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ABSTRACT

In this study, we aim to improve our recent hierarchical information
fusion system for multi-modal emotion recognition challenge (MER
2023) in both efficiency and performance. Specifically, we extract
robust acoustic and visual representations from pre-trained models
and fuse them together in different structures. Then, an entropy-
based fusion approach is proposed to obtain the final prediction of
emotion and valence based on multi-label predictions of all different
feature fusion structures. Furthermore, to reduce the network redun-
dancy and improve the model generalization in low-resource multi-
modal data conditions, we propose a novel approach for optimizing
the network structure progressively based on structured pruning and
learning-rate rewinding. When tested on the dataset of MER 2023,
the optimized network structure with entropy-based fusion yields
consistent and significant improvements, outperforming the cham-
pion system of the MER-MULTI sub-challenge.

Index Terms— Multi-modal emotion recognition, feature fu-
sion, entropy-based fusion, structured pruning, network architecture
optimization

1. INTRODUCTION

Multi-modal emotion recognition (MER) plays an important role in
natural human-machine interaction [1], mental health analysis diag-
noses [2], intelligent education tutoring [3], etc. Emotions can be
calculated by two primary theories: discrete theory and dimensional
theory. Discrete theory [4] characterizes emotional states as discrete
labels such as “happiness” and “sadness”. Dimensional theory [5]
suggests that emotional states exist as points in a continuous space,
allowing for the simulation of complex and sustained behaviors. In
our research, we applied both theories for emotion recognition.

In human daily lives, emotions are mainly expressed through
speech and facial expressions, providing complementary emotive
information. Therefore, how to extract emotive acoustic and vi-
sual representations and fuse them effectively has become a research
hotspot in recent years [6, 7]. Early studies mainly trained the MER
systems from scratch [8, 9, 10]. Han et al. [8] proposed an approach
that maximized the mutual information (MI) among unimodal input
pairs. Le et al. [9] utilized CNN networks followed by transformer
encoders to capture the hidden features from video frames and au-
dio spectrograms and fused them through a transformer-based net-
work. Recently, inspired by the success of pre-trained features such
as wav2vec2.0 [11] in other speech-related tasks, some researchers
began to investigate their superiority over hand-engineered features

*corresponding author

and discovered that these deep features captured more robust rep-
resentations in low-resource multi-modal data conditions [12, 13].
Lian et al. [12] conducted a survey on the performance of vari-
ous speech and image pre-trained models on MER2023 dataset, dis-
covered that acoustic features from HUBERT [14] and visual fea-
tures from MANet [15] achieved the best results in unimodal emo-
tion recognition, and proposed a fusion framework based on self-
attention. Our recent work [13] extended former work by studying
the performance difference of deep features from different layers of
pre-trained models and proposed a hierarchical information fusion
approach. However, current studies on decision-level fusion primar-
ily focus on weighting the decisions from different systems using
statistical weights (e.g., linear weighting), while relatively neglect-
ing the variations in samples, which limits the model’s ability to han-
dle certain ambiguous samples. In addition, hand-crafted backend
network structures may not obtain optimal performance because re-
dundant connections usually act as noise in evaluation [16], causing
confusion issues in the classification of similar emotions.

Pruning is an effective method to remove the redundancy in a
network, which can be divided into structured pruning and unstruc-
tured pruning [17]. The lottery ticket hypothesis (LTH) [18] re-
vealed the compressible nature of networks. One effective scheme
based on LTH is the learning-rate rewinding strategy [19]. Recently,
CPLR [20] by integrating channel-level pruning and learning-rate
rewinding was proposed and performed well in multi-modal sys-
tems. However, the majority of recent researches on pruning usually
focuses on how to acquire higher compression ratios, but the po-
tential of optimizing the network structure and improving network
performance through structured pruning has rarely been studied.

