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ABSTRACT
The development of quantum machine learning demonstrates
its quantum advantages over traditional deep learning, which
promises to discover new patterns on supervised classification
datasets. This work proposes a classical-to-quantum transfer
learning system based on the large-scale unsupervised pre-
trained model to demonstrate the competitive performance
of quantum transfer learning for synthetic speech detection.
We use the pre-trained model WavLM-Large to extract fea-
ture maps from speech signals, obtain low-dimensional em-
bedding vectors through classical network components, and
then jointly fine-tune the pre-trained model and classical net-
work components with a variational quantum circuit (VQC).
We evaluate our system on the ASVspoof 2021 DF task, and
the experiments using quantum circuit simulations show that
quantum transfer learning can improve the performance of the
classical transfer learning baseline on the task.

Index Terms— Quantum transfer learning, quantum ma-
chine learning, synthetic speech detection, variational quan-
tum circuit, pre-trained model

1. INTRODUCTION

Synthetic speech detection techniques are designed to secure
biometric systems built on automatic speaker verification
(ASV) technology from the threat of fake speech attacks
generated using text-to-speech (TTS) or voice conversion
(VC) systems [1]. Conventional systems perform poorly on
mismatched data due to the invisibility of synthetic speech
attacks in the wild and the lack of real speech variety during
training [2]. Transfer learning [3, 4] is considered as an excel-
lent approach to solve such problems by taking the knowledge
gained from generic data to a different data domain.

State-of-the-art synthetic speech detection methods usu-
ally use a large-scale unsupervised pre-trained model as a
front-end combined with a back-end classification network
for fine-tuning and substantially improving the generalizabil-
ity of the system to out-of-set data [5, 6, 7]. However, there
are still data privacy and security issues involved for the ap-
plication, and further research is difficult to go beyond the
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traditional deep learning framework to discover new patterns
in real and fake speech. Thanks to the introduction of quan-
tum machine learning (QML) [8], it is expected that these
problems can be solved by using quantum computing to cir-
cumvent classical computing technical limitations [9, 10].

Noisy-intermediate-scale-quantum (NISQ) devices are a
major hardware class of quantum computing devices which
show unique properties and empirical advantages in many ap-
plications using only a few quantum bits (5 to 100) [11]. For
example, projecting classical data into a high-dimensional
quantum feature space has been shown to have quantum ad-
vantages in many classification tasks [12, 13], and privacy
algorithms built on cloud quantum devices API provide data
isolation [10, 14]. Since current NISQ devices allow few
quantum bits, using classical-to-quantum transfer learning
[15] is a considered option in the present practical applica-
tion.

Quantum transfer learning was introduced by Xanadu
in [15], where they proposed a quantum transfer learning
paradigm using pre-trained models to extract embedding
vectors and then perform classification through hybrid quan-
tum neural network (QNN). It can efficiently process high-
dimensional input samples with any pre-trained deep neural
network, and successively process low-dimensional but in-
formative features with quantum circuits, which combines
the benefits of quantum machine learning with deep learning
models that have proven effective in practice.

Previous quantum transfer learning approaches usually
directly concatenate the embedding vectors generated by pre-
trained models with quantum networks. They rarely consider
using large-scale unsupervised pre-trained models to deal
with practical problems on some complex datasets. In par-
ticular, for speech pre-trained models, most of them do not
generate embedding vectors directly, such as Wav2vec [16],
WavLM [17] generating feature maps, and it is a problem to
process these feature maps to low-dimensional representation
as the input of quantum circuits.

Based on recent successes in acoustic modeling of quan-
tum circuits and quantum transfer learning [18, 19, 20], we
propose a quantum transfer learning system based on the
large-scale unsupervised pre-trained model to achieve quan-
tum advantages in synthetic speech detection task. In ourIC
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approach, we use the pre-trained model WavLM-Large [17]
to extract feature maps from the speech signal. The feature
maps are downscaled by the classical network component to
low-dimensional embedding vectors to fed into a variational
quantum circuit with learnable parameters. The quantum
component is updated jointly with the pre-trained model and
the classical network components for fine-tuning. Compared
with classical transfer learning systems for synthetic speech
detection, our proposed system can combine quantum ad-
vantages and the generalizability of unsupervised pre-trained
models to maintain a competitive experimental performance.

