
A STUDY OF DESIGNING COMPACT AUDIO-VISUAL WAKE WORD SPOTTING SYSTEM
BASED ON ITERATIVE FINE-TUNING IN NEURAL NETWORK PRUNING

Hengshun Zhou1, Jun Du1,∗ , Chao-Han Huck Yang2, Shifu Xiong3, Chin-Hui Lee2

1University of Science and Technology of China, Hefei, Anhui, P. R. China
2Georgia Institute of Technology, Atlanta, GA. USA

3iFlytek Research, Hefei, Anhui, P. R. China
zhhs@mail.ustc.edu.cn, �jundu@ustc.edu.cn, huckiyang@gatech.edu, sfxiong@iflytek.com, chl@ece.gatech.edu

ABSTRACT

Audio-only based wake word spotting (WWS) is challenging un-
der noisy conditions due to the environmental interference in signal
transmission. In this paper, we investigate on designing a compact
audio-visual WWS system by utilizing the visual information to al-
leviate the degradation. Specifically, in order to use visual informa-
tion, we first encode the detected lips to fixed-size vectors with Mo-
bileNet and concatenate them with acoustic features followed by the
fusion network for WWS. However, the audio-visual model based on
neural network requires a large footprint and a high computational
complexity. To meet the application requirements, we introduce a
neural network pruning strategy via the lottery ticket hypothesis in
an iterative fine-tuning manner (LTH-IF), to the single-modal and
multi-modal models, respectively. Tested on our in-house corpus
for audio-visual WWS in a home TV scene, the proposed audio-
visual system achieves significant performance improvements over
the single-modality (audio-only or video-only) system under differ-
ent noisy conditions. Moreover, LTH-IF pruning can largely reduce
the network parameters and computations with no degradation of
WWS performance, leading to a potential product solution for the
TV wake-up scenario.

Index Terms— Wake word spotting, noisy environments,
audio-visual, LTH pruning, iterative fine-tuning

1. INTRODUCTION

Wake word spotting (WWS) can be considered as a specific case
of keyword spotting (KWS), concerning the identification of pre-
defined wake word(s) in utterances, often used for the wake-up of
speech-enabled devices, such as “Hey Siri” in iPhone, “Alexa” in
Amazon Echo, and “Ok Google” in Google Home [1, 2, 3, 4], etc.
In order to activate the interactions between devices and users, a
standby wake word detection module is particularly important [5].

Traditional approaches in keyword spotting tasks involve the
keyword/filler hidden Markov model (HMM) [6, 7], namely train-
ing an HMM for the keyword and a filler HMM for the non-keyword
segments, respectively. Recently, deep learning based keyword spot-
ting have attracted much attention. Chen et al. proposed a simple
discriminative keyword spotting approach based on deep neural net-
works which have improved the performance of system [8]. The
first attempt to use convolutional neural networks (CNNs) for key-
word spotting, by Sainath and Parada [9], was recently improved
by jointly integrating deep residual learning and dilated convolu-
tions [10]. Arik et al. [11] also applied the convolutional recurrent

*corresponding author

neural network (CRNN) architecture to single English keyword de-
tection. With the achievements of Transformer [12] in the field of
deep learning, several variants of Transformers for wake word detec-
tion are explored in [13]. Besides, more efficient networks have been
also investigated by leveraging recent advances in differentiable neu-
ral architecture search [14].

Despite the above research progress, KWS is still a challenging
task and has attracted the attention of speech researchers. On the
one hand, the KWS systems usually perform very well under clean
speech conditions. However, the systems suffer from sharp perfor-
mance degradation under noisy environments. The authors in [15]
propose integrating multiple beamformed signals and leveraging the
attention mechanism to dynamically tune the model’s attention to
the reliable input sources to improve the KWS performance under
noisy and far-field conditions. The data-efficient solutions are pre-
sented in [16] to improve the model robustness in WWS modeling
under noisy conditions. A multi-task network that performs KWS
and speaker verification (SV) simultaneously is also proposed in [17]
to fully utilize the interrelated domain information aiming at perfor-
mance improvement in challenging conditions. In addition, the au-
thors in [18] have developed a novel tuple-based loss function along
with a training strategy for noise-robust keyword spotting.

On the other hand, the WWS system usually runs on smart de-
vices, it’s critical to design the model with a small footprint and
low computational power. The application of multi-scale temporal
modeling to the small-footprint keyword spotting task has been ex-
plored in [19]. The authors also explore the latency and accuracy of
KWS models in streaming and non-streaming modes for simplifying
model deployment on mobile devices [20]. In [21], the researchers
designed different models and neural architectures for small foot-
print keyword spotting. Different loss functions for the training of
a small-footprint KWS system have also been explored in [22]. Re-
cently, in order to optimize towards memory footprint and execution
time, power-consuming audio preprocessing and data transfer steps
are eliminated in [23] by directly classifying from raw audio.

