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ANSD-MA-MSE.: Adaptive Neural Speaker
Diarization Using Memory-Aware
Multi-Speaker Embedding

Mao-Kui He ", Jun Du

Abstract—In this paper, we propose a neural speaker diariza-
tion (NSD) network architecture consisting of three key com-
ponents. First, a memory-aware multi-speaker embedding (MA-
MSE) mechanism is proposed to facilitate a dynamical refinement
of speaker embedding to reduce a potential data mismatch between
the speaker embedding extraction and the NSD network. Next,
a speaker selection procedure is introduced to handle situations
where the detected number of speakers is different from the as-
sumed speaker size in the NSD network. Finally, an adaptive
procedure is proposed to improve the required prior information
for the nonoverlap speech segments in a given utterance during
each iteration. We call our proposed framework adaptive neural
speaker diarization with memory-aware multi-speaker embedding
(ANSD-MA-MSE). Our method improves diarization performance
in realistic operating scenarios, such as adverse acoustic environ-
ments, domain mismatches, and a varying, rather than fixed, num-
ber of speakers. Having been tested on both the AMI corpus and the
DIHARD-III evaluation sets, our proposed approach consistently
outperforms other state-of-the-art techniques in diarization error
rates, including the results reported by the best single-model system
in the DIHARD-III challenge.

Index Terms—Speaker diarization, neural networks, memory-
aware speaker embedding, dictionary learning, attention network,
adaptive refinement.

1. INTRODUCTION

PEAKER diarization refers to the task of labeling a given
S recording with classes corresponding to speaker iden-
tity [1], [2]. It is an important front end of speech processing
systems that have attracted an ample amount of research at-
tention in recent years. Many speech applications can benefit
from good diarization results, including meeting summaries,
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telephone conversation analysis, transcription of dialog, and so
on [2], [3]. Research on speaker diarization is usually conducted
on different domains, such as telephone [4], [5], broadcast
news [6] and meeting [7]. For real-world scenes with variable
speaker numbers, adverse acoustic environments, and a large
portion of speech overlap, speaker diarization is still quite
challenging.

Conventional clustering-based methods, which include voice
activity detection, speech segmentation, speaker feature extrac-
tion, and speaker clustering, are widely used in speaker diariza-
tion tasks [8], [9]. The whole process can be roughly divided
into two main components: speaker representation extraction
and clustering. Traditional speaker representation approaches
consist of i-vector [10] and neural network-based speaker em-
bedding (e.g., x-vector [11]). Among them, the i-vector and x-
vector are segment-level embeddings. For the clustering process,
algorithms such as the mean shift [12], agglomerative hierarchi-
cal clustering (AHC) [13] and spectral clustering (SC) [5] are
commonly adopted. Moreover, different distance measures [14],
[15], [16] are also explored to obtain better clustering re-
sults. In particular, probabilistic linear discriminant analysis
(PLDA) [17] is often used along with the i-vector or x-vector
to classify whether two segments are from the same speaker
and has shown great effects. Among these methods, Bayesian
HMM clustering of x-vector sequences (VBx) diarization sys-
tem [18] achieved superior performance. VBX uses the x-vector
with two-stage clustering: first-stage AHC underclustering and
second-stage VB-HMM [19] refining.

Although clustering-based speaker diarization is relatively
robust across different domains, these methods cannot deal
well with overlap segments because every segment can only
be assigned a single label through hard clustering. To address
this issue, end-to-end systems have been proposed [20], [21],
[22], [23]. In region proposal networks (RPNs) [20], the speech
segment are generated by a neural network, and the speaker
embedding is calculated accordingly. The diarization predictions
are obtained by clustering the extracted embedding. In end-
to-end neural speaker diarization (EEND) [21], [22], the task
is treated as a multilabel classification problem, which allows
the model to deal with overlapping speech and be optimized
by directly minimizing diarization errors. A permutation-free
objective function was proposed in EEND to address the permu-
tation problem where the output speaker labels are ambiguous
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in the training stage, i.e., not corresponding to any fixed class.
Further research was also explored to handle recordings contain-
ing unknown numbers of speakers [23]. Recently, target-speaker
voice activity detection (TS-VAD) [24] was proposed, which
uses speech features along with speaker embedding as input to
generate multi-speaker outputs representing speaker presence
probabilities for each frame. In [25], a strategy was proposed
to handle variable number of speakers in TS-VAD. In [26],
they incorporated EEND into TS-VAD and trained the two parts
jointly.

The DIHARD challenge [27] was held to facilitate the com-
parison of different approaches through a unified evaluation
dataset, task, and metric to generalize the study of a variety
of challenging realistic domains with various recording de-
vices, numbers of speakers, reverberation and background noise.
Other challenges, such as NIST SRE series [28], the Fearless
Steps series [29], [30], the Iberspeech-RTVE challenge [31],
CHIiME-6 [32], and VoxSRC 2020 [33], have also included a
diarization component. For the DIHARD-I challenge [27], the
traditional approaches [34], [35] performed poorly due to the
overlapping regions and diversified realistic domains, such as
meeting, broadcast, restaurant, clinical, and courtroom. Even
the best system with oracle speech activity detection (SAD)
information from the team at Johns Hopkins University [34],
which explored several key aspects of the state-of-the-art di-
arization methods, produced a quite high diarization error rate
(DER). The team from Brno University of Technology won first
place for the subsequent DIHARD-II challenge [36] by utilizing
VBx [37]. VBx is robust and achieves satisfactory performance
for most of the domains, but it still cannot properly deal with
the overlapping segments. Several other teams adjusted the
parameters or thresholds during clustering to adapt the system to
different domains [38], [39]. In the DIHARD-III challenge [40],
most participants [41], [42] utilized neural diarization methods
to cope with the overlapping segments and combined them
with conventional clustering-based systems to further improve
the overall performance. Our USTC-NELSLIP team [43] won
the first place of DIHARD-III challenge by combining both
separation and improved TS-VAD-based diarization on top of
VBx [37].

