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Figure 1. We propose EmotiveTalk, an expressive talking head generation framework. Taking a single portrait and the driven audio as
input, our method can generate expressive portrait video sync with audio and customize the speaking style with additional emotion control.

Abstract

Diffusion models have revolutionized the field of talking
head generation, yet still face challenges in expressive-
ness, controllability, and stability in long-time generation.
In this research, we propose an EmotiveTalk framework
to address these issues. Firstly, to realize better control
over the generation of lip movement and facial expres-
sion, a Vision-guided Audio Information Decoupling (V-
AID) approach is designed to generate audio-based decou-
pled representations aligned with lip movements and ex-
pression. Specifically, to achieve alignment between audio
and facial expression representation spaces, we present a
Diffusion-based Co-speech Temporal Expansion (Di-CTE)
module within V-AID to generate expression-related rep-
resentations under multi-source emotion condition con-
straints. Then we propose a well-designed Emotional Talk-
ing Head Diffusion (ETHD) backbone to efficiently gener-
ate highly expressive talking head videos, which contains
an Expression Decoupling Injection (EDI) module to auto-
matically decouple the expressions from reference portraits

while integrating the target expression information, achiev-
ing more expressive generation performance. Experimen-
tal results show that EmotiveTalk can generate expressive
talking head videos, ensuring the promised controllability
of emotions and metric stability during long-time genera-
tion, yielding state-of-the-art performance compared to ex-
isting methods. The main page of our paper can be found
in https://emotivetalk.github.io/.

1. Introduction
Talking head generation, also known as portrait image ani-
mation [52], demonstrates significant value across multiple
domains, including television and film production, online
education as well as human-machine interaction. The gen-
eration of realistic talking head videos involves two aspects
of requirements. On the one hand, for the verbal aspect, it is
essential to ensure the synchronization between speech and
lip motions in the generated video [27]. On the other hand,
for the non-verbal aspect, the generated video must convey
non-verbal information, including facial expressions [26].

Despite the success of diffusion models [16, 24, 35] in
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image and video generation tasks, their application in talk-
ing head generation [15, 23, 31, 38, 45] still faces several
challenges. For example, current methodologies [23, 38,
45] exhibit shortcomings in control of the generated emo-
tional facial expressions, although they have made notable
advancements in achieving synchronization between speech
and lip movements. These audio-driven methods mainly
directly synthesize expressions under weak audio condi-
tions [38, 45]. However, the coupling of multiple informa-
tion embedded in audio limits the effective learning of the
mapping between speech and expressions and the control-
lability of generated emotion. Moreover, current diffusion-
based methods often struggle to generate high-resolution
video due to their large scale of parameters and the asso-
ciated training costs [38, 45]. They also face challenges
in stability during long-time generation due to their auto-
regressive inference strategies [23, 38, 45], which can lead
to error accumulation across multiple inference clips.

To address these challenges, in this paper, we introduce
EmotiveTalk, a highly expressive talking head generation
framework with emotion control based on video diffusion.
We propose a Vision-guided Audio Information Decouple
(V-AID) approach to facilitate the decoupling of lip and
expression related information contained in audio signals
and also the alignment of audio representations with video
representations under the guidance of vision facial mo-
tion information. Specifically, to achieve better alignment
between speech and expression representation spaces, we
present a Diffusion-based Co-speech Temporal Expansion
(Di-CTE) module, which generates temporal expression-
related representations from audio under utterance emo-
tional conditions from multiple optional driven sources.
Then, to effectively drive the decoupled representations, we
propose an efficient video diffusion framework for expres-
sive talking head generation that demonstrates effective-
ness and enhanced stability in talking head video genera-
tion performance. The backbone incorporates an Expres-
sion Decoupling Injector (EDI) module in our backbone to
achieve the automatic decoupling of expression information
from the reference portrait while facilitating the injection
of expression-driven information. In summary, our contri-
butions are as follows: (1) We propose a Vision-Guided
Audio Information Decouple (V-AID) approach that gen-
erates efficient decoupled lip-related and expression-related
representations from audio for talking head generation. (2)
We propose an Emotional Talking Head Diffusion (ETHD)
framework that is capable of generating dynamic-length
videos, which achieves highly expressive talking head video
generation performance while ensuring metric stability over
extended durations. (3) We further enhance emotion con-
trollability by integrating conditions from emotion-driven
sources and realizing the customization of generated emo-
tions by multi-source emotion control.