In this paper, we improve our recent MER system for multi-
modal emotion recognition challenge (MER 2023) in both efficiency
and performance. First, we extract different levels of deep acoustic
features from pre-trained models and separately fuse them with deep
visual features. Then we propose an entropy-based fusion approach
for combining the multi-label predictions drawn from different fused
features to obtain a more reliable decision against confusion issues.
Furthermore, to reduce the network redundancy and improve the
model generalization in low-resource multi-modal data conditions,
a novel approach for optimizing the network structure progressively
is proposed based on structured pruning. Our final system outper-
forms the champion system of MER-MULTI sub-challenge with the
highest matrix of 0.7139.

2. METHODS

In this section, we will discuss our proposed multimodal emotion
recognition system in two subsections. The architecture of our im-
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Fig. 1. The architecture of the proposed multi-modal emotion recognition system with pruning-based network architecture optimization
(PNAO). AFG represents Attention-guided Feature Gathering in the figure.

proved hierarchical information fusion system with entropy-based
decision fusion will be discussed in subsection 2.1. And the princi-
ple of the proposed network architecture optimization approach will
be illustrated in subsection 2.2. The overall flowchart of our system
is shown in Fig. 1, which will be illustrated in following subsections.

2.1. Entropy-based Decision Fusion

In our proposed architecture, robust utterance-level acoustic and
visual representations are firstly extracted by pre-trained models
from the original feature space. Specifically, following our recent
work [13], low-level, mid-level, and high-level acoustic represen-
tations are extracted from different layers of HUBERT-large [14].
For the visual part, the pre-trained MANet [15] and ResNet [21] are
utilized to obtain complementary visual representations.

Then, as shown in Fig. 1, three distinct acoustic representations
are incorporated with visual representations separately in AFG [13,
22] to obtain different levels of acoustic-visual unified representa-
tions. Afterward, multi-labels of emotion and valence are predicted
with different fused representations in joint decoders [13], which can
be formulated as follows, and i ∈ 1, 2, 3 represents different classi-
fiers based on different fused representations:

êi = Softmax(ẽi) = Softmax(W eĥi + be) (1)

v̂i = W vv[ṽhi, ṽei]
T + bvv (2)

where êi ∈ RC (total C emotion categories) and v̂i ∈ R are the pre-
dictions of emotion and valence based on single fused representation
ĥi ∈ RD . W e, W vv , be, bvv are trainable parameters. ṽhi ∈ R
and ṽei ∈ R are the estimated valence possibilities according to the
fused state ĥi and emotion hidden state êi with trainable parameters
W hv , bhv , W ev and bev , calculated as follows:

ṽhi = W hvĥi + bhv (3)

ṽei = Tanh(W evẽi + bev) (4)
In fact, different levels of fused representations contain various

acoustic information [13]. As a result, different emotion classifiers
that utilize different levels of fused features can yield varying confi-
dence levels on judgments. Some classifiers may provide a high con-
fidence prediction, while others may provide lower confidence judg-
ments due to the inability to effectively discriminate similar emo-
tions based on the acoustic information they utilize. In order to ob-
tain a more confident judgment, we proposed a confidence-driven
approach to obtain a joint prediction based on the predictions of
different emotion classifiers, as shown in Fig. 1. We calculate the
confidence-level scores of different predictions based on the infor-
mation entropy of posterior probability predictions on emotion la-
bels, whose principle is as follows:

Hi = −⟨êi, logêi⟩ (5)

ωi =
1

M − 1

(
1− Hi∑M

i=1Hi

)
(6)

where Hi is the information entropy of each emotion prediction and
ωi is the confidence-level score based on entropy Hi. Higher en-
tropy, lower confidence-level score. M represents the amount of
predictions (M = 3 in our framework). Then we get the joint deci-
sion by weighting the posterior probabilities of emotion and valence
predictions based on their confidence-level scores, as follows:[

ê
v̂

]
=

[
ê1 ... êM

v̂1 ... v̂M

]
·
[
ω1 ... ωM

]T (7)

where ê ∈ RC , v̂ ∈ R is the joint prediction for emotion and va-
lence. Higher weights are assigned to more confident predictions
when fusion. The experiments in subsection 3.2 show that we can
alleviate the confusion situation of similar emotions and improve the
system performance by trusting the most confident predictions.
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2.2. Pruning-based Network Architecture Optimization (PNAO)

Compared to speech emotion recognition data, the multi-modal emo-
tion data are more low-resource. The redundancy in our initially
designed multi-modal emotion recognition system may lead to poor
performance. To reduce the network redundancy and improve the
model generalization in low-resource multi-modal data conditions,
we proposed a novel approach for optimizing the fine-grained net-
work structure progressively. The details are shown in Algorithm 1.