The original TS-VAD achieved great results on the speaker
diarization task of the CHiME-6 challenge, which is the key tech-
nology of the champion team [24]. However, its generalizability
to realistic unseen or mismatched domains, e.g., DIHARD-III
tasks, is still a challenging problem. First, TS-VAD employs a
pretrained extractor to obtain speaker embedding (e.g., i-vector)
as input. In realistic scenarios, there are no oracle speaker
segments for computing speaker embedding and diarized seg-
ments are usually unreliable. Second, the number of speakers
in TS-VAD is fixed, which restricts its application to domains
with a variable number of speakers. Third, the performance
of the pretrained TS-VAD model will degrade considerably on
mismatched data in different domains.

Accordingly, in this study, to address the above three is-
sues, we propose a novel adaptive neural speaker diariza-
tion approach using memory-aware multi-speaker embedding.
The proposed method introduces a dedicated memory mod-
ule to produce a multi-speaker embedding, a set of speaker
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embeddings for TS-VAD. Whereas most prior work simply
extracts i-vectors from roughly estimated (initial) speaker seg-
ments, the proposed method retrieves a cleaner and more dis-
criminative multi-speaker embedding from memory via the
attention mechanism. The extracted multi-speaker embedding
is robust against the quality of initial speaker segments from
the clustering-based diarization. The main contributions are
in three parts. First, we present a diarization neural network
with an auxiliary memory block to extract the multi-speaker
embedding. The design of the memory block is inspired by
the concept of dictionary learning [44], [45], where the speaker
embedding bases (e.g., i-vectors or x-vectors) are extracted from
a database consisting of diversified speakers. Although speaker
inventory has been used in speaker-attributed automatic speech
recognition [46], to the best of our knowledge, this is the first
application of dictionary learning to speaker diarization. Then,
for one utterance with multiple speakers, with deep extracted
features via convolutional neural networks (CNNs) and the
speaker mask matrix based on VBx, the new multi-speaker
embedding is generated by a weighted sum of all speaker em-
bedding bases via an attention mechanism to learn the weights.
In this way, the diarization network can be jointly optimized
with the memory block to extract more accurate information for
each speaker on the overlapping segments, where the speaker
diarization performance is improved compared to the TS-VAD
method.

Second, a new strategy is adopted to address the case of
variable speaker numbers in realistic applications. As our di-
arization network has a fixed number of speakers setting, it can
only process utterances with the same number of speakers in
one session. The primary idea was proposed in TS-VAD for
an unknown number of speakers [25]. If the detected speaker
number was smaller than the fixed speaker number, dummy
speaker embeddings are selected from the training set to fill the
inputs. Instead, only fixed number of speaker embeddings with
the longest non-overlapping speaking durations are selected. We
extend this strategy to this new framework to handle any number
of speakers.

Finally, an adaptive optimization method is designed to adapt
our diarization network to different domains and improve the
model’s generalizability to unseen domains. Based on the anal-
ysis of diversified domain characteristics among different utter-
ances in the DIHARD-III challenge, it is found that session-wise
adaptation leads to better performance than domain-wise adap-
tation. Unlike updating the diarization results by re-estimating
their speaker embeddings for better results in [24], [47], the
main idea is adapting the pretrained model to improve the purity
of detected nonoverlapping segments. We detected overlapping
segments with the NSD-MA-MSE model, where the speaker
labels are extracted from the clustering-based diarization results.
Then, we discard the detected overlapping segments and utilize
the remaining non-overlapping segments to simulate multiple
speaker conversation data for the session-level adaptation. The
original idea was proposed in [48] which focused on the entire
system description of the competition. The adaptive strategy was
only a small part and was not described in detail. In this paper,
we described the entire adaptive process for the improved model
(NSD-MA-MSE) and explored the effect of the amount of data

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 15,2023 at 07:03:25 UTC from |IEEE Xplore. Restrictions apply.



HE et al.: ANSD-MA-MSE: ADAPTIVE NEURAL SPEAKER DIARIZATION USING MEMORY-AWARE MULTI-SPEAKER EMBEDDING

9009090000
i

Feature Extraction (CNN)

1563

I

r Main Network 1 r The Memory Block for Multi-speaker Embeddings !
|
seki )(sek2 (0 )(serw )orop o ___
1 I SPK1 Embedding | Attention Module 1
: ——  SPK2Embedding | :
< T |
|
| : 1 SPKN Embedding | Weigted Sum :
Concatenating (BLSTMP) | 1 ! 1
]! I
]! . ]
| 1 ) Attention 1
T | I ~Z |
I : = A I
| P WY 1 1
sp1 | sp2 [ -+ | sDN I : 3 | AVG Pooling 1
3 7 ) 3 7 ) | I 1 1
| I 1 1
| J
1 I m; m mg.; mg
Speaker Detection (BLSTMP) ]!
1 : Memory Module
|
|
|
|
|
|

Feature

-

Speech Segments
(FBANKs)

Fig. 1.

and the number of iterations on the results. Our experiments
on the DIHARD-III challenge show the effectiveness of the
proposed approach, and better performance is achieved than
the single best system from the DIHARD-III challenge cham-
pion team. We call our proposed framework adaptive neural
speaker diarization with memory-aware multi-speaker embed-
ding (ANSD-MA-MSE).

In summary, our main contributions are as follows: First, we
construct a neural speaker diarization network using memory-
aware multi-speaker embedding. Second, the strategy for pro-
cessing unknown numbers of speakers is shown to be effective.
Finally, the adaptive step improves the diarization performance
on both the match and mismatch domains. The remainder of
the paper is organized in sections. Section II introduces neu-
ral speaker diarization using memory-aware multi-speaker em-
bedding and the strategy for processing unknown numbers of
speakers is included in Section II-E. In Section III, the adaptive
model strategy is detailed. Experimental results and analyses
are presented in Section I'V. Finally, we conclude the paper in
Section V.

