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Abstract
CHiME-5 is a research community challenge targeting the
problem of far-field and multi-talker conversational speech
recognition in dinner party scenarios involving background
noises, reverberations and overlapping speech. In this study,
we present five different kinds of robust acoustic models which
take advantages from both effective data augmentation and
ensemble methods to improve the recognition performance
for the CHiME-5 challenge. First, we detail the effective
data augmentation for far-field scenarios, especially the far-
field data simulation. Different from the conventional data
simulation methods, we use a signal processing method
originally developed for channel identification to estimate the
room impulse responses and then simulate the far-field data.
Second, we introduce the five different kinds of robust acoustic
models. Finally, the effectiveness of our acoustic model
ensembling strategies at the lattice level and the state posterior
level are evaluated and demonstrated. Our system achieves the
best performance of all four tasks among submitted systems in
the CHiME-5 challenge.
Index Terms: CHiME-5 challenge, acoustic modeling, data
augmentation, multi-talker conversational speech recognition

1. Introduction
Although significant advancement has been made in automatic
speech recognition (ASR) after the introduction of deep
neural network (DNN) based acoustic models [1, 2], far-field
recognition still remains a challenging problem due to its
specific factors such as reverberation, noisiness, simultaneous
speech of multiple speakers, etc. A popular and effective
approach to render ASR robust against adverse acoustic
distortions is to train the acoustic model using a multi-
condition training set that matches the final test conditions
as much as possible. Besides, many approaches focusing on
developing more powerful front-ends and back-ends have been
proposed to handle this problem. Front-end based approaches
operate on the signal or the feature, and attempt to remove
the corrupting noises, interfering speakers or reverberation
from the observations before recognition [3, 4]. Back-end
based approaches leave the observations unchanged and instead
update the acoustic/language model parameters to match the
degraded speech [5,6]. However, the performance gap between
far-field and close-talking set-ups is still large as demonstrated
in the AMI meeting transcription task [7] and the REVERB
challenge task [8].

In recent years, several techniques have been proposed on
robust acoustic modeling. Advanced DNN architectures have
been developed to increase the robustness of the acoustic model,

such as a novel highway long short-term memory (LSTM)
network introduced in [2], a very deep convolutional neural
network (DCNN) introduced and developed in [9–12] and a
combined CNN, LSTM and DNN architecture that named
CLDNN proposed in [13]. In addition to DNN architectures,
recent studies have shown that robustness of DNN-based
acoustic models largely depends on the quality of the training
data [14]. Typically, using a training set that matches the final
test conditions results in largest improvements in performance.
However, it may not be practical to obtain such a set in
many cases. A series of simulated data generation methods
that deriving far-field data from existing close-talk sets via
simulation were introduced in [15,16]. The quality of the model
trained on derived sets depends on how good the simulation
is, and how closely it captures the wide variety of the test
conditions.

Recently, the latest CHiME-5 challenge [17] was held
to encourage people who are interested to provide best
solutions for distant multi-microphone issue in everyday home
environment. Different from the previous CHiME challenges
[18–21] which are restricted by the limited scale of data,
single-speaker environment and fixed distance between arrays
and sources, the CHiME-5 challenge provides a large-scale
corpus of multi-speaker conversational speech recorded via
commercially available microphone arrays in multiple realistic
homes. The corpus provided by this challenge essentially
congregates all possible acoustic issues in real life including
noises, reverberation and overlapping speech and thus poses
a large challenge to current ASR systems. Therefore, the
proposed ASR systems based on this dataset have more
practical value.

In this paper, we detail our back-end system for the
CHiME-5 challenge. First, we introduce our data augmentation
methods, especially the far-field data simulation method. Data
simulation is a common way to augment the training set of
the acoustic model for improving its environmental robustness.
The two common data simulation methods in [15] and [16]
were used by the second place [22] and the third place [23] in
this challenge, respectively. Different from these conventional
simulation methods, we use a signal processing method
originally developed for channel identification to estimate the
room impulse responses and then simulate the far-field data.
Experiments demonstrate its great effectiveness. After data
augmentation, the amount of the final acoustic model training
set is 534 hours, which is much smaller than that used by
the second place [22]. The effective data augmentation makes
an important contributor to our ultimate best ASR system.
Second, we introduce five kinds of acoustic models used in
this challenge. All of them are conventional DNN/HMM
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(hidden Markov model) hybrid acoustic model. The first
two are based on lattice-free maximum mutual information
(LF-MMI) [24] training, including a conventional BLSTM
network and CNN-TDNN-LSTM network both with the input
combining 40-dimensional Mel-frequency cepstral coefficients
(MFCC) features and 100-dimensional i-vector. The later three
are based on frame-level cross-entropy criterion, including an
improved CLDNN based on the conventional CLDNN [13],
a deep fully CNN [25] and a deep fully CNN with gate on
feature map all with the input combining 40-dimensional log
mel-filterbank (LMFB) feature and raw waveform. Finally,
acoustic model ensembling strategies at the lattice level and the
state posterior level are detailed in experimental section. They
achieve extremely significant ASR performance improvements.
Our final ASR system achieves the best performance for all four
tasks among all submitted systems.