Algorithm 1 PNAO algorithm
1 : Pre-train the initial network parameter matrices to the early-
stop point Θ0 by using sparse-training.
2 : Set network architecture optimization rate (NAOR) k.
3 : Learn the mask m based on L1 norm of row dimension of all
parameter matrices Θ0 with NAOR k.
4 : Prune the nodes of network using the mask, obtain the reinit
network parameter matrices Θ0 ⊙m.
5 : Use learning rate rewinding strategy to retrain the network to
obtain the fine-tuned parameter matrices Θ1.
6 : Repeat 2 to 5 for N rounds to obtain the best-performing com-
pact network.

Firstly, we train the initial network to the early-stop point [18]
with sparse-training. During training, we use the cross-entropy (CE)
loss as the emotion classification loss, denoted as Le, and the mean
squared error (MSE) loss is adopted for valence prediction, denoted
as Lv . Additionally, we introduce uncertainty loss weighting [23] to
Le and Lv for better performance in the multi-task learning process,
denoted as AWL. Without loss of generality, the total loss function
at a certain round is as follows, where Θ = {Θ1, ...,ΘL} (total L
layers in network) represents all parameter matrices of this round:

Lev = AWL(Le,Lv) + α · ∥Θ∥p (8)

AWL(Le,Lv) =
1

δ1
2Le+

1

2δ2
2Lv+log(1+δ1)+log(1+δ2) (9)

The sparse term based on the p-norm (p=1 in the equation) is added
to the loss function, and sparse training has been proven to be effec-
tive for dynamic pruning networks [24]. In the training process, the
unimportant weights will become smaller and smaller, making the
less important nodes more and more discriminative.

Then, we learn the mask based on network architecture, we
adopt the L1 norm of column dimension of parameter matrices as
indicating factors to node importance, as follows:

γ(l, j) = ∥Θl(j, :)∥1 =
1

Nl

∑Nl
n=1 |Θl(j, n)| (10)

where l denotes the index of the current layer and j and r denote the
indexes of nodes and columns (total Nl columns) in the l-th layer.
γ represents the importance matrix of total nodes. The global mask
matrix m is generated based the network architecture optimization
rate (NAOR) k and importance matrix γ, computed as follows:

m(l, j) = U(γ(l, j)− k ·max(γ)) (11)

U(·) is the unit step function. Next, the mask m is applied to matri-
ces Θ and the zero-weighted nodes are removed. The more compact
network is then fine-tuned using the learning-rate rewinding strategy
[19]. The following steps are repeated several times until the optimal
network has been found. By adopting a small NAOR, we can prune
off some redundant nodes while retaining the important nodes, so
the network architecture will be optimized step by step.

(a) Entropy-based fusion strategy. (b) Attention-based fusion strategy.

Fig. 2. Performance comparison of entropy-based fusion strategy
and former attention-based strategy.

3. EXPERIMENTS AND RESULTS ANALYSIS

In this section, several experiments are conducted to validate the
effectiveness of the proposed methods. Similar to our previous
work [13], the outputs of the 18, 19 and 20-th layers of HUBERT-
large [14] are adopted as acoustic representations and the outputs of
MANet [15] and ResNet [21] are adopted as visual representations
in all systems for fair comparisons in all the following experiments.

3.1. Dataset and Metric

In this research, we conduct experiments on MER 2023 dataset [12].
The dataset consists of 3373 labeled single-speaker video segments
used as the training dataset. There are 411 and 412 unlabeled video
segments for the test set in MER-MULTI sub-challenge. Same with
the baseline [12], the combined metric (Com) of emotion classifi-
cation (Dis) and valence regression (Dim) is chosen to evaluate the
overall performance of discrete and dimensional emotions.