II. NEURAL SPEAKER DIARIZATION USING MEMORY-AWARE
MULTI-SPEAKER EMBEDDING

A neural speaker diarization approach using memory-aware
multi-speaker embedding (NSD-MA-MSE) is proposed to han-
dle the speaker overlap problem in clustering-based meth-
ods and the permutation problems in EEND. The architecture
of NSD-MA-MSE consists of two parts, namely, the main

Frame Selection

Time

Speaker Mask Matrix
1 0 B 0
0 1 0
0 0 0
0 0 1

The architecture of neural speaker diarization network using memory-aware multi-speaker embedding.

network and the memory block, as shown in Fig. 1. Inspired by
TS-VAD [24], the main network takes conventional speech fea-
tures (e.g., log-Mel filter-banks) as input to extract frame-level
features by CNNs and then combines the features with multi-
speaker embedding from the memory block to predict per-frame
speech activities for all the speakers simultaneously. To improve
discrimination of speaker embeddings and help the diarization
network easier to make decisions, a learnable multi-speaker
embedding network called memory block is constructed. The
memory block adopts the deep extracted features via CNNs from
the main network and the speaker mask matrix generated from
clustering-based diarization results as inputs. We will elaborate
these two parts in the following subsections.

A. Main Network

The input of the main network is a set of acoustic obser-
vations denoted by the matrix X = [x1,Xa,...,X7], where
x; € R?" is the D’'-dimensional log-Mel filter-bank feature
vector (FBANKS) of the ¢-th frame and 7' is the frame number
of the current utterance. Then, 4 convolutional layers are used
to extract a set of deep features denoted by the matrix F =
[f1,f2,...,fr], where f; € R” is the D-dimensional feature
vector of the ¢-th frame. The frame-level deep features serve
as inputs of both the main network and memory block. Next, we
concatenate the deep features with a set of speaker embeddings
E = [e;, eq,...,eyn]| by copying for all T' frames, where e,, €
R’ is the L-dimensional vector for the n-th speaker embedding
and NNV is the number of speakers of the main network output,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 15,2023 at 07:03:25 UTC from |IEEE Xplore. Restrictions apply.



1564

which are generated from the memory block. Then, a speaker
detection (SD) component comprising 2-layer bidirectional long
short-term memory with projection (BLSTMP) [49] extracts
deeper frame-level speaker-related features from each speaker
concatenation. Finally, we concatenate /V speakers’ SD outputs
and pass them to a 1-layer BLSTMP to produce N two-class
outputs corresponding to the speech and silence probabilities
for each of the N speakers, namely, ¥ = (4,,/) € RN*7, where
Une € [0, 1] denotes the probability that speaker n is active in
frame ¢ of the recording.

B. Memory-Aware Multi-Speaker Embedding (MA-MSE)

The memory block employs F from the main network and
the speaker mask matrix S = (s,,;) € RV*T as inputs, where
snt = 0/1 denotes that the speaker n is not appearing or appears
in frame ¢ of the recording, respectively. S is from the ground
truth when training and the auxiliary speaker diarization system
(VBx in our experiments) when testing. Note that VBx did not
provide overlap information for S. First, the frame selection
module is designed to select the frame-level features of each
active speaker, as the silence frames are usually removed in tradi-
tional speaker embedding extraction. The corresponding output
fed to the attention module is a tensor with three-dimensional
arrays F* = (f))) € RP*T*N 'where £}, is the D-dimensional
feature vector of the ¢-th frame for the n-th speaker, which can
be calculated as:

£}, = snifi (D

Then, the memory module, as one key component in NSD-
MA-MSE, is designed to provide another input for the sub-
sequent attention module. The memory here refers to a set of
speaker embedding bases inspired by the concept of dictionary
learning [44], [45], which can be used to predict a more discrimi-
native embedding than i-vectors and x-vectors for a new speaker.
In this study, the design of the memory module is flexible. It may
contain different types of memories, e.g., i-vector or x-vector.
The speaker embedding basis vectors in a memory are easily
distinguished from each other by their corresponding speaker.
To build a memory, we should train a speaker recognition model
in advance. For example, a conventional i-vector system can
be built first based on the setup for a universal background
model with a Gaussian mixture model (GMM-UBM) [10].
Then, speaker embedding i-vectors are extracted through the
pretrained speaker recognition model. Finally, a clustering al-
gorithm such as K-means [51] is adopted to control the num-
ber of basis vectors in a memory, and the cluster centroids
are taken as a memory. In addition, we can construct a new
memory using x-vectors. Extraction of the x-vector uses the
discriminative model via deep neural networks in an end-to-end
manner, which is quite different from i-vector extraction based
on the generative model via GMM-UBM. Accordingly, these
two types of speaker embedding might be complementary, which
motivates us to combine them in the memory module to further
improve the performance of multi-speaker representations. In
our experiments, we show its effectiveness for different scenes.
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BasedonM = {m;, € Rk =1,2,..., K} with K speaker
embedding basis vectors from the memory module and F* from
the frame selection module, the attention module is equipped
to select the speaker embedding bases of the memory that are
most similar to the current speech segment from each memory.
Speaker embedding is usually computed from a speech segment
with whole frames to improve robustness. The information gath-
ering part is designed to obtain speaker information about the
whole speech segment to improve the accuracy of the attention
module. However, if we use a complex model such as a neural
network for information gathering, we may face the overfitting
problem. Therefore, the average pooling layer is employed to
output a matrix P = [py, p2, ..., pn] and

1 T T
— S —
pn - T7n tzzl ftna Tn - tzzl Snt (2)

where 7, is the speech duration of speaker n. p, is a D-
dimensional vector representing the information gathering from
the frame selection module for speaker n.

The combination block calculates the similarity between
memory and the current speech segment and combines them
into a vector named the aggregated speaker vector. The additive
attention mechanism is adopted to learn the similarity scores
between p,, and each vector in memory, as described in the
following formula:

Cuk = v tanh(Wp,, + Umy,) 3)

where c,,1; is the attention value that scores the similarity between
pr and my,. The matrices W € RP"*P and U € RP*"* and
the vector v € RP" are the parameters of the attention model
for memory. D?* denotes the attention dimension. The attention
values are normalized through the logistic sigmoid operation in-
stead of the softmax operation to avoid the sparsity problem [52]:

1

1 + exp(—cnk) “)

Qpfk

where the attention weights a,,;; are used to compute a weighted
sum of the vectors in each memory as follows:

K
e, = Zankmk (5)
k=1

where e,, is the aggregated speaker vector for speaker n. E =
[e1,ea,...,en] denotes the multi-speaker embedding of the
current utterance; this is the memory block output.