2. Related Work
2.1. Audio-driven Talking Head Video Generation
The initial focus of the audio-driven talking head video gen-
eration task was on achieving synchronization between lip
movements and the audio signal [27, 31]. Audio2Head
[43] and SadTalker [49] integrate 3D information and con-
trol modules to enhance the naturalism of head movements.
DreamTalk [23], Diffused Heads [36], and VASA-1 [46]
further achieve more vivid and expressive results. Recently,
a major shift occurred with the introduction of text-to-image
pre-trained models. EMO [38], Hallo [45], and other sim-
ilar frameworks [40, 44] built on the foundation of pre-
trained image diffusion models [28] achieve high-fidelity
talking head video generation results. Traditional audio-
driven methods simply based on a data-driven approach,
lack optional control on expression styles. Our model in-
corporates a decoupling mechanism that enables emotion
control beyond conventional audio-driven frameworks.

2.2. Controllable Talking Head Generation
Controlling the expression style in talking head video gen-
eration has long been a compelling challenge. Early meth-
ods [9, 12, 14, 20, 33, 37] model expressions in discrete
emotion states, while recent methods [21–23, 41, 46] focus
on transferring the expressions from a reference video to
the generated video. Extracting decoupled representations
of expressions is crucial for emotion transferring. Earlier
approaches [22, 23] use 3DMM coefficients [4, 11] from
reference videos, but this led to identity leakage issues, as
the 3DMM coefficients encode not only expression infor-
mation but also the speaker’s facial structure information.
PD-FGC [41] and AniTalker [21] employ contrastive learn-
ing approaches to acquire expression-related latent and re-
alize expression driven with minor identity leakage.

In practical applications, emotion control information
can originate from many other sources [1, 29]. In our ap-
proach, we derive a unified emotional control latent from
various optional sources of emotion information and enable
emotion control based on the emotion control latent.

2.3. Video Diffusion Models
The groundbreaking work on video diffusion is Video Dif-
fusion Models (VDM) [18]. ImagenVideo [17] enhances
VDM with cascaded diffusion models. Make-A-Video [32]
and MagicVideo [53] then extend these concepts to enable
seamless text-to-video transformations. AnimateDiff [13]
utilizes a motion module to realize the conversion from text-
to-image to text-to-video. Stable Video Diffusion (SVD) [5]
implements innovative training strategies to generate high-
fidelity videos. Our research utilizes diffusion models in
expression-related latent generation and talking head ren-
dering under facial motion control conditions.
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(a) The training and inference pipeline of  EmotiveTalk
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Figure 2. The framework of EmotiveTalk. During the training process, the Vision-guided Audio Information Decouple (V-AID) module
with Diffusion-based Co-speech Temporal Expansion (Di-CTE) expression generator in (b) is firstly trained to provide lip-related and
expression-related representation from audio. Then the Emotional Talking Head Diffusion (ETHD) framework with Expression Decouple
Injector (EDI) in (c) is trained with reference portrait condition and facial motion conditions to reconstruct the target frames, including
lip-related and emotion-driven representation randomly chosen between e⃗a and e⃗v from V-AID module. During the inference process,
EmotiveTalk takes portrait and speech audio as input, supplemented with optional emotion source Sdri to achieve emotion control.

3. Method

As shown in Fig. 2, the structure of the EmotiveTalk is
divided into two main parts: (1) the Vision-guided Au-
dio Information Decouple (V-AID) with Diffusion-based
Co-speech Temporal Expansion (Di-CTE) module; (2) the
Emotional Talking Head Diffusion (ETHD) framework
with Expression Decoupling Injector (EDI) module.