In order to alleviate the performance degradation of WWS under
noisy conditions, in this paper, we investigate an audio-visual WWS
system by utilizing the visual information. First, the detected lips
are encoded to fixed-size vectors with MobileNet, and concatenated
with acoustic features. Next, a neural network pruning strategy, i.e
the lottery ticket hypothesis based iterative fine-tuning (LTH-IF) is
introduced to the WWS systems. Finally, tested on our in-house cor-
pus for audio-visual WWS in a home TV scene, the proposed audio-
visual system achieves significant performance improvements over
the single-modality system under different noisy conditions. More-
over, LTH-IF pruning can largely reduce the network parameters and
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Fig. 1. The architecture of proposed audio-visual wake word spotting with neural network pruning using LTH-IF.

computations with no degradation of WWS performance, leading to
a potential product solution for the TV wake-up scenario.

2. PROPOSED APPROACH

2.1. Audio-Visual Model for Wake Word Spotting

Inspired by the work in [24], we design the proposed audio-visual
wake word spotting (WWS) architecture in an end-to-end manner.
The main difference from [24] lies on that we have the only one
wake word, so we do not need to use the phonetic sequence or cal-
culate the similarity matrix. Accordingly we directly adopt the clas-
sification task through the fully connected (FC) layers. The overall
flowchart of proposed audio-visual WWS architecture is shown in
Fig. 1, which mainly consists of three parts: audio stream, video
stream and fusion stream. The details will be elaborated in the fol-
lowing subsections.

2.1.1. Audio Stream

For the audio stream, the acoustic features extracted frame by frame
are selected as input features. Here, we employ 40-dimensional fil-
ter bank (FBank) features normalized by global mean and variance.
Given the raw input audio data IA, we can calculate normalized
FBank features FA through the FBank extractor fA:

FA = fA(IA) (1)

2.1.2. Video Stream

For the video stream, considering practicality and lightweight, we
select a combination of MobileNetV2 [25] as our video embedding

extractor. In addition, we replace bidirectional long short-term mem-
ory (BLSTM) with LSTM to further reduce the model size and la-
tency. In this study, 13 linear bottlenecks are first adopted as a lip
feature extractor fV. Given the input image IV, the lip feature FV is
calculated through fV:

FV = fV(IV) (2)

The gray scale lip FV reshaped to 88 × 88 is used as the Mo-
bileNetV2 input, and the output is an encoded vector by using aver-
age pooling. The high-level video embeddings EV can be obtained
by MobileNetV2 fMobile:

EV = fMobile(FV) (3)

For more details, please refer to [25].

2.1.3. Fusion Stream

For the audio-visual fusion stream, a direct concatenation for audio-
visual fusion at the encoder is first considered to integrate informa-
tion from two sources FA and EV:

FAV = [FA, EV] (4)

Then a mixture of convolutional layers, LSTM layers and FC layers
are designed to generate the final output as shown in Fig. 1. For
the single-modality network, the above audio-visual features FAV

are replaced by audio acoustic features FA and visual embeddings
EV, respectively. In this study, 5 epochs (E = 5) are selected to
train these three WWS models, namely audio-only model, video-
only model, and audio-visual model. The final output of these mod-
els is compared with the preset threshold after sigmoid operation,
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‘1’ indicates that the current sample contains wake word, and ‘0’
indicates the opposite. Given a sample, the model (G) outputs a
probability p(y = 1|Θ) representing the possibility that the wake
word is included, where Θ represents the model parameter set. The
optimisation objective is a binary cross-entropy loss between this
prediction and the ground truth label y∗:

LWWS =−y∗ log p(y=1|Θ)−(1−y∗) log(1− p(y=1|Θ)) (5)

Algorithm 1 LTH with Iterative Fine-tuning
Input: A model, G0

1: Randomly initialize weights (Θ0)
2: Initialize model: G0(Θ0)→ G1

3: For t = 1, · · · , T : # Pruning searching iterations
4: If t = 1:
5: For e = 1, · · · , E : # Training epochs
6: Θe → Θ : Train Gt for its final weights (Θt)
7: Else:
8: For e = 1 : # Training epoch
9: Θe → Θ : Train Gt for its final weights (Θt)

10: If t < T : # LTH pruning strategy
11: Mask(Θt) to get a pruned graph Gp from Gt−1

12: Load weights Θp ∈ Θt from Gp

13: Update target model Gp(Θp)→ Gt+1

Output: A well-trained pruned model GT (ΘT )