C. Model Optimization

In this section, we discuss the optimization for the parameter
set of the main network A; and the parameter set of the memory
block As. A; can be further divided into two subsets A}f and
AS. AT denotes the parameter set of the feature extraction part
in the main network, while A denotes the parameter set of the
remaining part in the main network after combining the multi-
speaker embedding from the memory block.

With the input acoustic observation set X and speaker mask
matrix S, the whole model with the main network and the
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auxiliary memory block predicts Y speech/silence probabilities
for each of the N speakers with ¥ = (§,,;) € RV*7'. We adopt
the binary cross-entropy loss of multiple speakers as the learning
objective to jointly optimize the parameter set in both the main
network and memory block A = (A1, Az):

1 T N
Ly(A) = = > > [yne 108(@ne) + (1= yne) log(L = Gins)]

(6)
where ¢,,+ and y,,; are the predicted output and label of the n-th
speaker at the ¢-th frame, respectively.

In addition, an auxiliary loss is introduced to assist the conver-
gence of the optimization of the memory block by minimizing
the mean square error between the memory-aware multi-speaker
embedding and the conventional speaker embedding:

N
Lo(AY, Az) =) [len — e} | ©)
n=1

e, is the n-th speaker embedding vector of the memory block
output, and e}, corresponds to the conventional speaker embed-
ding vector (i-vector or x-vector) of the n-th speaker computed
with its speech segments. Please note that this auxiliary loss
updates not only the parameters in the memory block (A5) but
also the parameters in the feature extraction part of the main
network (A}f), as shown in Fig. 1.
The final loss of the proposed NSD-MA-MSE model is:

L(A) = Li(A) + ALa(A], Az) (8)

where A is a weight to control the effect on the network from the
auxiliary loss.

D. Model Inference

In the inference stage, first, the estimated speaker mask matrix
Sis generated by a clustering-based diarization method from the
testing session utterance. Then, with input features X and S, the
NSD-MA-MSE model outputs speaker presence probabilities
Y. Next, we perform thresholding on Y to obtain hard speaker
labels L = (I,,;) € {0,1}¥*7 indicating speech (I,,; = 1) or
silence (I,,; = 0) for speaker n in frame ¢. Finally, we perform
postprocessing with reliable SAD labels V = (v;) € {0,1}7
(from reference SAD labels or a good SAD system), which is
quite important for achieving good diarization performance. We
perform postprocessing both with and without reference SAD
results. In this step, the speech segments in the network outputs
that are silent segments in the SAD labels are marked as silent.
The silent segments in the network outputs, which are speech
segments in the SAD labels, are marked as the active speaker
with the longest speech duration in the neighborhood speech
segments of SAD.

E. Strategy to Handle Unknown Number of Speakers

We can see that the above model optimization and inference
procedure is applicable to the NSD-MA-MSE model with a
fixed number of output speakers /N which is usually chosen to
be larger than the number of speakers for most sessions in the

1565

Speaker Mask Matrix in a Session

SPKI 1o 1
SPK2 [
00 1
SPKN* 0 0 0
N*>N N*<N
(SPK1 T 1) (spki 1 0 )
SPK2 0 1 0 SPK2 0 1 0
SPKN 0 1 1 N*=N SPKN* | 0 0 0
TS [l e
| | | |
Ispkne 0 0 o'l Ispkn Yo 0 0 :
|
Discarding ro Padding
L Diemdne ) L - feoladding
Speaker Mask Matrix as the NSD-MA-MSE Input
SPK1 oo e
SPK2 0 1 0
0 0 - 1
SPKN 0 0 - 0
Fig.2. Strategy for handling an unknown number of speakers. For the speaker

mask matrix, the discarding operation (left branch) is conducted when N* > N,
while the zero padding operation (right branch) is performed when N* < N.

dataset. However, in realistic scenarios, the number of interactive
speakers /N might be variable and unknown in both the training
and testing stages. We need to devise a strategy to handle the
cases where N* # N.

If the detected speaker number in one session is smaller than
the fixed speaker number, we randomly assign the output nodes
of the diarization network to the speakers embedded in the cur-
rent session, and the dummy speakers selected from the training
set. Dummy speakers are not speaking, so they are labeled as
silent in the training stage and discarded after model inference.
If the detected speaker number is larger, we randomly select
a fixed number of speakers to correspond to the output nodes
when training and select a fixed number of speakers with the
longest nonoverlapping speaking durations when testing. The
remaining N* — NN speakers with the shortest durations will be
discarded directly because those speakers have little influence
on the diarization results. In the training stage, N* for each
utterance is easy to obtain as the reference information. In the
testing stage, as a clustering-based diarization system is adopted
to generate the initial speaker mask matrix for NSD-MA-MSE,
the estimation of N* is a byproduct without incurring any
computational overhead. If this estimate N* is equal to /V, then
no further effort is needed. Otherwise, we deal with two cases
using the above strategy, as illustrated in Fig. 2.

III. ADAPTIVE NSD-MA-MSE REFINEMENT

To solve the problem of mismatch between training and
testing data caused by realistic diversified domains, in this
section, we propose an adaptive neural speaker diarization using
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Fig. 3. Flowchart of adaptive neural speaker diarization using memory-aware
multi-speaker embedding (ANSD-MA-MSE).

memory-aware multi-speaker embedding (ANSD-MA-MSE) to
improve NSD-MA-MSE by model adaptation.

The overall ANSD-MA-MSE procedure is illustrated in
Fig. 3. First, to obtain the speaker diarization prior information,
we decode each testing session utterance with the pretrained
NSD-MA-MSE model based on the speaker mask matrix from
the clustering-based diarization results. In the adaptation stage,
based on the first-pass decoding results, we discard the overlap-
ping segments detected by NSD-MA-MSE and use the remain-
ing nonoverlapping segments to simulate multi-speaker dialog
data for the subsequent NSD-MA-MSE model fine-tuning. Next,
using the fine-tuned model, the second-pass decoding is per-
formed with the speaker masks matrix from the nonoverlapping
segments to generate the refined diarization results.

The whole procedure includes the following 6 steps:

1) Initialization: The speaker diarization results are ini-
tialized with both overlapping and nonoverlapping seg-
ments by decoding each testing session utterance with the
pretrained NSD-MA-MSE model based on the speaker
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mask matrix from the clustering-based diarization results
(VBx). If only one speaker is detected, this entire process
is skipped.