3.1. Preliminary

Task Definition. The task of controllable talking head gen-
eration involves creating a vivid talking head video from
two inputs: a static single-person portrait xref, and a driven
speech sequence A ∈ RNa . Besides, emotion sources Sdri
can also utilized as optional input to realize better control-
lability of emotion. When the optional Sdri is not provided,
our method aims to generate expression-related represen-
tation solely by the speech input and the portrait xref. The
output is the generated video frames X̂1:N = {x̂0, ..., x̂N}.
Diffusion Models. Let X(0) represent video latents sam-

pled from a given distribution q(X(0)). In the forward dif-
fusion process, Gaussian noise is progressively added to
X0, gradually diffusing towards a distribution resembling
N (0, I). This process forms a fixed Markov chain [24, 35]:

q(X(t)|X(t−1)) = N (X(t);
√
1− βt X(t−1), βtI) (1)

where {βt}Tt=1 are known constants. Notably, the marginal
distribution at any time can directly derive from X(0) as:

q(X(t)|X(0) = N (X(t);
√
ᾱt X(0), (1− ᾱt)I) (2)

where ᾱt =
∏t

i=1 αi and αt = 1− βt. The reverse process
gradually recovers the original video latent from the noisy
latent X(T ) ∼ N (0, I), achieving by training a network to
predict the posterior distribution pθ(X(t−1)|X(t), c) under
condition set c. To learn pθ(X(t−1)|X(t)). The model is
trained using the following loss function:

L = Et,X0,ϵ,c[∥ϵ− ϵθ(X(t), t, c)∥2] (3)

We use the diffusion strategy for expression-related repre-
sentation generation in Di-CTE and video latent generation.
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3.2. Vision-guided Audio Information Decouple
Speech is rich in plentiful coupled information, previous
methods focused on decoupling speech information in the
audio space [47, 54]. However, the representations obtained
through these approaches are generally not well-suited for
talking head generation, due to the inherent disparity be-
tween the audio and facial motion representations. We pro-
pose that facial motion information in the vision space can
guide the decoupling of coupled speech information due
to the correlation between speech information and differ-
ent facial motions [48] and also facilitate the generation
of aligned facial motion related representations from audio.
Based on this, we designed a Vision-guided Audio Informa-
tion Decoupling (V-AID) module. This module takes audio
sequence A and reference portrait xref as input. The au-
dio stream first passes through a pre-trained Wav2Vec au-
dio encoder [2], followed by the trainable audio-to-lip pro-
jector and audio-to-expression generator to obtain lip and
expression-related latents. The two modules are trained un-
der the supervision of lip and expression representations of
vision space, elaborated in the supplementary material.
Audio-lip Contrastive Learning. We leverage the latent
representation of lip motions in vision space to guide the
audio-to-lip mapping, thereby achieving alignment between
the audio and lip motion representations. Specifically, we
use a pre-trained lip encoder to extract decoupled lip-related
latents l⃗v = {l1, ..., lN} from videos paired with audio. The
audio stream is processed through an audio-to-lip projec-
tor with a Perceiver Transformer [19] architecture detailed
in the supplementary material to generate lip-related latents
l⃗a = {̂l1, ..., l̂N}. The infoNCE [25] contrastive loss func-
tion is utilized to optimize the lower bound of mutual in-
formation (MI) between l⃗a and l⃗v to maximize MI between
frame-level lip movements and the corresponding driving
speech signal, where (̂li, li) denotes a positive pair and
(̂li, lj) denotes negative pairs. The loss function is formu-
lated as follows, with sim(·) represents cosine similarity:

Llipc = − 1

N

N∑
i=1

log

 exp
(

sim(l̂i,li)
τ

)
∑N

j=1 exp
(

sim(l̂i,li)
τ

)
 (4)

Furthermore, we also supplement the contrastive learning
loss with Mean Squared Error (MSE) loss to synchronize
both the motion and morphological information between l⃗a
and l⃗v. The loss function is as follows:

Llipm =
1

N

N∑
i=1

||li − l̂i||2 (5)

The final training loss function is the combination of two
losses, as follows:

Llip = αLlipc + βLlipm (6)

Di-CTE for Audio-to-expression Generation. We utilize
representations of facial expressions from the vision space
to guide the alignment of audio-based emotion information
with facial expressions. Generally, speech and facial ex-
pressions are not strictly correlated on a one-to-one basis,
the same speech can correspond to different but plausible
facial expressions. To address this, we propose a Diffusion-
based Co-speech Temporal Expansion (Di-CTE) module to
generate frame-level expression-related latent e⃗a from ini-
tial expression under speech constraints, leveraging the ad-
vantages of diffusion models in terms of generative diver-
sity. We leverage a pre-trained expression encoder to extract
decoupled expression latent e⃗v from ground-truth video as
vision supervision. Di-CTE inputs consist of a reference
frame (xref) from the ground truth video serving as speaker
identity and speech embedding Aw to provide temporal
emotion information. During training, the emotion condi-
tion econd is provided by the first frame of the ground-truth
video, and the output is expression-related latent e⃗a sync
with the speech. The denoising loss of network Sθ is de-
fined as follows, where t denotes the DDPM step:

Lexp = ||e⃗v − Sθ(e⃗a(t), t,xref,Aw, econd)||2 (7)

Mutual Information Constraint. Finally, to decouple
lip-related and expression-related information and mitigate
their mutual interference, we introduced a mutual informa-
tion (MI) constraint during the joint training of the audio-
to-lip and audio-to-expression modules. Specifically, we
employ CLUB [7] to optimize the upper bound of MI be-
tween the lip-related latent l⃗a from the audio-to-lip mod-
ule and the expression-related latent e⃗a from the audio-to-
expression module. The total loss function is as follows:

LV-AID = Llip + Lexp +CLUB{⃗la, e⃗a} (8)

By minimizing the MI between l⃗a and e⃗a, we achieve a sep-
aration of the two representation spaces.

3.3. Emotional Talking Head Diffusion
In this subsection, we present a diffusion-based framework
for generating emotional talking heads. Before ETHD, the
driving audio is processed through V-AID to obtain lip-
related and expression-related latents, and the portrait is
projected into latent space via temporal Variational Autoen-
coder (VAE) and concatenated with input noise along the
channel dimension, shown in Fig. 2. ETHD outputs a se-
quence of frame latents synchronized with the speech.
Backbone Network. Our backbone network leverages a
3D-Unet architecture with the spatial-temporal separable at-
tention mechanism [5]. The spatial attention module com-
prises two blocks. Firstly, the lip-related latent l⃗a is in-
jected through spatial cross attention. Then, an Expression
Decoupling Injector (EDI) module, articulated late in Sec-
tion 3.3, is employed to integrate expression-driven latent
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e⃗dri (e⃗dri = e⃗a for audio-only driven task and e⃗dri = e⃗v
for video-driven task). Analogously, the temporal atten-
tion module also encompasses two components: a tempo-
ral self-attention mechanism and a temporal cross-attention
module. The temporal cross-attention module engages in
cross-attention with expression-driven latent to learn subtle
temporal variations in emotional expression. The output la-
tents are then processed through a temporal VAE decoder to
obtain the generated motion frames.
Expression Decoupling Injector. In talking head gener-
ation, the inherent expression information in the reference
portrait usually constrains the generation of the target ex-
pression, leading to sub-optimal expressive results. To ad-
dress this, we propose an Expression Decoupling Injection
(EDI) module to achieve emotional expressions by automat-
ically decoupling the expression information from reference
portraits while integrating the expression-driven informa-
tion, which consists of two parallel attention branches. One
branch computes the attention between the hidden states
Hi ∈ Rf×h×w×c (f is the number of processed frames,
h and w is the height and width of hidden states, c is the
number of channels) and the expression embeddings e⃗ref of
the reference portrait while the other branch computes the
attention between the hidden states Hi and the expression-
driven representation e⃗dri. By subtracting these two cross-
attention outputs, we achieve the transition of facial expres-
sions in the generated video from the expression of the ref-
erence image to the driving expression, as shown in the fol-
lowing equation:

Attni=CrossAttn(H i , e⃗dri)−CrossAttn(H i , e⃗ref) (9)

Moreover, to enforce the expression-related latent act
only on the facial region without affecting the lip region
generation, we apply an attention mask similar to Hallo [45]
to the resulting attention value. Specifically, we use the
off-the-shelf toolbox OpenFace [3] to predict landmarks
from portrait xref and calculate binary bounding box masks
Mlip,Mface ∈ {0, 1}h×w which indicate the inner of lip re-
gion and face region. Then, the output of the EDI block is
formulated based on bounding box masks, as follows:

H spa
i = Hi +Attni ⊙ (1−Mlip)⊙Mface (10)

Expression Temporal Cross-attention. To implement bet-
ter modeling of the time-variance of facial expressions, we
introduce a temporal cross-attention module. Specifically,
we squeeze the spatial dimensions of the hidden states H spa

i

to H tem
i ∈ R(h×w)×f×c and compute the cross-attention

between H tem
i and the expression-driven latent e⃗dri. This

makes the model more sensitive to the temporal correlations
of emotional information. Additionally, the same bounding
box masks are utilized to constrain the sensible area of at-
tention calculation.

3.4. Training and Inference
Training. The V-AID module in Sec. 3.2 is first pre-
trained to generate decoupled lip-related representation l⃗a
and emotion-related representation e⃗a from driven audio
window Aw and then remain frozen while training the
ETHD backbone.

Subsequently, we train the ETHD backbone by sam-
pling tuples (X,xref, t, l⃗a, e⃗ref, e⃗dri), e⃗dri is random choice
in video expression-related representation e⃗v and the gener-
ated expression-related representation e⃗a. The total denois-
ing loss function is formulated as:

Lde = ||X(0) − Sθ(X(t),xref, t, l⃗a, e⃗ref, e⃗dri)||2 (11)

Inference. In the inference phase, we employ a non-
autoregressive inference method to avoid the accumulation
of error. Specifically, when performing long-time genera-
tion, we sample a Gaussian-like noisy latent and divide the
total duration into several overlapping clips with a defined
window size. We utilize DDIM [35] sampler for ETHD to
denoise each clip sequentially per step, then we assign a
weighting strategy the same as MimicMotion [50] to assign
higher fusion weights for frame latents closer to the center
of each clip. Repeat this process iteratively to obtain the
clean frame latent. This approach allows us to perform in-
ference of arbitrary lengths without error accumulation.

3.5. Multi-source Emotion Control
To flexibly control emotional expression in generated video
based on control sources, we designed the Multi-source
Emotion Control (MEC) pipeline. MEC introduces time-
varying facial expressions to the generated video based on
optional temporal or utterance sources.
Temporal Sources Emotion Control. External expression-
driven videos are treated as temporal sources, denoted as
ST, due to their rich temporal variations in expression. We
directly apply the pre-trained expression encoder to extract
the expression-driven latent e⃗v, as detailed in Section 3.3.
The final emotive video is rendered using exp-driven latent
e⃗v, and lip-related latent l⃗a, derived from Section 3.2.
Utterance Sources Emotion Control. To improve the
temporal dynamism and better alignment with the driving
speech of generated expressions based on utterance sources
SU that only provide general emotional information econd,
we use the Di-CTE module (Section 3.2) to generate frame-
level expression-driven latent e⃗a from econd. Specifically,
for expression-driven images of different people (xdri), we
map the image to the emotion condition latent space econd
using pre-trained expression encoder (Section 3.2). For
cross-modality control sources like tdri, we apply a cross-
modality mapping to align with econd, detailed in the supple-
mentary material. The final emotive video is rendered using
lip-related latent l⃗a and expression-driven latent e⃗a via our
diffusion backbone, as detailed in Section 3.3.
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Methods
HDTF / MEAD