2. RELATED WORK

2.1. Quantum transfer learning algorithm

QML networks encode the input data with quantum bits and
learn parameterized quantum gate parameters. The expres-
siveness is measured by the local effective dimension, and it is
expected to have a quantum advantage over traditional learn-
ing methods for certain computational problems [21]. When
it comes to dimensionality reduction of classical inputs, re-
cent work by Qi et al. [22] further reveals that the characteri-
zation and generalization capabilities of VQC are enhanced as
the number of quantum bits used by VQC increases. This sug-
gests that quantum devices have great potential for future ap-
plications as the number of supported quantum bits increases.

Quantum transfer learning is an important technique that
enables putting quantum advantages into practice when quan-
tum devices are not yet mature enough. Qi et al. [18] trained
variational quantum circuit-based quantum neural network by
pre-trained CNN networks with fixed parameters to process
speech signals as embedding vectors, reducing the train-
ing difficulty of hybrid classical and quantum networks and
improving the performance of their baseline on the spoken
command recognition task. Yang et al. [19] used BERT and
stochastic quantum time convolution for vertical joint learn-
ing to obtain competitive results on text classification while
ensuring data isolation. However, it remains an open question
how the most practical large-scale unsupervised pre-trained
speech models in transfer learning can be combined with
quantum circuit backends.

2.2. Large-scale unsupervised speech pre-training model

In recent years, pre-trained models have attracted lots of at-
tention from academia and industry in the fields of natural lan-
guage processing and computer vision, while general speech
pre-trained models such as Wav2vec [16], WavLM [17] are
proposed in the speech field. Pre-trained models trained with
large-scale unsupervised data have powerful generalizability,
and only need to be fine-tuned on small-scale labeled data to
be applied on the corresponding downstream tasks [23].

Their powerful generalization ability is also of interest
to the field of synthetic speech detection. Wang et al. [5]

show that the generalization ability of synthetic speech detec-
tion systems can be significantly improved by introducing the
large-scale unsupervised pre-trained model as front-end com-
bined with fine-tuning of the back-end classification network.
How to better utilize the pre-trained front-end model for fine-
tuning has become an issue of interest.

3. METHOD

3.1. System overview

Fig. 1. The proposed quantum transfer learning system using
the large-scale unsupervised pre-trained model WavLM-large
for synthetic speech detection. The loaded pre-trained model
will update the parameters with the other parts.

We illustrate the architecture of the proposed quantum
transfer learning system for synthetic speech detection in Fig-
ure 1. We use WavLM-Large [17] as the pre-trained speech
model. The WavLM-based model consists of convolutional
neural networks and transformer encoders, and we use the
output of last transformer layer as the output of the pre-trained
model to extract the hidden feature map features zM×N from
the speech signals s1×T .

The quantum circuits accept only embedding vectors as
input, and we mimic the approach in classical transfer learn-
ing [5] by adding an embedding vector extractor between the
pre-trained model and the quantum circuits to transform the
feature maps to the embedding vectors. The feature maps
extracted by the large-scale unsupervised pre-trained model
usually has a large dimension N (N=1024 for WavLM-
Large). For the purpose of reducing the computational cost,
the feature map dimension is first downscaled to zM×N

4
by

a linear layer, and then the temporal information is extracted
through two Bi-LSTM layers. Here we add skip connection
to prevent the loss of information, and finally the embedding
vectors x1×4 are obtained by global average pooling and a
linear layer as the inputs of the 4-qubit variational quantum
circuit network. Quantum circuit measurements y1×4 are
output to the linear layer for processing into real or fake
binary classification results.
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3.2. 4-qubit variational quantum circuit network

A d-qubit quantum state |v⟩ =⊗d
i=1 |vi⟩ = |v1⟩⊗|v2⟩⊗· · ·⊗

|vd⟩ is associated with a 2d-dimensional vector in a Hilbert
space for v = [v1, v2, . . . , vd]

T ∈ Rd, where for a scalar vi,
the quantum state |vi⟩ is:

|vi⟩ = cos vi|0⟩+ sin vi|1⟩ =
[

cos vi
sin vi

]
. (1)

The network constructed by variational quantum circuits in
Figure 2 proposed in [24], consists of three parts: quantum
encoding, variational quantum circuits and measurement.