2. Data Augmentation
As shown in Figure 1, the training data of acoustic models
consists of four parts, namely 64 hours of original binaural
data, 250 hours of simulated far-field data after multichannel
preprocessing, 110 hours of far-field data after multichannel
preprocessing and 110 hours of the final resulting far-field
data after the entire front-end processing. The details for the
later two training data parts processed by different front-end
stages could be found in [26]. Here, we mainly present our
simulation techniques to generate large-scale simulated data for
augmenting the training set of acoustic models.

Multichannel
preprocessing Further front-end 

processing

Data 
simulation Acoustic model

training

Worn data

Far-field data

64 hours

110 hours

110 hours

250 hoursMultichannel
preprocessing

Figure 1: An illustration of the input data for acoustic models.

Far-field speech signals provided by CHiME-5 challenge
are corrupted by noises, interfering speakers and reverberation,
which lead to very poor signal quality. Our experiments
reveal that for multi-condition training the ASR performance
of both array and binaural microphone development set will be
degraded when the far-field speech data increases to a certain
amount. This implies that the far-field data with extremely
poor quality is useless and even does harm to the acoustic
model training. Accordingly, the available far-field data for
multi-condition training becomes limited. This motivates us
to simulate far-field data with adjustable quality levels using
binaural signals to augment the multi-condition training set.

Assuming that there are K sound sources and M
microphones, the received far-field signal at microphone m is
expressed by the following equation:

xm =

K∑
k=1

sfar
km + nm =

K∑
k=1

sk ∗ hkm + nm

=

K∑
k=1

sk ∗ hkj ∗ h−1
kj ∗ hkm + nm

=

K∑
k=1

snear
kj ∗ hkjm + nm,

(1)

Algorithm 1 Simulation of far-field speech

Step1: Use oracle human transcriptions of official training
set to select non-speech segments and speech segments
including only one speaker. Then obtain K parallel sound
source sets from the two near-field microphones and four
far-field microphones denoted as S = {S1, S2, ..., SK},
where Sk = {snear

k1 , snear
k2 , sfar

k1, s
far
k2, s

far
k3, s

far
k4}. Use the official

baseline ASR system to eliminate recognized non-speech
segments and then obtain the noise set recorded by the four
far-field microphones denoted as N = {n1, n2, n3, n4}.
Step2: Use the SRO approach in [27] to calibrate the
sampling rates and then estimate a set of room impulse
responses using S via Eq. (3) for the four microphones
denoted as H = {H1, H2, ..., HK}, where Hk =
{hk11, hk12, hk13, hk14, hk21, hk22, hk23, hk24}.
Step3: Use H , N and near-field data in S to simulate noisy
far-field data of four microphones under the signal-to-noise
ratios between 0dB and 20dB.

Figure 2: An illustration of far-field data simulation: near-field
speech (upper left), selected near-field speech including only
one speaker (upper right), simulated far-field speech (bottom
left), simulated noisy far-field speech (bottom right).

where snear
kj = sk ∗ hkj , hkjm , h−1

kj ∗ hkm, snear
kj is a

sound source recorded by j-th near-field microphone, sfar
km is

a sound source recorded by m-th far-field microphone and nm

represents noise recorded by m-th far-field microphone. Then
we draw the following conclusion

sfar
km = snear

kj ∗ hkjm. (2)

Accordingly, we can use the parallel near-field and far-field
speech segments containing single speaker k extracted from
official training set using oracle speaker diarization information
to estimate the room impulse response hkjm.