2) Nonoverlap Selection: Nonoverlap speech data are se-
lected based on the speech overlap detection results from
the pretrained or fine-tuned NSD-MA-MSE model.

3) Data Generation: Multiple speaker dialogs are simulated
using the selected nonoverlapping speech data in 2) for
model adaptation.

4) NSD-MA-MSE Model Fine-tuning: The NSD-MA-MSE
pretrained model is fine-tuned with the simulated adapta-
tion data in 3).

5) NSD-MA-MSE Model Decoding: Each testing session
utterance is decoded using a fine-tuned NSD-NSD-MA-
MSE model with the speaker mask matrix generated in
2).

6) Adaptive Processing: 2) is followed for model adaptation
with refined speaker diarization prior information decoded
by the fine-tuned NSD-MA-MSE model.

In the following subsections, several key parts of ANSD-MA-

MSE are elaborated.

A. Nonoverlap Segment Selection

The accuracy of nonoverlap selection plays an important
role in the diarization performance after model adaptation. The
clustering-based diarization methods are usually unable to pro-
vide overlap detection results. Meanwhile, we found that for
the nonoverlapping segments, the clustering-based diarization
sometimes performs better than the pretrained NSD-MA-MSE
results in mismatched conditions. Accordingly, in the first-pass
decoding, we employ the pretrained NSD-MA-MSE model to
obtain speaker overlapping segments and filter out these seg-
ments from cluster-based results to obtain the nonoverlapping
segments for the subsequent data generation. However, due to
the mismatch between training and testing, the overlap detection
in the first-pass decoding might not be accurate in adverse
environments, which can lead to the impurity of the obtained
nonoverlapping segments. In the following multipass decoding
scheme, the fine-tuned NSD-MA-MSE model is adopted to
improve the purity of the detected nonoverlapping segments.
Moreover, one main difference from the first-pass decoding is
that only the refined NSD-MA-MSE model is used to generate
the diarization results without the intervention of clustering-
based diarization.

B. Data Generation

After the nonoverlapping selection for each testing session
utterance, we collect a set of truncated utterances without silence
segments for each of the detected N* speakers. We simulate
each session utterance of the single-microphone output with N'-
speaker dialog (2 < N’ < N*) in the waveform domain as:

s =%V_ st (1—7,) )
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where {s!,(1),1 <1 < T,} is the reverberant signal of the u-th
utterance:

sy (1) = sy (1) * hay (). (10)
$u(1) is the [-th sample of randomly selected nonoverlapping
utterances with the speaker ID n'. h,, (1) is the synthetic room im-
pulse response (RIR) for speaker n' using the image method [53],
where the room size (length, width, height) ranges from (5 m,
5m,2.5m)to (12 m, 12 m, 4.5 m) while the distance between
speaker and microphone ranges from (0.5 m, 0.5 m, 0.1 m) to
(4 m, 4 m, 1 m). U is the utterance number for the simulated
session with the N’-speaker, and at most 10 utterances are
randomly selected for each speaker per session. The parameter
T, 18 used to control the overlap time ratio of multiple speakers
randomly picked from O to 40% and silence time between
two adjacent sentences from 0 to 2 s. We repeatedly use the
truncated utterances 50 times. In total, we generate session
utterances for approximately 4 hours as the adaptation data for a
10-minute recording. We also adopt this method to simulate data
for NSD-MA-MSE pretraining while the utterances are from
LibriSpeech [54].

C. Model Fine-Tuning and Decoding With NSD-MA-MSE

With the simulated adaptation data, the pretrained NSD-MA-
MSE model is fine-tuned with the loss function in (8), where A is
the same as that in the pretraining stage. It is worth noting that the
model parameters are optimized with only one epoch due to the
limited adaptation data. Then, decoding using the procedure in
Section II-D is conducted with the fine-tuned model to generate
the diarization results for adaptive processing.

IV. EXPERIMENTAL SETUP
A. Datasets

We evaluate the proposed method with two datasets, namely,
the AMI corpus [55] and the DIHARD-III challenge corpus.

The AMI meeting corpus consists of 100 hours of meeting
recordings. Each session includes 3-5 speakers. They use a
range of signals that are synchronized to a common timeline and
collected by close-talking and far-field microphones, individual
and room-view video cameras, and output from a slide projector
and an electronic whiteboard. The meetings were recorded in
English using three rooms with different acoustic properties and
included mostly nonnative speakers. We evaluate our model
following [18] to create training, development, and test sets
where only words are considered as speech. We evaluate both
Mix-Headset and beamformed audio on AMI.

The goal of the DIHARD-III challenge is to automatically
detect and label all speaker segments for each recording. The
development (DEV) and evaluation (EVAL) sets include sample
selections of 5-10 minutes drawn from 11 domains exhibiting
wide variations in recording equipment, recording environment,
ambient noise, number of speakers (from 1 to 10), and speaker
demographics. These domains range in difficulty from the trivial
such as reading audiobooks recorded under clean conditions by
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a single speaker to the extremely challenging such as conversa-
tions between up to 6 diners recorded by a binaural microphone
in restaurants with varying room acoustics and noise levels. They
define two partitions of the evaluation data: 1) core evaluation
set “ a balanced evaluation set in which the total duration of each
domain is approximately equal. 2) full evaluation set ““ a larger
evaluation set that uses all available selections for each domain
and which is, thus, unbalanced with some domains having more
audio than others; it is a proper superset of the core evaluation
set. The core sets of DEV and EVAL are 23.94 and 22.73 hours,
respectively. Full sets of DEV and EVAL have 34.15 and 33.01
hours, respectively.

The accuracy of speaker diarization systems in this paper is
measured by the diarization error rate (DER) [28]. No forgive-
ness collar is applied to the reference segments prior to scoring,
and overlapping speech is also evaluated for both AMI and
DIHARD-III.

B. Speech Activity Detection

To explore the effect of speech activity detection (SAD), we
perform time delay neural network (TDNN) SAD [56] on both
AMI and DIHARD-III. We train two SAD models for AMI
with Mix-Heatset and beamformed data. The SAD model on
DIHARD-III is trained with DIHARD-III DEV full sets.

