune the channels using the mask m, obtain the reinit network
[ (2500 © m;yo © m).

7 : Use learning rate rewinding strategy to retrain the network to obtain network
f(@;0157m).

8 : Repeat 3 to 7 until the desired weight sparsity ratio is reached.

9 : Fine-tune the pruned network using the same learning rate as the last retraining
process, return fine-tuned network f(z;0n;vN)-

We decide the nearest 2™Vi in step4 using the following decision criterion:

2% —my| < [2VE — iy (1)

4 Applications on AVWWS System

Our proposed methods are evaluated on an audio-visual wake word spotting task
based on the MISP2021 challenge dataset [28]. Our model architecture mainly
consists of two parts: audio-only system, audio-visual system. Each system em-
ploys three different methods: CPLR, BS-CPLR, and BRBS-CPLR to compare
performance. The details are elaborated in the following subsections.

4.1 Audio-only WWS system

The baseline AVWWS system provided by the challenge was selected as the
original audio-only system, which consists of two 2D-convolution layers, one
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long short term memory (LSTM) layer, and three 2D-convolution layers. We
add a BN layer after each convolution layer. Then, we replace all convolutions
into BSConv and adopted the CPLR, BS-CPLR, and BRBS-CPLR to compress
the system.

4.2 Audio-visual fusion system

The audio-visual fusion system is consistent with [28], which includes two sys-
tems: audio-only and video-only. The audio-only system is described in the para-
graph audio-only WWS system. Similar to audio-only system, the corresponding
original video-only system provided by the challenge was selected, which con-
sists of a lip feature extractor, one LSTM layer, and three 2D-convolution layers,
where the lip feature extractor consists of a 3D-convolution layer, a BN layer,
a 3D-pooling layer, and a ResNet-18. Due to the development board does not
support 3D operators, all 3D operators in the lip feature extractor are replaced
into 2D operators. Similar to the audio-only system, all convolution layers are
transformed into BSConv layers, and then CPLR, BS-CPLR, and BRBS-CPLR
were adopted to compress the system.

The final predicted results are determined by the posterior probability of the
audio-only and video-only WWS systems, as shown in the following formula:

PAV:aXPA(ya|fa)+ﬁXPV(yU|fv) (2)

where Pa(yq|f,) and Py (y,|f,) is posterior of wake word presence (y,/y.) gen-
erated by feeding audio features f, and video features f, into the audio-only
and video-only models, respectively. a and 3 are the weights of audio-only and
video-only systems. The output value of these models is compared with the
preset threshold (tha,thy,thay) after the sigmoid operation.

5 Experiments and Results

5.1 Experimental setup

In this section, we introduce the database we used, the metric to measure the
performance of different systems and the development board used for testing.

Database and metric We conducted experiments on the MISP2021 AVWWS
database [28], which includes about 125 hours of the same amount of near-field,
mid-field, and far-field data and has been divided into training, development,
and evaluation sets without overlapping speakers.

Following the requirements of the challenge committee, the evaluation metric
is determined by the combination of False Reject Rate (FRR) and False Alarm
Rate (FAR). The calculation is as follows:

Nrr Nra

Score = FRR+ FAR = N + N (3)
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where Nyake and Nyon-wake denotes the number of samples with and without
wake words, respectively. Npg denotes the number of samples containing the
wake word while not recognized by the system. Npa denotes the number of
samples that do not contain the wake word but are predicted to be positive by
the system. The lower Score, the better the system performance. For a more
detailed description of the dataset, please refer to [28].

Development board The TB-RK3399ProD development board was adopted
in our experiments. TB-RK3399ProD is a hardware development board devel-
oped for Rockchip RK3399Pro chip, which integrates chip debugging and simu-
lation testing, etc. It adopts high-performance Al processing chip RK3399Pro,
integrated with AI neural network processor NPU, supports 8Bit/16Bit opera-
tion, and its computing power reaches 3.0Tops, meeting various Al applications
such as vision and audio. It is compatible with mainstream AI frameworks Ten-
sorFlow, PyTorch, Caffe, etc., and supports both Android and Linux systems.
Since its complete interface, the design has strong expansibility, it can apply
different use scenarios and full function verification.

5.2 Results on standard metric

This section presents the experimental results and analysis of our proposed meth-
ods. We first evaluated the performance of the audio-only system. Then, we train
the audio-only and video-only systems of the audio-visual fusion system respec-
tively and evaluated the audio-visual fusion system. The Score is used as an
indicator of the generalization ability of the system. Lower Score, better perfor-
mance.

Results for audio-only system We adopted the same data augmentation
methods as [28] for audio data to improve the generalization ability of the model.
Considering the complexity and challenges of the far-field environment, the pro-
posed methods are evaluated on the far-field audio database.