3.2. Effectiveness of Entropy-based Fusion

To evaluate the effectiveness of the proposed entropy-based deci-
sion fusion strategy on a hierarchical information fusion system,
we plot the 6-class emotion classification confusion matrices of
our improved MER system and the well-performing attention-based
fusion strategy of our former MER system that ranks third on
MER-MULTI [13]. The two systems share the same feature fusion
architecture but different decision fusion strategies. As shown in
Fig. 2, the results suggest that the entropy-based fusion strategy
performs better than the former attention-based fusion strategy, ob-
taining lower confusion between emotions. It is worth noticing that
the entropy strategy remarkably improved the classification of easily
confused emotion categories, obtaining more correctly classified
samples of sad, worried and surprised emotions. Benefiting from
the proposed entropy-based decision fusion strategy, the high con-
fidence prediction can attribute more to the final prediction when
facing confusing samples, while enhancing the classification ability
of our MER model against confusion situations on emotions.

3.3. Effectiveness of PNAO

In this section, we further conduct PNAO on the entropy-based MER
system tested in subsection 3.2 to progressively find the optimal ar-
chitecture. We set the network architecture optimization rate to 0.05
and proceed with 10 rounds of optimization. As shown in Fig. 3,
the results show that continuous improvements in performance have
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Fig. 3. The performance curve of PNAO on MER system with
entropy-based fusion over rounds.

Table 1. Performance comparison of MER systems. EnF denotes
entropy-based fusion.

Model Train&Vals MER-MULTI
Com (↑) Dis (↑) Dim (↓) Com (↑)

sense-dl-lab [25] - - - 0.7005
AIPL-SEU [26] - - - 0.6860
USTC-qw [13] 0.6402 0.8328 0.5930 0.6846

Baseline 0.6267 0.8287 0.6033 0.6779
Ours(EnF) 0.6375 0.8350 0.6258 0.6786

Ours(PNAO) 0.6481 0.8301 0.5765 0.6860
Ours(EnF+PNAO) 0.6579 0.8383 0.5734 0.6949

Ours(Final) 0.6762 0.8530 0.5563 0.7139

been achieved in the first few rounds of PNAO with decreasing pa-
rameters. The Fscore of emotions is increasing and the MSE loss is
decreasing progressively. This suggests that the redundant connec-
tions in the original network have been a limitation to system per-
formance, and PNAO successfully optimizes the network structure
and improves the model generalization by pruning off these connec-
tions step by step. The system achieves a Metric score of 0.6949,
demonstrating an improvement of 2.2% with a reduction of 28.3%
in parameters compared to the original system.

It is also worth noticing that the Metric will decrease after 5
rounds of PNAO, which might be due to the important informa-
tion lost with the parameters over-pruning. To further investigate
this phenomenon, we analyze the dynamic progression of the weight
value distribution during rounds, as visualized in Fig. 4. It is ob-
served that the sharp distribution of weight values is progressively
pruned to become smoother over rounds. During the first few rounds,
redundant weights near zero are pruned and useful weights are acti-
vated at the same time, which is a possible explanation for the per-
formance improvement in model generalization. However, weights
tend to be averaged after a few rounds along with the reduction of
redundant nodes. It is difficult to distinguish insignificant connec-
tions and some essential connections may be incorrectly pruned off
in further optimization, leading to a decline in system performance.

Fig. 4. The weight contribution comparison over rounds of PNAO.

3.4. Overall Comparison

Finally, we give an overall comparison of our proposed system with
other state-of-the-art systems on the MER-MULTI leaderboard [12].
Table 1 presents the top three fusion systems on the MER-MULTI
sub-challenge, which are sense-dl-lab [25], AIPL-SEU [26], and
USTC-qw [13]. The baseline system is the best single system from
USTC-qw [13]. The results indicate that by combining the pro-
posed entropy-based fusion strategy and the PNAO strategy, the sin-
gle system performance obtains a score gain of 1-2 percent points,
indicating the effectiveness of the two proposed techniques. Fi-
nally, by combining the decisions of the single systems optimized by
PNAO (Ours(PNAO) and Ours(EnF+PNAO) in Table 1) at the deci-
sion level using linear weighting, our fusion system (Ours(Final))
achieved the highest metric of 0.7139, which is an improvement of
1.34% compared to the champion system on MER-MULTI.