From a signal processing perspective, the difference
between snear

kj and sfar
km is mainly caused by the space

transmission channel. Hence, the estimation of the room
impulse response hkjm could be considered as a classic channel
identification problem. The closed-form solution could be
obtained by applying the Wiener-Hopf equation as follows:

hkjm = R−1
nn Rfn, (3)

where Rnn represents the autocorrelation matrix of the near-field
signal snear

kj , Rfn represents the cross-correlation matrix of the
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far-field signal sfar
km and the near-field signal snear

kj . In this work,
sizes of the two correlation matrixes are set to be the number of
sampling points for a 500ms speech segment. However, the far-
field data and near-field data were recorded by different devices
with different sampling clocks, which leads to sampling rate
drift and the inaccurate estimation of channel identification. To
solve this problem, the sampling rate offset (SRO) approach in
[27] is adopted to align the sampling clocks of the two devices
and then hkjm is estimated. The detailed simulation procedures
are presented in Algorithm 1 and an illustration is shown in
Figure 2. Note that the simulated noisy far-field data is further
processed by microphone array algorithms before being sent as
the inputs of acoustic models.

3. Acoustic Models
In the CHiME-5 challenge, we use five different kinds of
conventional DNN/HMM hybrid acoustic models. The first
two correspond to a conventional 5-layer BLSTM network and
CNN-TDNN-LSTM (2-layer CNN + 9-layer TDNN + 3-layer
LSTM) network optimized by LF-MMI criterion [24]. They
are trained using Kaldi Toolkit [28] with the input combining
40-dimensional MFCC features and 100-dimensional i-vector.
The later three are an improved CLDNN based on the
conventional CLDNN [13], 50-layer deep fully CNN [25] and
50-layer deep fully CNN with gate on feature map and all
of them are optimized by frame-level cross-entropy criterion.
Their inputs are 40-dimensional LMFB features and raw
waveforms. Considering that the three CNN acoustic models
have comparable recognition performance and there is limited
space in this paper, we mainly introduce the improved version
of CLDNN. Its architecture is shown in Figure 3, where each
BLSTM layer has 1250 cells and a 350-unit projection layer for
dimensionality reduction.
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Figure 3: Architecture of the CLDNN, where BN represents
Batch Normalization.

Learning an acoustic model directly from the raw waveform
has been an active area of research. [29] is the first work which
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Figure 4: WER comparison among different training sets of the
official acoustic model baseline on S02 of the development set.

is able to match the performance of raw waveform and the
most popular LMFB feature on an LVCSR task using a state-
of-the-art CLDNN acoustic model. Moreover, by stacking
raw waveform features with LMFB features, a 3% relative
reduction in word error rate (WER) is achieved. Accordingly,
raw waveform features and LMFB features are both used as
the inputs of our CLDNN. Different from the conventional
practice of combining LMFB features and learned filterbank
features from the raw waveform as input into the CLDNN, we
concatenate their high-level representations extracted by some
convolutional layers and then send them into the rest of the
network. Experiments on the CHiME-5 challenge demonstrate
that our CLDNN framework achieves relative WER reduction
of 5.4% over the CLDNN that only uses LMFB features as
inputs. This implies that the complementarity between the
high-level representations of the learned filterbank features and
LMFB features is stronger.

4. Experiments
The challenge contains two tracks, where a single-array task
contains only the reference array data and a multiple-array task
contains data from all six arrays placed in different positions of
the home. Each track contains two separate rankings, where
Ranking A focuses on acoustic robustness while Ranking B
addresses all aspects of the task. More information could
be found at the CHiME-5 challenge official website 1. In
this paper, we focus on the Ranking A of single-array track
and explore our back-end methods on the development set
consisting of two separate sessions, namely Session 02 and
Session 09. Each session contains four speakers.

4.1. Evaluation of data augmentation

In baseline, only speech recorded by the binaural microphones
and arrays are used for training. Thus it tends to cause mismatch
between training data and evaluation data. It is necessary
to augment and enhance the training data. We evaluated
the effectiveness of the data augmentation methods using the
official TDNN recipe with LF-MMI optimization criterion [24]
as shown in Figure 4. Note that the evaluation data was
preprocessed by the entire front-end before being sent to the
acoustic model for recognition. Here, we removed the speech
perturbation for official baseline data and then made ASR
performance comparison among different training sets of the
TDNN acoustic model. Clearly, in Figure 4, the baseline data is
174 hours consisting of 64 hours of original binaural data and
110 hours of far-field data. After adding 120 hours of simulated
far-field data, the average WER decreased from 66.7% to

1http://spandh.dcs.shef.ac.uk/chime challenge/index.html
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64.9%. Furthermore, the ASR performance improvements
were consistent for each speaker. Then 110 hours of far-
field data processed by the entire front-end was further added.
Accordingly the average WER decreased from 64.9% to 64.1%.
Overall, experiments demonstrated the effectiveness of the data
augmentation of both simulated far-field data and the far-field
data processing by the entire front-end. Finally, the amount of
simulated data was increased to 250 hours used as one part of
the acoustic model training set. In the following experiments,
total 534 hours of training set after data augmentation was used.