Driven FID (↓) FVD (↓) Sync-C (↑) Sync-D (↓) E-FID (↓)
SadTalker [49] A 22.34 / 36.88 589.63 / 132.27 7.75 / 6.46 7.36 / 8.07 0.66 / 1.14
AniTalker [21] A 51.66 / 68.01 583.70 / 941.49 7.73 / 6.76 7.43 / 7.64 1.11 / 1.11
AniPortrait [44] A 17.71 / 42.43 676.30 / 379.08 3.75 / 2.30 10.63 / 12.38 1.21 / 2.69

Hallo [45] A 17.15 / 52.07 276.31 / 210.56 7.99 / 7.45 7.50 / 7.47 0.65 / 0.60
Ours A 16.64 / 53.21 140.96 / 207.67 8.24 / 6.82 7.09 / 7.43 0.54 / 0.57

PD-FGC [41] A+V 67.97 / 121.46 464.90 / 353.75 7.30 / 5.15 7.72 / 8.77 0.74 / 1.92
StyleTalk [22] A+V 29.65 / 118.48 184.60 / 197.18 4.34 / 3.86 10.35 / 10.74 0.42 / 0.56

DreamTalk [23] A+V 29.37 / 105.92 263.78 / 204.48 6.80 / 5.64 8.03 / 8.69 0.55 / 0.87
Ours A+V 16.09 / 50.84 120.70 / 153.71 8.41 / 6.79 7.11 / 7.58 0.34 / 0.40

Ground Truth A+V - - 8.63 / 7.30 6.75 / 8.31 -

Table 1. Overall comparisons on HDTF and MEAD. “A” denotes audio-only driven and “A+V” denotes audio-video driven. “↑” indicates
better performance with higher values, while “↓” indicates better performance with lower values.

4. Experiment

4.1. Experimental Setup

Implementation Details. Experiments encompassing both
training and inference were carried out on open-source
datasets HDTF [51] and MEAD [42], which consist of talk-
ing individuals videos of diverse genders, ages, and eth-
nicities. We utilize a two-stage training strategy, firstly,
we trained the V-AID module with a learning rate of 1e-4.
In the second stage, the audio-to-video diffusion backbone
was trained while the pre-trained V-AID modules remained
frozen in training. Notably, thanks to the efficient design of
our model, we can conduct high-resolution and long-time
video training. We conduct a training configuration of the
resolution of 512 × 512 and 120 frames. The learning rate
is set to 1e-5 with a batch size of 1. Our backbone also sup-
ports up to 1024× 1024 training, and experiments on other
configurations are detailed in the supplementary material.

During the inference, we use the sampling algorithm of
DDIM [35] to generate the video clip for 25 steps, the infer-
ence window size is as same as the training frame number
and the overlap is set to 1/5 of the window size.
Evaluation Metrics. The proposed framework has
been evaluated with several quantitative metrics including
Fréchet Inception Distance (FID) [30], Fréchet Video Dis-
tance (FVD) [34, 39], Synchronization-C (Sync-C) [8],
Synchronization-D (Sync-D) [8] and E-FID [38]. Specif-
ically, FID and FVD conduct the image-level and frame-
level measurement of the quality of the generated frames
and the similarity between generated and ground-truth
frames, with lower values indicating better performance.
The SyncNet scores assess the lip synchronization quality,
with higher Sync-C and lower Sync-D scores indicating bet-
ter alignment with the driven speech signal. Additionally,

to evaluate the expressiveness of the facial expressions in
the generated videos, we also utilize the Expression-FID
(E-FID) metric introduced in EMO [38] to quantitatively
measure the expression divergence between the synthesized
videos and gound-truth videos.
Baselines. We conducted a comparative analysis of
our proposed method against several open-source imple-
mentations, including audio-only driven strategies includ-
ing SadTalker [49], AniPortrait [44], AniTalker [21] and
Hallo [45], and audio-video driven strategies including PD-
FGC [41], StyleTalk [22], and DreamTalk [23]. For audio-
only driven comparison, our framework derives lip-related
and expression-driven latents solely from the audio and
reference portrait input. As for audio-video driven, the
expression-driven latent is derived from the paired video.

