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ABSTRACT

In multi-speaker scenarios, automatic speech recognition
(ASR) models rely on pre-processed audio after speaker sep-
aration. However, when the target speaker is not accurately
separated, ASR models face limitations in reaching their peak
performance. To address this issue, we propose a speaker-
adaptive ASR framework that possesses more implicit target
speaker enhancement capability by efficiently joint-optimized
speaker recognition (SR) and ASR models. Our framework
introduces sharing self-supervised learning representation,
optimization transfer and hierarchy speaker-gated attention.
In this manner, it can maximize effectiveness of embedding
bias and emphasize target speaker corresponding to seman-
tic units. In the CHiME-7 DASR sub-track, the proposed
method achieves a 28.19% relative reduction in word er-
ror rate (WER) on the development sets when compared to
the official baseline. Notably, this framework has also been
employed in the champion system for the CHiME-7 DASR.

Index Terms— CHiME-7 challenge, automatic speech
recognition, speaker-adaptive, target speaker enhancement

1. INTRODUCTION

End-to-end (E2E) automatic speech recognition (ASR) mod-
els, especially encoder-decoder (ED) architectures [1, 2],
have demonstrated impressive results in single-speaker sce-
narios. Yet, real-world situations frequently involve over-
lapping speech from multiple speakers, as seen in meet-
ings and smart homes, posing challenges for traditional ap-
proaches [3]. The CHiME organizers have addressed this
with a series of challenges [4]. In these competitions, re-
searchers usually consider ASR and speech separation as
distinct tasks [5]. Typically, they use guided source sep-
aration (GSS) methods in the front-end of ASR models to
separate speakers [6]. However, GSS-based speech separa-
tion often includes residual non-target speaker components,
which can impact the performance of ASR models.

To address these issues, the prevailing approach employs
speaker adaptation techniques. These methods enhance ASR

∗corresponding author

models’ capability to implicitly adapt to the target speaker
by integrating their embeddings into ASR input features [7,
8]. The method consists of two stages: Firstly, a pre-trained
speaker recognition (SR) model based on ECAPA-TDNN is
employed to extract offline speaker embeddings [9]. Sec-
ondly, the ASR input features are obtained by concatenat-
ing audio features with the extracted embeddings. The above
stages present the following issues: 1) There is a mismatch in
the acoustic scenario between pre-trained SR and ASR mod-
els [8]. 2) The statistics pooling (SP) layer in ECAPA-TDNN
has a drawback of information loss, which leads to insuf-
ficient embedding bias for the second stage [10]. 3) The
simple concatenation method only combines low-level fea-
tures, disregarding the semantic representation of higher-level
ones [11]. Consequently, this approach results in insufficient
embedding bias strength, making it challenging to propagate
into higher levels.

We introduce a framework called Speaker-Adaptive Im-
plicit target Speaker enhancement (SAIS) to optimize both
SR and ASR models efficiently. To reduce acoustic scene
mismatch across different modules, we incorporate a self-
supervised learning representation (SSLR) module known for
its robustness [12, 13]. The SSLR module handles audio
feature extraction and online speaker embeddings. We en-
hance ASR’s ability to improve target speaker performance
through a joint fine-tuning (JFT) process involving SSLR, SR,
and ASR modules. Specifically, we replace the SP layer in
ECAPA-TDNN with optimization transfer (OT) [14] to ob-
tain more accurate bias information for the target speaker. OT
minimizes information loss by constructing mapping and cost
matrices for embeddings. Additionally, we introduce hierar-
chy speaker-gated attention (HSGA) to effectively integrate
target speaker information at each encoder layer in the ASR
module. These optimizations significantly boost ASR’s im-
plicit capability for enhancing target speaker performance.