4.2. Evaluation of acoustic model ensembling

There are a large amount of overlapping speech segments in the
CHiME-5, which dramatically degrade the ASR performance.
To alleviate the problem, a two-stage single-channel speaker-
dependent speech separation approach was proposed, where
non-overlapping part of the multichannel preprocessed data of
each speaker was used to build the training set of the speech
separation model by mixing with interference speakers and a
bi-directional long short-term memory (BLSTM) network was
adopted as the model architecture. More details have been
described in [30]. The original non-overlapping segments are
mostly too short, the simulated mixture utterances cannot be
effectively utilized by the BLSTM network to capture long-term
sequential information. Accordingly, an alternative training
mode is provided that the short segments are concatenated to
form long segments and then used for training the speaker-
dependent models.

Both the short-segment training mode and the long-segment
training mode were used for training the speaker-dependent
speech separation models for all the 8 speakers from the
development set to provide two separation models for each
speaker. Then the resulting parallel enhanced data pairs were
sent to the acoustic models and thus two WER scores were
obtained for each acoustic model as shown in the first two rows
in Table 1. To combine the advantages of the segregated speech
from the short-segment models and long-segment models, a
fusion strategy via the state posterior averaging was adopted to
ensemble the two WER scores for each acoustic model. The
corresponding fusion results were listed in the third row in
Table 1, where it was observed that consistent better recognition
performance was obtained for each acoustic model. In addition,
the same fusion strategy was applied to ensemble the two
acoustic models trained by the Kaldi Toolkit and the three CNN
acoustic models, respectively. Significant WER reductions
were achieved as shown in the fourth row in Table 1. Because
the number of states of the acoustic models trained by the Kaldi
Toolkit and the three CNN acoustic models were different, the
fusion strategy at the lattice level rather than the state posterior
level was adopted to ensemble the two results obtained from
the second fusion step (Fusion2). Finally, we obtained 50.62%
of the average WER on the development set for Ranking A
of the single-array track, which is the best result among the
submitted systems of CHiME-5 challenge. Overall, our fusion
strategies conducted step by step were effective and made a
great contributor to our ultimate best ASR system.

4.3. Overall comparison

In Table 2, we presented the detailed ASR performance
comparison among the official baseline system, the second
place system and our best system on the development set for
Ranking A of the single-array track. Compared to the second
place system, one notable point is that our system achieved

Table 1: WER(%) comparison among the five acoustic models
and model ensembling on the development set for Ranking
A of the single-array track, where LF1, LF2, CNN1, CNN2,
CNN3 represent the BLSTM, CNN-TDNN-LSTM, CLDNN, 50-
layer deep fully CNN and 50-layer deep fully CNN using gating
mechanism.

LF1 LF2 CNN1 CNN2 CNN3
Long 61.42 58.49 56.26 56.74 56.25
Short 60.77 58.46 56.36 56.76 56.28

Fusion1 59.44 57.13 56.00 56.24 55.79
Fusion2 54.83 52.59
Fusion3 50.62

more significant recognition performance improvements for
the S02 over the S09. Moreover, even poorer recognition
performance occurred in the dining condition for S09. This
is because for reducing the computation cost our system was
mostly tuned on the S02 of the development set. On average,
our best system achieved relative WER reduction of 37.7% and
10.1% compared to the official baseline and the second place
system respectively. It is worth mentioning that our results
approach the binaural microphone results shown in official
baseline report [17], namely 47.9% of WERs.

Table 2: WER(%) comparison among the official baseline, the
second place system and our system on the development set for
Ranking A of the single-array track.

System Session Kitchen Dining Living Overall

Baseline [17] S02 87.3 79.5 79.0 81.3S09 81.6 80.6 77.6

Hitachi/JHU [22] S02 66.4 56.8 50.9 56.4S09 55.9 55.9 51.6

Ours S02 57.8 49.4 41.8 50.6S09 52.4 56.8 51.4

5. Conclusion
In this study, we detail our back-end system for the CHiME-
5 challenge which scored the first place in all four tasks
among submitted systems. Three main contributors for the
back-end system are introduced, namely data augmentation,
robust acoustic models and acoustic model ensembling. More
specifically, a new idea that using a signal processing method
developed for channel identification to estimate the room
impulse responses and then simulate the far-filed data is
provided. In addition, to utilize the complementarity between
LMFB and learned filterbank from the raw waveform, a
new method of combining their high-level representations is
proposed. Finally, two acoustic model ensembling strategies
at the lattice level and the state posterior level are evaluated and
their effectiveness is demonstrated.
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