4.2. Overall Evaluation
Tab. 1 shows the results of the comprehensive comparison
with other methods. Overall, methods based on Stable Dif-
fusion like Hallo achieve optimal FID scores, confirming
the potential of diffusion models in generating high-fidelity
videos. Also, audio-video driven methods perform better on
the E-FID metric, benefiting from the inclusion of expres-
sion cues derived from video. Our method outperforms pre-
vious methods in both audio-only driven and video-driven
tasks across most metrics, especially on E-FID and SyncNet
metrics, highlighting its superior capabilities of generating
high-fidelity and vivid videos. More comparison results can
be found in the supplementary material.

4.3. Ablation Study
To analyze the contributions of our designs, we conduct ab-
lation studies on our main modules.
Effectiveness of V-AID. We conduct an ablation study
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w/ lip-related w/ exp-driven 

𝒙𝒓𝒆𝒇

Figure 3. The visualize results of generated frames and difference heatmap with the reference portrait based on lip-related and expression-
driven representations driven separately.

Methods FID (↓) Sync-C (↑) E-FID (↓)

V-AID 16.64 8.24 0.54
w/o lip-related 16.02 0.65 0.57
w/o exp-driven 14.86 8.04 1.23

no decouple 16.98 7.72 0.66

Table 2. Ablation comparison on V-AID on HDTF dataset.

with three variants: (1) driven only by original audio em-
bedding without V-AID (no decouple); (2) driven with-
out lip-related latents (w/o lip-related); (3) driven without
expression-driven latents (w/o exp-driven). Our full model
is denoted as (V-AID). The experiment is carried out in the
test subset of HDTF. Shown in Tab 2, the results indicate
that using V-AID shows improvements across all three met-
rics compared to direct injection without decoupling, with
notable gains in the Sync-C and E-FID metrics. Addition-
ally, we observe a significant drop in Sync-C when lip-
related latents are removed, and a substantial degradation
in E-FID when expression-driven latents are excluded. This
supports the different roles that the two representations play
in driving lip movement and facial expressions. Further-
more, we observe that FID achieves the best performance
without expression-driven, which is due to the higher simi-
larity between generated frames and reference images when
expression-driven latents are excluded, further confirmed in
subsequent experiments. More detailed quality ablation re-
sults of V-AID are provided in the supplementary materials.
Effectiveness of Decoupled Representations. To evaluate
the decoupling ability of two representations, we utilized
the lip-related and expression-driven latents from V-AID to
generate videos separately and visualize the results. Shown
in Fig. 3, the results indicate that the main movement occurs
at the lip region of the generated frames driven by the lip-
related latents. In contrast, the generated frames driven by
the expression-driven latents exhibit substantial changes in
facial expressions compared to the reference portrait, with
higher heat values distributed across the entire facial area,
particularly in the eye region. The results demonstrate the
effectiveness of decoupled lip and expression representa-
tions in controlling facial motions separately.

w/o Di-CTE

w/ Di-CTE

Figure 4. Results on expression generation w/ or w/o Di-CTE.

Length FID (↓) Sync-C (↑) E-FID (↓)

120frames 16.78 8.25 0.60
250frames 16.96 8.21 0.67
750frames 16.93 8.46 0.62

1500frames 16.97 8.40 0.61

Table 3. Comparison on long-time generation on HDTF dataset.