2. SYSTEM DESCRIPTION

2.1. Speaker-adaptive ASR

To enhance the implicit target speaker capability of an ASR
model, the speaker-adaptive ASR (SA-ASR) approach is
commonly used. This involves concatenating audio features
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Fig. 1. (a) SSLR-based SR; (b) Sharing SSLR for SR and ASR; (c) SAIS architecture. In Embedding modules (a) to (c), there
are two ways to generate x-vector for SR: traditional SP, proposed OT.

and speaker embeddings as input features for the ASR sys-
tem. In our case, we employ an attention-based ED ASR
module that utilizes a conformer network for encoding [15].
The decoder consists of an embedding layer, transformer
network, and output layer [2]. For audio features, SSLR has
been proven to possess powerful robustness [16, 17]. WavLM
is a commonly used self-supervised pre-training module for
extracting such representations [12]. For speaker embedding,
we employ the SR module based on ECAPA-TDNN for of-
fline extraction. Let Xwav is audio sequence, Xmfcc is mel
frequency cepstrum coefficient (MFCC) features, and Y is
text sequence. We utilize WavLM-Large to extract audio
features H, and the MFCC-based SR model to obtain speaker
embedding e. The process is described as:

H = WavLM − Large(Xwav) (1)

E = ECAPA− TDNN(Xmfcc) (2)

e = SP (E) (3)

S = Concat(Append(Linear1(e), T ), Linear2(H)) (4)

F = Conformer(S) (5)

P = Decoder(F,Y), (6)

where SSLR is H ∈ RT×d, T and d represent the number of
frames and dimension. The MFCC-based SR model consists
of two parts, Eq. (2) and (3). ECAPA-TDNN output is E ∈
Rn×h, n and h representing output channels and dimension.
Statistics pooling layer output is e ∈ R1×h. Eq. (4) com-
bines the two features by concatenating them along feature
dimension. Linear1(e) ∈ R1×d′

, Linear2(H) ∈ RT×d′
,

Append(Linear1(e), T ) ∈ RT×d′
, S ∈ RT×2d′

. F is the
output of Conformer(·). P is posterior probability gener-
ated by Decoder(·) conditioned on F and Y.

2.2. Proposed SAIS architecture

The SA-ASR mentioned above has limitations in enhanc-
ing the target speaker implicitly. These limitations arise
from acoustic scenario mismatch, insufficient information in

speaker embedding, and inadequate strength of embedding
bias. To overcome these issues, we propose the SAIS frame-
work which consists of three contributions: sharing SSLR,
OT embedding, and HSGA.

Sharing SSLR. In SA-ASR, there is an issue of acoustic
scenario mismatch between the ASR and SR modules, which
includes mismatch of input features and spatial distribution.
Specifically, input features for ASR and MFCC-based SR are
Xwav and Xmfcc. The x-vectors extracted offline come from
a general speaker spatial distribution, which does not match
spatial distribution of downstream ASR task. To address this
issue, we adopt sharing SSLR strategy for both ASR and SR
modules, as shown in Fig. 1 (b). For the issue of input fea-
tures, ASR and SR modules share WavLM-Large feature ex-
traction module (green box), as follows:

Ê = ECAPA−TDNN(H) (7)

ê = SP (Ê), (8)

where H is from Eq. (1). SSLR-based SR model involves
Eq. (7) and (8). During SR model training stage, as shown
in Fig. 1 (a), we freeze the parameters of WavLM-Large and
train orange box part. The embedding ê is passed through
output layer and AAM-Softmax [9] to obtain speaker poste-
rior probabilities. Then, in Fig. 1 (b), we initialize and freeze
green and gray boxes by trained SSLR-based SR model, and
train ED ASR module (orange box) to obtain sharing SSLR-
SR-ASR framework. During the above training of ED ASR
and SR, WavLM-Large module (green box) is freezed, reduc-
ing input features differences between ASR and SR modules.
To address the issue of spatial distribution mismatch, we ap-
ply JFT with a low learning rate on ASR training sets to re-
duce the gap in spatial distributions.