C. VBx-Based Diarization

To better illustrate the effectiveness of our proposed method,
we use a state-of-the-art clustering-based method, namely,
Bayesian hidden Markov model (BHMM) x-vector diariza-
tion [18] (i.e., VBx), to compute the speaker mask matrix for
decoding NSD-MA-MSE models and model adaptation. The
x-vectors are first extracted with the deep neural network ar-
chitecture based on ResNet101 [57] for each speech segment
divided by SAD. Then, they are clustered using AHC with
a similarity metric based on probabilistic linear discriminant
analysis (PLDA) log-likelihood ratio scores [58], followed by
VB-HMM-based clustering to create the diarization results. For
the AMI dataset, we provide the results of our system evaluated
on beamformed mic-array audio as well as on Mix-Headset
audio. For the DIHARD-III dataset, we directly use the VBx
parameters tuned on the DIHARD-II dataset [36].

D. TS-VAD Based Diarization

In the following experiments, several TS-VAD models with
different types of speaker embedding are designed. First, for
the original TS-VAD using the i-vector as the input embedding,
we follow the method in [25], which is proposed to handle an
unknown number of speakers and used in our DIHARD-III chal-
lenge system. Second, for the TS-VAD using the x-vector as the
input embedding, we adopt the method in [59], where the ResNet
block for extracting the x-vector is also optimized during the
training stage. Finally, we create a new structure that combines
both the i-vector and x-vector as the input embedding, and the
parameters of the x-vector part are fine-tuned when training the
TS-VAD, as in [25], [59]. All those models are optimized with
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the same training dataset as in the NSD-MA-MSE model for the
AMI corpus. No additional iterations were implemented for the
speaker embedding purification since there wasn’t a significant
improvement.

E. NSD-MA-MSE Based Diarization

We investigate two types of speaker embedding as the memory
module. The first one is 100-dim i-vectors following the Kaldi
process for the DIHARD-I challenge [27]. The VoxCelebl
and VoxCeleb2 datasets are used for building the i-vectors.
We compute each speaker’s i-vector by averaging all of the
i-vectors from his/her utterances and clustering them into K
classes. Each class center is taken as the memory module in-
put, named ‘NSD-MA-MSE(i-vector)’. The second one is the
256-dim x-vectors described in [18], which are extracted with
deep neural network architecture based on ResNet101 [57], [60].
Like i-vectors, the memory module consists of K clustered
centers of all speakers’ averaged x-vectors extracted from the
VoxCelebl and VoxCeleb2 datasets, named ‘NSD-MA-MSE(x-
vector)’. Meanwhile, to take advantage of both i-vectors and
x-vectors, we also concatenate these two types of memory-aware
multi-speaker embedding in the original NSD-MA-MSE mod-
els, named ‘NSD-MA-MSE(i-vector+x-vector)’.

Most of our experiments are performed on the AMI corpus
to determine configuration parameters where both training and
testing data are provided. First, a series of experiments over
different settings of speaker embedding and K are designed
with the loss function in (8), where A = 0.1. Then, another
set of experiments is conducted for different settings of speaker
embedding and XA, where K is set to 128. All the models are
trained using the AMI training set, and the number of output
speakers N is 4, which is the maximum number of speakers in
most sessions of the AMI dataset.

Based on the experiments on the AMI corpus, the best con-
figuration parameters are applied directly to the DIHARD-III
dataset, and the number of output speakers N is set to 8, which
covers most sessions in DIHARD-III. Since the training data for
DIHARD-III are not provided, we use real recording datasets, in-
cluding Switchboard-1 Release 2 LDC97S62 [61], AMI training
set, Voxconverse DEV set and simulated multi-speaker dialogs
using LibriSpeech, which are mentioned in Section III-B. We
use Adam with a learning rate of 0.0001 to optimize the entire
model on 4 RTX 3090 and get the best model after 2 epochs.

In the testing/inference stage, the VBx results in Section IV-C
are used to generate the speaker mask matrix. Following the
procedure in Section II-D, we decode both Mix-Headset and
Beamformed data on AMI and the original data on DIHARD-III.
No additional iterations were implemented for the speaker mask
matrix purification since there wasn’t a significant improvement.

F. ANSD-MA-MSE Based Diarization

‘We conduct the experiments for the ANSD-MA-MSE method
on the DIHARD-III dataset due to the high mismatch between
the training set and testing sets in different domains. As men-
tioned in Section III-A, we first select nonoverlap speech data
with the VBx and NSD-MA-MSE results. Then, approximately
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Fig. 4. DER comparison of NSD-MA-MSE methods with different speaker
embedding and memory module dimensions on the AMI Mix-Headset DEV and
TEST set.

4-hour data are generated as in Section III-B for each session.
Next, the pretrained NSD-MA-MSE model for DIHARD-III is
fine-tuned with those data on the session level. Finally, each ses-
sion is decoded on the fine-tuned model with the nonoverlapping
speaker mask matrix generated from the VBx and NSD-MA-
MSE results, and the same inference step for the NSD-MA-MSE
model is adopted. This process can be adaptively performed to
refine the diarization results.

V. RESULTS AND ANALYSIS

In this section, we first show the results of the proposed NSD-
MA-MSE method on both the AMI and DIHARD-III datasets.
Then, we demonstrate the effectiveness of the proposed ANSD-
MA-MSE method on the mismatched DIHARD-III dataset.
Further analysis is also given to illustrate the advantages of
the proposed method over other methods. Finally, our proposed
method achieves the best diarization performance out of the top
single systems of DIHARD-III final submissions.

A. NSD-MA-MSE Results on AMI

As shown in Fig. 4, the first experiment is designed for
different settings of speaker embedding (i-vector, x-vector,
and i-vector+x-vector) and memory module dimension (K =
64,128, 256) in NSD-MA-MSE. The DER results on the AMI
DEV set decoded with the Mix-Headset channel show that
the memory module with 128 cluster centers performs con-
sistently better across all three types of speaker embedding,
making a good tradeoff between the speaker diversity and model
generalizability. The ‘NSD-MA-MSE(i-vector+x-vector)’ sys-
tem yields the best DER among different speaker embeddings,
demonstrating the complementarity of speaker embedding based
on the generative model (i-vector) and discriminative model
(x-vector).