4. CONCLUSIONS

In this study, we improve our recent hierarchical information fusion
system in both efficiency and performance. Firstly, feature fusion
structures are designed based on different levels of deep features
extracted from pre-trained models. Then we propose an entropy-
based decision fusion approach for better integrating the multi-label
predictions of different feature fusion structures, obtaining highly-
confident decisions of emotion and valence against confusing issues.
Furthermore, we proposed a novel approach named PNAO to op-
timize the structure of the proposed MER system progressively in
low-resource training conditions. When tested on the MER 2023
dataset, the final optimized network with entropy-based decision fu-
sion achieves state-of-the-art performance on MER-MULTI.

5. ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Founda-
tion of China under Grant 62171427.

11769

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 09,2024 at 14:18:29 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] Fatemeh Noroozi, Marina Marjanovic, Angelina Njegus, Ser-
gio Escalera, and Gholamreza Anbarjafari, “Audio-visual emo-
tion recognition in video clips,” IEEE Transactions on Affec-
tive Computing, vol. 10, no. 1, pp. 60–75, 2019.

[2] Anoop K, Deepak P, and Lajish V L, “Emotion cognizance
improves health fake news identification,” in Proceedings of
the 24th Symposium on International Database Engineering &
Applications, New York, NY, USA, 2020, IDEAS ’20, Associ-
ation for Computing Machinery.

[3] Mona Hafez Mahmoud, “A survey of some interdisciplinary
methods and tools to measure learners’ emotions in intelligent
tutoring systems,” in 2019 6th International Conference on
Advanced Control Circuits and Systems (ACCS) and 2019 5th
International Conference on New Paradigms in Electronics &
information Technology (PEIT), 2019, pp. 1–6.

[4] Jessica L Tracy and Daniel Randles, “Four models of basic
emotions: A review of ekman and cordaro, izard, levenson,
and panksepp and watt,” Emotion review, vol. 3, no. 4, pp.
397–405, 2011.

[5] Tanmayee Joshi, Sarath Sivaprasad, and Niranjan Pedanekar,
“Partners in crime: Utilizing arousal-valence relationship for
continuous prediction of valence in movies.,” in AffCon@
AAAI, 2019, pp. 28–38.

[6] Sicheng Zhao, Guoli Jia, Jufeng Yang, Guiguang Ding, and
Kurt Keutzer, “Emotion recognition from multiple modalities:
Fundamentals and methodologies,” IEEE Signal Processing
Magazine, vol. 38, no. 6, pp. 59–73, 2021.

[7] Darshana Priyasad, Tharindu Fernando, Simon Denman,
Sridha Sridharan, and Clinton Fookes, “Attention driven fu-
sion for multi-modal emotion recognition,” in ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020, pp. 3227–3231.

[8] Wei Han, Hui Chen, and Soujanya Poria, “Improving multi-
modal fusion with hierarchical mutual information maximiza-
tion for multimodal sentiment analysis,” 2021.

[9] Hoai-Duy Le, Guee-Sang Lee, Soo-Hyung Kim, Seungwon
Kim, and Hyung-Jeong Yang, “Multi-label multimodal emo-
tion recognition with transformer-based fusion and emotion-
level representation learning,” IEEE Access, vol. 11, pp.
14742–14751, 2023.

[10] Hengshun Zhou, Jun Du, Yuanyuan Zhang, Qing Wang, Qing-
Feng Liu, and Chin-Hui Lee, “Information fusion in atten-
tion networks using adaptive and multi-level factorized bilin-
ear pooling for audio-visual emotion recognition,” IEEE/ACM
Trans. Audio, Speech and Lang. Proc., vol. 29, pp. 2617–2629,
jul 2021.