OT embedding. To obtain sufficient target speaker bias
information, we introduce OT method to mitigate speaker
information loss during generation of x-vectors through SP.
This method involves defining a mapping matrix M and a
cost matrix C to minimize information loss from Ê to ê. Let
probability simplex a and b be the weights of the discrete
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measures
∑

i aiδÊi
and

∑
j bjδêj

with respective locations
Ê and ê [14], where δ is the Dirac at position Ê or ê. The
entropic regularized Kantorovich relaxation [14] of OT:

min
M∈U(a,b)

∑
ij

CijMij − εH(M), (9)

where H(M) = −
∑

ij Mij(log(Mij)− 1) is entropic reg-
ularization with parameter ε, U is space of admissible cou-
plings. M ∈ Rn×1

+ , C ∈ Rn×1. n and 1 is length of Ê, ê. M
and a, b should satisfy the following relationship:

M1 = a,M⊤1n = b, (10)

where 1n is an n-dimensional identity matrix. Introducing
two dual variables, f ∈ Rn and g ∈ R, Eq. (9) is derived
using Lagrange multiplier method:

L(M, f ,g) =< C,M > −εH(M)

= − < f ,M1− a > − < g,M⊤1n − b >
(11)

∂L(M, f ,g)

∂Mij
= Ci,j + ε log(Mi,j)− fi − gj = 0. (12)

Then, M is computed and can be rewritten in the form pro-
vided above using non-negative vectors u, v:

Mij = efi/εe−Ci,j/εegj/ε = uiKi,jvj . (13)

Finally, these two updates define Sinkhorn’s algorithm [14]:

u(l+1) =
1/n

Kv(l)
,v(l+1) =

1

K⊤u(l+1)
, (14)

where initialized with an arbitrary positive vector v0 = 1.
K = ÊW, where K ∈ Rn×1, Ê ∈ Rn×h, W ∈ Rh×1. W
is a trainable matrix, and it is minimized to reduce the loss of
C. l is the number of iterations. It is set to 10.

The calculation of u and v can be seen as expectation
maximization (EM) algorithm. The E-step obtains u for the
l + 1 iteration by calculating v from the l-th iteration. The
M-step, in the l + 1-th iteration, updates v using u. Then M
is calculated by estimated u, v and minimized C in Eq. (13).
Finally, Ê is mapped to ê by optimized M.

HSGA. To enhance the strength of target speaker em-
bedding bias, a novel approach called HSGA is proposed to
optimize the feature fusion layer in Fig. 1 (b), which is ap-
plied to each layer of conformer in Fig. 1 (c). Feature fusion
layer can be refered in Eq. (4). Specifically as follows:

Qm = DNN(Ĥm−1) (15)

Km,Vm = Append(σ(Linear1(ê)), T )⊙Qm (16)

Sm = SelfAttn(Qm,Km,Vm) (17)

Ĥm = DNN(ConvBlock(Sm)), (18)

where Ĥm represents the output of each layer of con-
former, M denotes the number of conformer layers. Ĥ0 =
Linear2(H). Qm,Km,Vm ∈ RT×d. ⊙ is element-wise
multiplication. σ represents sigmoid function. Eq. (16) can
control speaker information within the range of (0, 1), and

scale inputs of different conformer layers. In those different
layers, lower layers contain speaker information, higher lay-
ers contain semantic information [11]. For the scaled results,
Km,Vm, the important frequency components are enhanced
while the less important ones are attenuated. This ensures
that during the encoder network from low-level to high-level
representations, sufficient target speaker bias information is
incorporated, allowing ASR model to better distinguish target
speaker corresponding to semantic units.