Fig. 2. A framework of 4-qubit variational quantum cir-
cuit network. The circuits in the dash square correspond to
the learnable variational quantum circuit layer with repeated
copies m.

First, we convert the vectors in Euclidean space to Hilbert
space by quantum coding. The framework of quantum encod-
ing constructs transformation relations between the classical
data input x = [x1, x2, x3, x4]

T and its quantum state |x⟩.
The encoding map E prepares each qubit in a balanced super-
position of |0⟩ and |1⟩ and then performs a rotation around
the y axis of the Bloch sphere parametrized by the classical
vector x, where H is the single-qubit Hadamard gate:

E(x) =

(
4⊗

k=1

(Ry (xkπ/2)H)

)
|0⟩⊗4. (2)

Next, we learn the linear variation between quantum states
and the entanglement of each quantum bit through the varia-
tional quantum layer. A variational quantum layer L consists
of a CNOT gate and learnable rotation gates Rx, Rx and Rz

which separately denote Pauli rotation X , Y and Z gates:

L(w) : |x⟩ → |y⟩ = K

4⊗
k=1

Rz (γk)Ry (βk)Rx (αk) |x⟩,

(3)
where K is an entangled unitary operation consisting of four
CNOT gates:

K = (CNOT ⊗ I1,4) (CNOT ⊗ I3,4)

(CNOT ⊗ I2,3) (CNOT ⊗ I1,2) .
(4)

The CNOT gate imposes quantum entanglement between any
two quantum wires and K ensures all quantum bits of the
quantum wires can be entangled [25]. The rotation angles

w = {αk, βk, γk|k = 1, 2, 3, 4} are trainable parameters for
Rx, Ry and Rz . A variational quantum circuit usually con-
sists of m variational quantum layers.

Finally by Z = diag(1,−1) Pauli matrix, we get the local
measurement for each quantum bit:

M : |y⟩ → y =


⟨y|Z ⊗ I ⊗ I ⊗ I|y⟩
⟨y|I ⊗ Z ⊗ I ⊗ I|y⟩
⟨y|I ⊗ I ⊗ Z ⊗ I|y⟩
⟨y|I ⊗ I ⊗ I ⊗ Z|y⟩

 . (5)

Given 4-dimensional inputs, a linear layer with hidden
size 4 will contain 16 learnable parameters, while the varia-
tional quantum layer contains only 12, involving fewer model
parameters. Moreover, compared with the linear layer, which
only learns linear relations in Euclidean space, the variational
quantum layer learns linear relations in Hilbert space, imply-
ing the possibility of discovering new patterns.

4. EXPERIMENT

4.1. Dataset and setup

We train the system using the training set of the ASVspoof
2019 LA database [26]. It contains real speech from the
VCTK database and fake speech data generated using 6 TTS
and VC systems. Data used for the training of TTS and VC
systems also comes from the VCTK database without over-
lap. We use the ASVspoof 2021 DF evaluation data as our
test set, which simulates scenarios that are very unfavorable
for synthetic speech detection systems, where most of the
faked and real samples use codec compression. Moreover,
because the ASVspoof 2021 DF evaluation data consists of
ASVspoof 2019, VCC 2018, and VCC 2020 [2, 27, 28],
there are many test samples coming from mismatched data
domains or generated by more diverse means of spoofing.
Testing the ASVspoof 2021 DF evaluation set provides a
better measure of the system’s generalization performance.
We use the officially recommended Equal Error Rate (EER)
as our evaluation metric [29], with a lower EER implying
better performance of the synthetic speech detection system.
Evaluation of the EER for our test set reflects the system’s
generalizability to invisible attacks and unknown domains.