Effectiveness of Di-CTE. To validate the superiority of our
proposed Di-CTE module in expanding utterance driven
sources to generate time-variance expressions, we em-
ployed a single expression-driven image and conducted in-
ference using two configurations: with the Di-CTE mod-
ule (w/ Di-CTE) and without the Di-CTE module (w/o Di-
CTE). The facial expressions in inference results w/o Di-
CTE module activated show minimal temporal variation in
Fig. 4, while more expressive and vivid results are achieved
by the Di-CTE activated, demonstrating its effectiveness.
Effectiveness on Long-time Generation. To validate the
stability of long-time generation, we conducted studies on
generating with varying lengths by audio-only driven. We
employed four different test configurations, ranging from
short to long duration, and evaluated identity consistency,
lip-sync accuracy, and expression alignment across varying
generation durations. The results are presented in Tab 3.

The results indicate that as inference duration increases,
the FID, SyncNet, and E-FID metrics exhibit relatively mi-
nor fluctuations without degradation trend over time, con-
firming the stability of EmotiveTalk in long-time inference
scenarios.
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Portrait Ground Truth Video Frames 

Audio

Figure 5. Case study on audio-only driven approaches.

Methods Lip-Sync (↑) Exp-Q (↑) Realness (↑) V-Q (↑)

SadTalker [49] 3.03 3.03 3.01 3.29
AniTalker [21] 2.82 3.04 2.87 3.24
AniPortrait [44] 1.65 1.79 1.65 2.26

Hallo [45] 3.73 3.36 3.28 3.49
StyleTalk [22] 2.50 2.88 2.78 3.02

DreamTalk [23] 3.69 3.45 3.40 3.38
Ours 4.15 3.96 3.98 4.03

Ground Truth 4.51 4.49 4.44 4.40

Table 4. User Study Results.

4.4. Case Study

Comparison on Audio-only Driven. Fig. 5 shows the qual-
itative results on audio-only driven approaches. The re-
sults show that AniTalker and SadTalker struggle to gen-
erate video faithful to the reference image xref due to the
cropping and warping operation and also fall short in lip
synchronization. Hallo demonstrates the ability to preserve
speaker identity, but encounters instability issues in video
generation, resulting in the unintended appearance of arti-
facts. Our method surpasses previous approaches in achiev-
ing lip synchronization, identity maintenance, and genera-
tion stability, resulting in the best overall performance.
Comparison on Emotion Control. To evaluate the perfor-
mance of emotion control, we use a portrait paired with a
happy video from another person and employ various meth-
ods to transfer the emotion. Fig. 6 shows the results, which
indicate that StyleTalk and DreamTalk struggle in lip syn-
chronization due to the coupling of lip and expression. PD-
FGC faces the challenge of lip shape deformation. Our
method achieves the most neutral and expressive emotion
control results also ensures lip sync, highlighting the effec-
tiveness of our decoupling approach and model design.

Portrait Ground Truth Mouth

Audio

PD-FGC

StyleTalk

Ours

DreamTalk

.....
.

Emotion

Driven 

Video

Figure 6. Case study on emotion control approaches.

4.5. User Study
We generated 10 test samples covering various emotion
states and used 7 different models to generate with the
ground-truth samples included. We conducted a user study
of 26 participants, for each method, the participant is re-
quired to score 10 videos sampled from the test samples
and is asked to give a rating (from 1 to 5, 5 is the best)
on four aspects: (1) the lip sync quality (Lip-Sync), (2) the
quality of expressions (Exp-Q), (3) the realness of results
(Realness), (4) the quality of generated video (V-Q). The
results are shown in Tab. 4, our method outperforms exist-
ing approaches across all aspects, particularly in expression
quality and lip sync, highlighting its superior capabilities.

5. Conclusion

In this work, we propose EmotiveTalk, a novel method that
aims at enhancing the emotional expressiveness and con-
trollability of talking head video generation. We propose
a novel approach to decouple audio embedding by lever-
aging facial motion information, enabling the generation
of decoupled representations that correspond directly to lip
motions and facial expressions. Additionally, we intro-
duce a well-designed video diffusion framework that drives
these representations to generate expressive talking head
videos. We further enhance the emotion control ability by
incorporating additional emotion information from multiple
sources to customize the generated emotions. Extensive ex-
periments demonstrate the superiority of EmotiveTalk.
Acknowledgments. This work was supported by
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