The second experiment in Fig. 5 examines the effect of
weights (A = 0,0.1,0.5,1.0) for the loss function in (8) over
different types of speaker embedding in the memory module
of NSD-MA-MSE. A = 0 indicates the NSD-MA-MSE model
optimized using (6) without the auxiliary loss in (7). Based on
the DER results of the Mix-Headset channel on the AMI DEV
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Fig. 5. DER comparison of NSD-MA-MSE methods with different speaker
embedding and weights for auxiliary loss on the AMI Mix-Headset DEV and
TEST set.

TABLE I
DER COMPARISON OF DIFFERENT DIARIZATION METHODS FOR BOTH
Mix-HEADSET AND BEAMFORMED DATASETS OF AMI WITH REFERENCE

SAD
. Mix-Headset Beamformed
Method Speaker embedding DEV TEST DEV  TEST
VBx x-vector 1648 17.86  18.31 19.67
TS-VAD i-vector 14.12 1432 1684 16.55
TS-VAD x-vector 1445 1468 17.21 16.89
TS-VAD i-vector+x-vector 14.25 14.43 17.06 16.77
NSD-MA-MSE i-vector 11.39  12.01 13.94  13.94
NSD-MA-MSE x-vector 11.55 1204 1376 13.73
NSD-MA-MSE i-vector+x-vector 11.19 1181 1374 13.69
TABLE II

DER COMPARISON OF DIFFERENT DIARIZATION METHODS FOR BOTH
Mix-HEADSET AND BEAMFORMED DATASETS OF AMI WITH TDNN SAD

. Mix-Headset Beamformed

Method Speaker embedding DEV TEST DEV  TEST
VBx X-vector 23.14 2393 2492 26.20
TS-VAD i-vector 19.63 18.81 21.61 21.86
TS-VAD X-vector 19.96 19.14  22.05 22.17
TS-VAD i-vector+x-vector 19.83  19.02 21.84 22.03
NSD-MA-MSE i-vector 16.89 17.18 18.89 19.54
NSD-MA-MSE x-vector 1698 17.10 19.27  19.63
NSD-MA-MSE i-vector+x-vector 16.71 1695 18.74 19.53

set, the NSD-MA-MSE model with the help of auxiliary loss
(A = 0.1) achieves consistent and remarkable improvements in
the diarization performance across all three types of speaker
embedding. Similar to the first experiment, the ‘NSD-MA-
MSE(-vector+x-vector)” system performs the best.

With the best configuration of K = 128 and A = 0.1, Table I
illustrates the DER comparison of different diarization methods
on AMI DEV and TEST sets for both Mix-Headset channel and
Beamformed data with reference SAD. Table II shows the results
with TDNN VAD. First, the neural speaker diarization methods
of both NSD-MA-MSE and TS-VAD outperform VBx across
all settings. Second, combining the i-vector and x-vector in TS-
VAD does not always yield better DERs. Finally, for all types of
speaker embedding, the DERs of our NSD-MA-MSE method is
correspondingly lower than those of the TS-VAD method.
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TABLE III
DER COMPARISON OF DIARIZATION METHODS ON DIHARD-III DEV AND
EVAL FULL SET WITH BOTH REFERENCE AND TDNN SAD

SAD Set  VBx TS-VAD NSD-MA-MSE
Reference DEV 1552 1426 12.00
CIreNCe  pyAL 1496  13.97 11.73
DEV 1886  17.85 14.95
TONN BvaL 2130 2012 17.32
TABLE IV

THE SPEAKER EMBEDDING (I-VECTOR) DISTANCE COMPARISON BETWEEN
TS-VAD AND NSD-MA-MSE

Speaker embedding

i-vectors in TS-VAD
i-vectors in NSD-MA-MSE

Type-I distance

0.30
0.37

Type-II distance

0.17
0.11

We also compared initializing S with the ground truth and
VBXx in the testing stage and found that there was little perfor-
mance difference, which means that the model is robust to the
speaker mask matrix S.

B. NSD-MA-MSE Results on DIHARD-III

In previous experiments, both model optimization and in-
ference were conducted on the AMI corpus, where the data
distributions between the training and testing sets were rela-
tively matched. By switching to DIHARD-III, we have only
the limited development and evaluation sets from 11 domains
without the specific training data. Therefore, with the neural
diarization models trained on real and simulated data as de-
scribed in Section I'V-E, there might be a high mismatch between
training and testing for DIHARD-III. Here we performed exper-
iments on DIHARD-III with the model “TS-VAD with i-vector®
for TS-VAD and ‘NSD-MA-MSE with (i-vector+x-vector)’ for
NSD-MA-MSE results.

In Table III, we observe that the proposed NSD-MA-MSE
method still yields better performance than the TS-VAD method
for most domains. To further illustrate the superiority of NSD-
MA-MSE over TS-VAD, we compare the static speaker em-
bedding from a separate extractor in TS-VAD and the dynamic
memory-aware speaker embedding from a jointly optimized
diarization network in NSD-MA-MSE. Two types of distance
measures are defined based on i-vectors for analysis. Type-I
distance is used to examine the discrimination between different
speakers, which is calculated using the Euclidean distance of two
speaker i-vectors averaged across all two-speaker combinations
among N speakers in one session. Type-II distance is used to
study the effect of the initial VBx-based diarization results on the
multi-speaker embedding extraction, which is computed using
the Euclidean distance of two i-vectors extracted based on the
oracle and VBx-based speaker mask matrix for each speaker in
one session.