3. EXPERIMENTS
3.1. Experimental setups

We primarily focus on DASR task in CHiME-7 challenge.
In this task, sub-track allows the use of oracle diarization,
which can better demonstrate impact by ASR model. SSLR-
SR model is trained on the VoxCeleb1&2 [18] and its 3-fold
data augmentation with available MUSAN (babble, noise,
music) [19]. ASR training sets are described as shown in
Table 1. For 470 hours data, CHiME-6 and Mixer 6 are from
official baseline training sets [17]. They are augmented using
same method as [17], including 3-fold speed perturbation.
In addition to the 470 hours, LibriSpeech [20] and weakly
labeled VoxCeleb1&2 are simulated with added noise and
reverberation as additional training data [19, 21]. The only
dev sets (CHiME-6, DiPCo, Mixer 6) were used for testing
due to lack of labeled evaluation sets [17]. Word error rate
(WER) and relative WER reduction (WERR) are employed
as evaluation metrics.

Table 1. Statistics of ASR training sets.
Duration(h) Corpus Sample Scale

470 CHiME-6 (GSS, near), Mixer 6 (near) x3
1400 470 hours + LibriSpeech (simu) x1
3800 1400 hours + VoxCeleb 1&2 (simu) x1

In proposed framework, WavLM-Large module contains
24-layers transformer and 316M parameters as described
in [12]. The SR module based on ECAPA-TDNN apply 512
channels as described in [9] and get 192 dimensions x-vector.
The ASR module contains 12 encoder conformer layers and
6 decoder transformer layers as described in [16].

3.2. Results and analysis

Table 2 summarizes SAIS and state-of-the-art (SOTA) results.
E1 is Whisper results from official testing [17]. E2 is CHiME-
7 official baseline [17]. E3 represents SSLR-based ED ASR
resluts. It has a similar structure and training sets as E2. E4
uses Fbank features as input instead of SSLR in E3. E5 is
SA-ASR model described in section 2.1. It incorporates pre-
trained MFCC-based ECAPA-TDNN [22] for offline x-vector
extraction as speaker adaptation. E6 represents the proposed
SAIS. From the last column, SSLR (E3) has significantly im-
provement compared to Fbank (E4) due to its richer prior
knowledge. The proposed SAIS (E6) achieves 17.53% rel-
ative improvement in WERR compared with Whisper (E1).
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Table 2. WER results of SAIS method and current SOTA on
the development set of CHiME-7.
ID Model CHiME-6 DiPCo Mixer 6 Ave WERR
E1 Whisper [17] 30.90 34.50 21.20 28.80 —
E2 baseline [17] 32.60 33.50 20.20 28.80 0.00
E3 SSLR-ASR 31.66 34.46 17.86 27.99 2.81
E4 Fbank ASR 57.07 45.76 68.64 57.16 -98.47
E5 SA-SSLR-ASR 31.21 34.19 17.53 27.64 4.03
E6 SAIS (470 h) 25.74 29.66 15.85 23.75 17.53

Table 3. Analysis of SAIS method through ablation studies.
ID Model Ave WERR
E1 Whisper [17] 28.80 —
E7 Sharing SSLR+SP+Concat 25.63 11.01
E8 E7 w/o JFT 26.54 7.85
E9 Sharing SSLR+OT+Concat 24.77 13.99

E10 SAIS (HSGA 6 layers) 24.13 16.22
E6 SAIS (HSGA 12 layers) 23.75 17.53

We analyze the reasons behind significant gains obtained
by SAIS in Table 3. E7 represents sharing SSLR for both
SR and ASR. E8 lacks JFT strategy comparing with E7. E9
optimizes x-vector generation from SP to OT. E10 applies
HSGA to only half of encoder layers. We observe that shar-
ing SSLR (E7) achieves the highest gains, and without using
JFT (E8), the gains decrease significantly due to acoustic mis-
match. OT embedding (E9) provides 3.35% relative improve-
ment in WERR compared with SP (E7) due to more informa-
tive embedding. Applying HSGA to entire encoder (E6) has
higher gains than E10 due to stronger target speaker bias.