[11] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and
Michael Auli, “wav2vec 2.0: A framework for self-supervised
learning of speech representations,” 2020.

[12] Zheng Lian, Haiyang Sun, Licai Sun, Jinming Zhao, Ye Liu,
Bin Liu, Jiangyan Yi, Meng Wang, Erik Cambria, Guoying
Zhao, et al., “Mer 2023: Multi-label learning, modality robust-
ness, and semi-supervised learning,” 2023.

[13] Haotian Wang, Yuxuan Xi, Hang Chen, Jun Du, Yan Song,
Qing Wang, Hengshun Zhou, Chenxi Wang, Jiefeng Ma,
Pengfei Hu, Ya Jiang, Shi Cheng, Jie Zhang, and Yuzhe Weng,

“Hierarchical audio-visual information fusion with multi-label
joint decoding for mer 2023,” in Proceedings of the 31st ACM
International Conference on Multimedia, 2023, MM ’23.

[14] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman
Mohamed, “Hubert: Self-supervised speech representation
learning by masked prediction of hidden units,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
29, pp. 3451–3460, 2021.

[15] Jingyun Liang, Guolei Sun, Kai Zhang, Luc Van Gool, and
Radu Timofte, “Mutual affine network for spatially vari-
ant kernel estimation in blind image super-resolution,” in
2021 IEEE/CVF International Conference on Computer Vision
(ICCV), 2021, pp. 4076–4085.

[16] Haotian Wang, Jun Du, Hengshun Zhou, Chin-Hui Lee, Yul-
ing Ren, and Jiangjiang Zhao, “A Multiple-Teacher Pruning
Based Self-Distillation (MT-PSD) Approach to Model Com-
pression for Audio-Visual Wake Word Spotting,” in Proc. IN-
TERSPEECH 2023, 2023, pp. 2678–2682.

[17] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie,
“Model compression and hardware acceleration for neural net-
works: A comprehensive survey,” Proceedings of the IEEE,
vol. 108, no. 4, pp. 485–532, 2020.

[18] Jonathan Frankle and Michael Carbin, “The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks,” in ICLR,
2019.

[19] Alex Renda, Jonathan Frankle, and Michael Carbin, “Compar-
ing rewinding and fine-tuning in neural network pruning,” in
ICLR, 2020.

[20] Haotian Wang, Jun Du, Hengshun Zhou, Heng Lu, and Yuhang
Cao, “A novel approach to structured pruning of neural net-
work for designing compact audio-visual wake word spotting
system,” in APSIPA ASC, 2022, pp. 820–826.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[22] Zheng Lian, Jianhua Tao, Bin Liu, and Jian Huang, “Conversa-
tional Emotion Analysis via Attention Mechanisms,” in Proc.
Interspeech 2019, 2019, pp. 1936–1940.

[23] Roberto Cipolla, Yarin Gal, and Alex Kendall, “Multi-task
learning using uncertainty to weigh losses for scene geometry
and semantics,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 7482–7491.

[24] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang, “Learning efficient
convolutional networks through network slimming,” in ICCV,
2017, pp. 2755–2763.

[25] Daoming Zong, Chaoyue Ding, Baoxiang Li, Dinghao Zhou,
Jiakui Li, Ken Zheng, and Qunyan Zhou, “Building robust
multimodal sentiment recognition via a simple yet effective
multimodal transformer,” in Proceedings of the 31st ACM In-
ternational Conference on Multimedia, 2023, MM ’23.

[26] Sunan Li, Hailun lian, Cheng Lu, Yan Zhao, Chuangao Tang,
Yuan Zong, and Wenming Zheng, “Multimodal emotion recog-
nition in noisy environment based on progressive label revi-
sion,” in Proceedings of the 31st ACM International Confer-
ence on Multimedia, 2023, MM ’23.

11770

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 09,2024 at 14:18:29 UTC from IEEE Xplore.  Restrictions apply. 