Our results are shown in Figure. 3. We can observe that after converting all
convolution layers of the models into BSConv layers, the parameters of the model
are reduced to 1.81M, which is equivalent to the WSR of BS-CPLR and BRBS-
CPLL methods is 0.33. With the increase of WSR, the score of the three com-
pression methods showed a trend of decreasing first and then increasing. When
WSR is between 0.40 and 0.75, BS-CPLR and BRBS-CPLR achieve better per-
formance than CPLR. Specifically, BRBS-CPLR. outperforms BS-CPLR when
WSR is between 0.4 and 0.63, but when WSR is between 0.63 and 0.75, BS-CPLR
method obtains better results. When WSR exceeds 0.75, the CPLR method ob-
tains better results. Throughout the pruning process, BS-CPLR method achieves
the best Score (0.2497) on the audio far-field evaluation set when the WSR is
0.72. And BRBS-CPLR method reached the highest WSR of 0.82. More inter-
estingly, we notice that compared to the other two methods, the curve of BRBS-
CPLR method is more smooth and steady. In general, the BRBS-CPLR curve
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Fig. 3: Performance curves of CPLR, BS-CPLR and BRBS-CPLR on the far-field
evaluation set for audio-only system.

is more stable than the other two methods when WSR changes, and BSCPLR
can achieve the best score.

Results for audio-visual fusion system For the video-only system, we train
and test the trained model on the mid-field data, and the same Rand Augment
method as [28] was used for data augmentation.

As shown in the Fig. 4, with the decreasing of parameters, the Score of the
AVWWS system compressed by BS-CPLR shows a pattern of first falling and
then rising. When the parameters are about 3.2M, the minimum Score is about
0.24. When parameters are under 3.2M, the generalization ability of the system
begins to deteriorate rapidly.

The curve of the performance of the AVWWS system compressed by BRBS-
CPLR is more stable and obtains the best Score (0.2494) when the parameters
are about 2.9M. Throughout the pruning process, BRBS-CPLR performs better
than BS-CPLR generally and can obtain a higher WSR with no performance
loss, but BS-CPLR can achieve a better Score.
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Fig. 4: Performance curves of BS-CPLR and BRBS-CPLR on the far-field eval-
uation set for AVWWS system.

5.3 Results on development board

In this section, we deployed the audio-only and AVWWS system on TB-RK3399ProD
and tested the time delay to process single sample on board. The shorter the
time delay, the more efficient the system is. We use the systems compressed by
BSconv as our baseline. The results are shown in Table 1.

Based on the above results. For both two systems, the processing time delay
of the system compressed by BS-CPLR and BRBS-CPLR is apparently lower
than the baseline system. And the delay of BRBS-CPLR is lower than that of
BS-CPLR, with a reduction of 1.18ms on audio-only system and 58.41ms on
AVWWS system. The system compressed by BS-CPLR has less channels and
parameters compared with the baseline system, which reduces the amount of
computation. So the proposed BS-CPLR obtains better model efficiency. More-
over, the introduction of binary regulation makes the system fully occupy the
memory space and threads of the board, so the model efficiency can get a further
promotion.

On the other hand, although the introduction of visual modality can improve
the adaptability of the WWS in complex environments, the complexity of the
video-only system also makes the computational cost of the fusion system higher,
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Table 1: Time delay on board of different pruning methods.

Method used to compress ‘ Storage ‘ Time delay

Audio-only system

BSConv(baseline) \ 23.67 MB \ 29.33 ms

BS-CPLR \ 5.91 MB \ 15.85 ms

BRBS-CPLR \ 5.63 MB \ 14.67 ms
AVWWS system

BSConv(baseline) \ 51.43 MB \ 203.62 ms

BS-CPLR | 33.67 MB \ 198.89 ms

BRBS-CPLR \ 33.39 MB \ 145.21 ms

which is the main reason for the increasing time delay. The increase in time delay
greatly limits the application of the system, and we will focus on how to solve
the problem of high delay in the future.

6 Conclusions

In this paper, we propose a new strategy based on blueprint separable convolu-
tion (BSConv) and the channel-level pruning with learning-rate rewinding, called
BS-CPLR. We first explored an efficient convolution operation which is used to
reduce network parameters. Furthermore, a binary conditioning (BR) strategy is
proposed to reduce the inference time for the network compressed by BS-CPLR.
The system performance and time delay are tested on the MISP2021 AVWWS
dataset and the TB-RK3399ProD development board respectively. The exper-
imental results show consistent improvement, indicating the advantages of the
proposed method.
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