2.2. Audio-Visual Model Pruning Using LTH-IF

The recent “Lottery Ticket Hypothesis” [26] showed an encourag-
ing phenomenon that some subnetworks (winning tickets) could be
obtained by pruning the original network through specific methods,
and then they can be trained to achieve the performance equal to or
better than the untrimmed original model. Although convolutional
neural networks have shown to be effective to the small-footprint
WWS problem, they still need hundreds of thousands of param-
eters to achieve good performance [27]. Although LTH-based
low-complexity neural models have proven competitive prediction
performance on several image classification tasks, machine trans-
lation [28, 29] and acoustic scene classification [30], and recently
have been supported with some theoretical findings [31] related to
overparameterization, the effect of LTH on our multimodal task
of audio-visual WWS is not unknown. In this study, with a high
demand of designing a compact audio-visual WWS model with
low-latency for real applications, we investigate on neural network
pruning based on LTH with an iterative fine-tuning strategy.

LTH-IF Algorithm Design: In Algorithm 1, we detail our ap-
proach: First, our WWS model with its original neural architec-
ture G0 is initialized with the weights parameters (Θ0). Different
from [26], the complete number of iterations (E = 5) is selected to
train the model only before pruning (i.e. t = 1). At the end of each
training phase, a pruning iteration is started if the current iteration t
is less than T . And the final weights ΘT are used for the new ini-
tialization to fine-tune the model. The LTH pruning searches for a
low-complexity model from steps (10) to (13).

For the audio-only WWS model, we prune the whole network
directly based on LTH-IF. However for video-only WWS model, un-
like audio-only WWS, it includes an additional lip encoder, and we
also prune it jointly with the back-end module based on LTH-IF.

Interestingly, for the audio-visual WWS model, we found that
separate pruning for the lip encoder first will yield better perfor-
mance than pruning the whole model directly at the same degree
of pruning. Therefore, for the audio-visual WWS model, we first
prune the lip encoder using LTH-IF. Then the lip encoder is fixed
and initialized using the weights and mask obtained above. Finally,
the model is trained for pruning back-end network of fusion stream
based on LTH-IF.

3. EXPERIMENTS

3.1. Databases and Implementation Details

We conduct experiments on an audio-visual dataset collected in
smart home TV scenes. There are 250 speakers in total, with a
male-to-female ratio of 1:1. The wake word is “Xiao T Xiao T”. The
speakers in the training set, development set and test set do not over-
lap, which are 210, 20 and 20 respectively. For the training set, in
addition to the original positive and negative samples, we also added
several types of noises for data augmentation. Our final training set
includes 50 hours of positive samples and 50 hours of negative sam-
ples, respectively. For the development/test set, in order to facilitate
comparison, we only add noise with three signal-to-noise ratios (i.e.
-5dB, 0dB, 5dB), including 2 hours of positive samples and 2 hours
of negative samples, respectively. Each positive sample contains
only one wake word. The duration of each sample is 1.3 seconds.

We use false reject rate (FRR) and false alarm rate (FAR) on test
set as the criterion of the WWS performance. Suppose the test set
consists of Nwake examples with wake word and Nnon-wake examples
without wake word, FRR and FAR are defined as follows:

FRR =
NFR

Nwake
(6)

FAR =
NFA

Nnon-wake
(7)

where NFR denotes the number of examples including wake-up word
but the WWS system gives a negative decision. NFA is the number
of examples without wake-up word but the WWS system gives a
positive decision.

We employ pytorch to train all models and minimize the loss
function using the Adam optimization method. The batch size is 64
for audio-only WWS system and 16 for video-only and audio-visual
systems. The learning rates are set to 0.0001, 0.0002, 0.0002 for
audio-only, video-only and audio-visual systems respectively.

3.2. Results on Audio-Visual Wake Word Spotting

First we evaluate the performance of the single-modal systems. We
train the audio-only and the video-only system respectively, corre-
sponding to the audio stream and video stream of the audio-visual
model shown in Fig. 1. Our results are presented in Table 1. We
can observe that the better results were achieved by audio-only
system compared with video-only especially in less-noisy envi-
ronments. In low-SNR adverse acoustic environments, video-only
system achieves better FAR performance, which indicates potential
of audio-visual system that integrates the advantages of audio-only
and video-only systems. Moreover, a direct concatenation for audio-
visual fusion at the encoder part is further implemented, which
yielded remarkable improvements compared with the single-modal
system under various signal-to-noise ratios. For example, the per-
formance gap for -5dB is 4.78% of FAR between audio-only model
and audio-visual model.
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Table 1. Test set performance comparison of different systems.

Modality 1-FRR (%) FAR (%)
-5dB 0dB 5dB

Audio 98.78 8.03 2.95 1.60
Video 98.78 6.92 6.92 6.92

Audio-visual 98.78 3.25 1.06 0.56

Table 2. Parameter statistics of different systems.