Table IV shows the speaker embedding (i-vector) distance
comparison between TS-VAD and NSD-MA-MSE. We observe
that the Type-I distance of NSD-MA-MSE is larger than that
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TABLE V
DER oF ANSD-MA-MSE oN DIHARD-III DEV AND EVAL FULL SET WITH
REFERENCE AND TDNN SAD
SAD Set NSD-MA-MSE  ANSD-MA-MSE

Reference DEV 12.00 11.56

EVAL 11.73 11.12

DEV 14.95 14.49

TONN EyaL 17.32 16.76
TABLE VI

DER COMPARISON OF DIARIZATION METHODS ACROSS 11 DOMAINS ON
DIHARD-III EVAL FULL SET WITH REFERENCE SAD

Domain VBx  TS-VAD NSD-MA-MSE  ANSD-MA-MSE
AUDIOBOOK 0.01 0.01 0.01 0.01
BROADCAST 4.25 4.48 4.29 4.18
CLINICAL 9.19 14.82 9.96 7.78
COURTROOM 3.07 3.90 2.85 2.86
CTS 13.87 5.98 5.78 5.69
MAPTASK 3.32 4.66 2.64 1.63
MEETING 31.33 29.21 28.41 26.20
RESTAURANT  38.93 51.28 37.80 37.65
SOCIO FIELD 8.04 9.41 7.45 6.68
SOCIO LAB 5.89 6.78 4.98 3.39
WEBVIDEO 36.75 37.43 36.45 35.75
ALL 14.96 13.97 11.73 11.12

of TS-VAD, implying that a set of more discriminative multi-
speaker embeddings can be generated via the joint optimization
of speaker embedding extraction and diarization. Furthermore,
the smaller Type-II distance of NSD-MA-MSE than TS-VAD
indicates that the proposed memory-aware multi-speaker em-
bedding is less affected by the initial speaker diarization results.

C. ANSD-MA-MSE Results on DIHARD-III

Table V lists the overall performance of the ANSD-MA-MSE
on DIHARD-IIT development (DEV) and evaluation (EVAL) full
sets. The ANSD-MA-MSE achieves substantial improvements
over NSD-MA-MSE. With the model adaptation, ANSD-MA-
MSE reduces the DER of NSD-MA-MSE from 12.00% to
11.56% on the development set and from 11.73% to 11.12%
on the evaluation set, where reference SAD is provided.

Table VI displays the DER comparison of VBx, TS-VAD,
NSD-MA-MSE, and ANSD-MA-MSE across 11 domains on
the DIHARD-III EVAL full set. Both TS-VAD and NSD-MA-
MSE outperform VBx on well-matched domains such as CTS
and MEETING corresponding to Switchboard and AMI in the
training set. For other domains, the high mismatch between
training and testing leads to the performance degradation of
TS-VAD, while NSD-MA-MSE still improves the diarization
results more than VBx. ANSD-MA-MSE consistently per-
forms better than NSD-MA-MSE, indicating the effectiveness
of modal adaptation. For matched domains (CTS and MEET-
ING), additional gains can be observed from NSD-MA-MSE to
ANSD-MA-MSE. For most of the other mismatched domains,
ANSD-MA-MSE achieves considerable DER reductions over
NSD-MA-MSE. Even for the WEBVIDEO and RESTAURANT
domains, ANSD-MA-MSE outperforms VBx, which includes a
large number of overlapping speech and noisy environments.
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TABLE VII
OVERALL COMPARISON OF PROPOSED ANSD-MA-MSE METHOD WITH TOP
SINGLE SYSTEMS ON DIHARD-III EVAL SET WITH REFERENCE SAD

FULL CORE
Hitachi-JHU 12.74 15.34
BUT 16.54 15.50
USC-SAIL 18.19 19.76
USTC-NELSLIP 12.41 14.86
ANSD-MA-MSE  11.12 14.04

Fig. 6 is an example of two-speaker diarization results aligned
with the input spectrogram for the comparison among VBx,
NSD-MA-MSE, and ANSD-MA-MSE. The top image corre-
sponds to the input spectrogram. There are 4 bar graphs repre-
senting oracle labels (Reference), clustering-based diarization
(VBx), and the proposed NSD-MA-MSE and ANSD-MA-MSE.
Four colors are used to denote the nonspeech segment (white),
the first speaker segment (red), the second speaker segment
(blue), and the two-speaker overlap segment (green). In the
first black dotted box from the left, ANSD-MA-MSE detects
overlap segments more accurately than NSD-MA-MSE (SPK2
to Overlap). In the second black dotted box from the left,
ANSD-MA-MSE corrects the speaker errors (SPK1 to Overlap)
of NSD-MA-MSE from VBX. In the third black dotted box from
the left, ANSD-MA-MSE reduces the speaker errors on single
speaker segments more than VBX. In the last black dotted box
from the left, both ANSD-MA-MSE and NSD-MA-MSE reduce
the errors of VBx (overlap to SPK?2). These results indicate the
superiority of ANSD-MA-MSE over NSD-MA-MSE and VBx
for both overlapping and nonoverlapping segments.

D. Overall Comparison on DIHARD-IIT

Finally, we make an overall comparison of our proposed
ANSD-MA-MSE method with the top single-model systems in
the DIHARD-III challenge, as shown in Table VII. Here is a
simple brief description of these systems.

® Hitachi-JHU [42]: EEND is used as postprocessing to
update the diarization results of the TDNN-based x-vector
system.

e BUT [41]: VBXx is based on applying BHMM to TDNN
x-vectors, while the PLDA model is replaced by a heavy-
tailed PLDA (HTPLDA).

e USC-SAIL [62]: Based on multiple embedding extractors,
the domain adaptive speaker diarization system employs
two different approaches using hard decisions and soft
decisions.

® USTC-NELSLP [43]: This is our champion system that
combines various front-end techniques to solve the diariza-
tion problem, including speech separation, TS-VAD, and
iterative system optimization.

The proposed ANSD-MA-MSE system achieves the best
results among all systems for both FULL and CORE settings
on DIHARD-III Track 1 with oracle SAD, which outperforms
our USTC-NELSLIP champion system and other top systems
considerably.
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VI. CONCLUSION

In this study, we first propose a novel speaker diarization
method named NSD-MA-MSE to handle overlapping segments
and to improve the performance over the TS-VAD method under
matched conditions. To apply NSD-MA-MSE to mismatched
conditions, we introduce a model adaptation strategy named
ANSD-MA-MSE that substantially improves the diarization
performance for most domains of the DIHARD-III challenge.
In the future, we will investigate how to improve the results
of those extremely challenging domains (many speakers, large
overlap ratio, and adverse environments), such as WEBVIDEO
and RESTAURANT, in the DIHARD-III challenge.
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