We analyze implicit speaker enhancement of SAIS in Ta-
ble 4. We focus on the recognition results of E5 and E6 for
CHiME-6 dev sets. It have S02 and S09 scenario. Since each
scenario consists of four speakers, N spk, N ∈ (1, 2, 3) in-
dicates the number of non-target speakers in current speech
segment, excluding the target speaker. The first row repre-
sents the percentage of total duration of non-target speakers in
the current segment, reflecting the degree of overlapping. The
last three rows indicate relative improvement of E6 compared
to E5. In every row, SAIS achieves better implicit speaker
enhancement performance as the degree of overlapping in-
creases. In every column, the benefits of SAIS diminish sig-
nificantly as the number of speakers increases. However, E6
maintains a lower WER compared to E5.

Table 5 shows the impact of different data sizes and struc-
tures on SAIS. E11 and E14 represent the results trained using
1400h and 3800h of Table 1, respectively. The weak labels
for VoxCeleb1&2 are generated from E11. E12 and E13 in-
volve expanding 12-layer encoder of E11 from 256 units to
384 and 512 units, respectively, but performance degradation
is observed on 1400h training sets. Inspired by [16], we also
introduce Conv-TasNet as speech enhancement (SE) module
in the SAIS frontend to improve noise robustness [16]. This
SE model is pretrained on LibriSpeech and MUSAN. E15
and E16 represent fine-tuning SAIS with fixed SE parame-

Table 4. Analysis of implicit enhancement of target speaker
in segments with varying speaker overlap on CHiME-6 DEV.

S02/S09 overlap 0-50% 50-100% 100-150% 150-200%

E5
1 spk 23.89 43.83 — —
2 spk 17.83 28.79 49.56 62.03
3 spk 17.98 23.93 34.44 53.68

E6
1 spk 19.54 33.55 — —
2 spk 14.86 23.07 38.38 46.51
3 spk 16.86 20.49 27.86 42.43

WERR
(E5/E6)

1 spk 18.21 23.45 — —
2 spk 16.66 19.87 22.56 25.02
3 spk 6.23 14.38 19.11 20.96

Table 5. WER results on CHiME-7 development set for dif-
ferent training sets and model architectures.

ID Model CHiME-6 DiPCo Mixer 6 Ave WERR
E1 Whisper [17] 30.90 34.50 21.20 28.80 —

E11 SAIS (1400 h) 25.56 29.19 15.37 23.37 18.85
E12 E11 (12x384) 26.63 30.08 17.16 24.29 15.66
E13 E11 (12x512) 29.20 31.80 16.88 25.96 9.86
E14 SAIS (3800 h) 24.28 29.09 14.45 22.61 21.49
E15 SE + E11 24.66 28.82 14.76 22.75 21.01
E16 SE + E14 24.75 27.77 13.43 21.98 23.68
E17 SE + E14 (JFT) 22.27 26.94 12.84 20.68 28.19
E18 USTC-NERCSLIP [23] 19.60 24.10 12.20 18.60 35.42

ters on different training sets. We also employ JFT strategy
on entire framework in E17, achieving 28.19% relative im-
provement in WERR compared with Whisper. E18 is the
USTC-NERCSLIP fusion system with four ASR models [23].
Among them, all models are optimized and trained based on
SAIS. This system achieves top rankings in CHiME-7 DASR.

4. CONCLUSIONS

This work aims to enhance the capability of implicit target
speaker enhancement in ASR. To achieve this, we propose
an efficient SAIS framework that optimizes joint SR and
ASR models for speaker-adaptive speech recognition. It con-
tributes in three aspects: 1) introducing SSLR for ASR input
features and online x-vector extraction, ensuring consistency
in acoustic scenarios of the two types of features. 2) opti-
mizing x-vector generation from SP to OT module, obtaining
more informative embedding. 3) proposing HSGA module,
applied in different encoders of ASR, to ensure sufficient tar-
get speaker bias from low-level to high-level representations.
In experiments, proposed method achieves 28.19% relative
improvement in WERR compared with official baseline on
dev sets. We observe implicit speaker enhancement capa-
bility in our approach more as the degree of speech overlap
increases. In CHiME-7 DASR, our approach also ensures the
USTC-NERCSLIP fusion system achieves top rankings.
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