Network Param. (M) FLOPs (M)

Audio 0.35 11.29
Lip Encoder 0.39 642.56

Video 1.19 651.68
Audio-Visual 1.55 656.48

The statistics of the parameters and FLOPs of these three mod-
els are shown in Table 2. We can observe that after adding video
modality, the number of parameters and FLOPs of the audio-visual
WWS model is greatly increased. In particular, the parameters and
FLOPs of lip encoder exceed those of audio-only network, which
also promotes us to explore more effective pruning methods.

Table 3. Test set performance of single-modalities and multi-
modality systems under different pruning degrees. [1-FRR : 98.78%]

Modality Method FAR (%) Pruned (%)-5dB 0dB 5dB

Audio
No Pruning 8.03 2.95 1.60 0.00
LTH [26] 34.00 23.67 18.3 71.90
LTH-IF 7.71 2.26 1.15 80.21

Video
No Pruning 6.92 6.92 6.92 0.00
LTH [26] 16.11 16.11 16.11 29.86
LTH-IF 6.89 6.89 6.89 55.65

Audio-Visual No Pruning 3.25 1.06 0.56 0.00
LTH-IF 2.29 0.84 0.53 42.52

3.3. Results on LTH-IF Pruning

We first implemented LTH-based pruning on single-modal systems
described in [26] with the results shown in Table 3. When LTH-
based pruning in [26] is firstly applied to the single-modal models,
the performance degrades rapidly in both audio and video modal-
ities. Compared to original unpruned model, using LTH with it-
erative fine-tuning (LTH-IF) achieves better performance especially
in the audio modality even though over 80% model parameters are
pruned, which demonstrates the effectiveness of the iterative fine-
tuning strategy.

Based on these positive results, we next apply LTH-IF pruning
to the audio-visual WWS model, and the results are shown in last
row of Table 3. According to Table 2, most of the parameters and
FLOPs in audio-visual system come from the lip encoder. Thus we
design an experiment by only applying LTH-IF pruning for the lip
encoder. The pruned model achieves better performance than the
audio-visual unpruned model after pruning about 80% of the param-
eters in lip encoder. Fig. 2 shows the results comparison of applying
LTH-IF pruning (blue) to the audio-visual WWS model and original
unpruned model (red). According to the experimental results above,

Fig. 2. Test set performance on audio-visual WWS model with the
iterative pruning during the training process.

the system performance gradually deteriorates after about 80% of the
model parameters are pruned. Finally, we initialize the mask in LTH-
IF according to the lip encoder result, and then apply LTH-IF to the
whole audio-visual model for pruning. According to Table 3, after
pruning 42.52% of the parameters, we achieve better performance
compared to the model without pruning under all three signal-to-
noise ratios.

We randomly select a specific iteration (e.g. t = 20) and list the
pruned parameters of different layers of the model which is shown
in Table 4. It can be observed that for both single-modality and
multi-modality systems, the pruning proportions of different types
of layers are similar.

However, during the pruning process, we observe that the per-
formance of a video-only system is often unstable (degradation with
potentially important nodes pruned) and more sensitive to the prun-
ing proportion setting compared with the audio-visual system. So
the audio-visual system seems more robust to pruning, which might
be explained by that the audio-visual fusion leads to the selection of
more suitable nodes without being pruned.

Table 4. The comparison of pruned parameters after the same itera-
tions for single-modalities and multi-modality systems. [t=20]

Modality Conv layers(%) LSTM(%) FC layers(%)

Audio 65.54 65.24 65.72
Video 65.54 65.86 65.73

Audio-Visual 65.53 65.89 65.70

4. CONCLUSION

In this paper, we investigate on designing a compact audio-visual
WWS system under noisy conditions by utilizing video information
to alleviate the performance degradation. Tested on our in-house cor-
pus for audio-visual WWS in a home TV scene, the proposed audio-
visual system achieves significant performance improvements over
the single-modality system under different noisy conditions. Fur-
thermore, a neural network pruning strategy via LTH in an iterative
fine-tuning manner is introduced, which can largely reduce the net-
work parameters and computations with no degradation of WWS
performance.
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[18] Iván López-Espejo, Zheng-Hua Tan, and Jesper Jensen, “A
novel loss function and training strategy for noise-robust key-
word spotting,” IEEE/ACM Transactions on Audio, Speech and
Language Processing, vol. 29, pp. 2254–2266, 2021.

[19] Ximin Li, Xiaodong Wei, and Xiaowei Qin, “Small-footprint
keyword spotting with multi-scale temporal convolution,” in
INTERSPEECH, 2020, pp. 1987–1991.

[20] Oleg Rybakov, Natasha Kononenko, Niranjan Subrahmanya,
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