We directly use the original speech training data for train-
ing. The input samples are cut into segments of 4 seconds
duration, without applying any other data augmentation and
speech signal processing techniques. Our model is built based
on Pytorch and Pennylane [30] is used to build the quantum
circuit part. We initialize the pre-trained front-end network
using the open-source WavLM-Large [17] model with about
316 million pre-trained parameters. Its outputs are feature
maps with 1024 hidden dimensions. We use the fine-tune
training strategy and the cross-entropy loss function. The
minimum batch size is set to 32, and the pre-trained front-
end uses a learning rate of 2 × 10−5, and the back-end and
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quantum circuit parts use a learning rate of 2 × 10−3, with
the learning rate decaying by a factor of 0.7 per epoch. We
train 10 epochs and select the model with the lowest cross-
validation loss for evaluation.

4.2. Experimental results

The quantum transfer learning system is based on Section
3 designed with one variational quantum circuit layers. We
design two classical transfer learning systems as for com-
parison. The first system which is also our baseline sys-
tem, directly removes the quantum circuit module. The
4-dimensional vector outputs of the embedding vector extrac-
tor are passed through a linear layer to produce classification
results, i.e., the quantum circuit part is replaced with an iden-
tity layer. The second system in which the quantum circuit is
replaced by a linear layer with hidden size 4 ensures that the
parameters of the quantum method are relatively unincreased
with respect to the classical method.

Table 1. EER (%) results for quantum transfer learning and
classical transfer learning comparisons on ASVspoof 2021
DF evaluation data.

Transfer learning Replacement EER(%)

Classical
Identity baseline 6.80

Linear: 4 → 4 6.94

Quantum VQC 5.51

Table 1 shows the experimental results of our above meth-
ods. There is no significant difference between the EER re-
sults of the two classical methods, while the EER of the quan-
tum method achieves absolute decline of 1.29% to our base-
line system. Further we visualize the 256-dimensional em-
bedding vectors from the penultimate layer of the embed-
ding vector extractor by the t-SNE [31] method. In Figure
3, We can see that the embedding representations of the quan-
tum and classical methods have different distribution patterns.
Based on these considerations, it is reasonable to assume that
quantum methods can bring performance gains and mine new
patterns on the synthetic speech detection task compared to
classical methods.

As we mentioned in Section 4.1, there are two data do-
mains in our test data. The ASVspoof part is usually consid-
ered as in-set domain while VCC part is considered as out-
set, and fake speech detection in VCC will be more difficult
than in ASVspoof. In Table 2, the quantum method improves
the classification accuracy of fake samples on different data
domains relative to the classical method. It indicates that
the quantum transfer learning method constructed based on
a large-scale unsupervised front-end can improve the gen-
eralization ability of the classical transfer learning method

(a) Classical (b) Quantum

Fig. 3. The t-SNE visualization results of the penultimate
layer outputs of the embedding vector extractor in the clas-
sical transfer method and the quantum transfer method. The
A07-A19 notation indicates the fake speech class generated
by different synthetic speech systems and bona notation indi-
cates the real speech in ASVspoof part of test set.

Table 2. Classification accuracy (%) of real and fake samples
in test data of ASVspoof and VCC parts under thresholds
corresponding to EERs of the baseline and quantum methods
in Table 1.

Transfer learning
ASVspoof VCC

Real Fake Real Fake

Classical 92.28 87.65 94.19 95.00

Quantum 96.09 89.62 90.67 96.07

while realizing the quantum advantage. On the other hand,
our method improves the classification accuracy of in-set real
samples but leads to performance degradation for out-of-set
real samples, implying that quantum circuits still have the risk
of overfitting when there are too few learning samples of real
class and few quantum bits used in quantum circuits.

5. CONCLUSION

In this paper, we propose a quantum transfer learning system
based on the large-scale unsupervised speech model WavLM-
Large for synthetic speech detection. We fine-tune the loaded
pre-trained model, classical network embedding vector ex-
tractor and quantum circuit jointly to improve classical trans-
fer learning baseline system and achieve quantum advantages.
Our experiments on the ASVspoof 2021 DF task demonstrate
the importance of quantum transfer learning for improving
generalization over unseen domains and discovering new pat-
terns different from classical methods.
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