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Abstract—In this study, we propose a novel approach to
sound event localization and detection (SELD) by using sound
separation (SS) models to tackle key challenges of a high
percentage of overlapped segments between sound events and
imbalanced distributions of sound event classes in real-world
scenarios. Specifically, we introduce class-dependent SS models to
deal with overlapping mixtures and extract features from the SS
model as prompts for SELD of a specific event class. The proposed
SS-SELD method enhances the overall performance of the SELD
system, resulting in improved accuracy and robustness in real-
world scenarios. In contrast to many other classification methods
that can be affected by the interference events, the proposed class-
dependent SS framework enhances the overall performance of the
SELD system, resulting in improved accuracies and robustness in
real-world scenarios. When evaluated on the Sony-TAu Realistic
Spatial Soundscapes 2023 (STARSS23) dataset, we demonstrate
significant improvements in both sound event detection (SED)
and direction-of-arrival (DOA) estimation. Our findings suggest
that sound separation is a promising strategy to enhance the
performance of SELD systems, particularly in scenarios with
high overlaps between sound events and imbalanced distributions
of event classes. In addition, our proposed framework had
contributed building to our champion systems submitted to the
Challenge of DCASE 2023 Task 3.

I. INTRODUCTION

Sound event localization and detection (SELD) is an essen-
tial task in various audio processing applications, including
surveillance systems [1]–[3], environmental monitoring [4],
[5], and augmented reality [6], [7]. It was initially introduced
as Task 3 in the Detection and Classification of Acoustic
Scenes and Events (DCASE) 2019 Challenge [8], [9]. The
goal of SELD is to accurately estimate the temporal onsets
and offsets, spatial locations, as well as categories of sound
events simultaneously within an audio recording. Over the past
few years, significant advancements have been made in SELD
techniques, driven by the increasing demand for robust and
efficient sound analysis algorithms.

SELDnet was proposed to map the input to the sound
event detection (SED) and the 3-D Cartesian coordinates of
direction-of-arrival (DOA) with two separated branches [10],
[11]. In this paper, we use SEDDOA to replace the two-
branch network. Shimada et al. introduced an output format
called Activity-coupled Cartesian DOA (ACCDOA) for SELD

[12]. ACCDOA associates event activity with the length of
the Cartesian DOA vector, enabling the solution of SELD
task without the requirement of separate branches [13], [14].
However, ACCDOA assumes that each event occurs only once
within a frame. When multiple sources of the same event
class exist in different directions at the same time, ACCDOA
becomes unreliable, leading to angular errors. To address
this issue, multi-ACCDOA was proposed [15], which adds
a track for concurrence of sources in the prediction results,
thereby yielding more accurate localization results. Wang et
al. employed data augmentation techniques and performed
model fusion with the previous SELD methods, achieving
the state-of-the-art performance and ranking the first place
in the DCASE 2022 Task 3 Challenge [16]. While SELD
models have achieved impressive performance in real-world
scenarios, obtaining excellent results in the DCASE 2019-
2022 Task 3 Challenge series [8], [9], [13], [17], they face
challenges due to the unbalanced distribution of sound events
and severe overlapping in real-world scenes. As a result, pure
SELD classification systems struggle to effectively model all
sound event classes. Therefore, we aim to explore a frontend
approach to enable the SELD system to better model each
individual class. It has been proven that the separation method
is effective in weakly labeled sound event detection (SED)
tasks [18]–[20]. However, the effectiveness of sound separation
in SELD tasks has been less extensively studied. In DCASE
2022, Jin-Young and his team attempted to use separation as a
branch to handle SED information, ultimately merging it with
DOA information for further processing [21]. However, such
an approach led to the waste of spatial information contained in
the 4-channel recordings within the SED branch and resulted
in SED information relying entirely on the performance of
separation, which could easily lead to unstable results.

In this paper, we introduce a new framework that employs
sound separation (SS) as the front-end of SELD model, named
SS-SELD. By combining the separated sound with the original
mixture, better results can be achieved compared to the tradi-
tional SELD methods which only use the mixture. We evaluate
our approach on the Sony-TAu Realistic Spatial Soundscapes
2023 (STARSS23) dataset [22] and demonstrate significant
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improvements in both SED and DOA estimation. Our findings
suggest that sound separation is a promising strategy to en-
hance the performance of SELD systems. Besides, the newly
proposed methods made a great contribution to our system
ranking the first place in the DCASE 2023 Task3 Challenge.

II. PROPOSED METHODS

In real-world scenarios, sound events often exhibit a high
degree of overlap, as depicted in Table I. It can be observed
that all sound events exhibit an overlap rate of over 50%,
with certain classes such as clapping and laughter having
overlap rates exceeding 80%. The Bell class, in particular,
has a 100% overlap rate, indicating that all instances of this
class overlap with other sound events in the dataset. Traditional
SELD models focus on classification-based approaches, facing
difficulties in adequately modeling these overlapping events.
Building upon this foundation, we propose a novel SS-SELD
method. Fig.1 illustrates this new framework.

A. Sound Separation

The newly proposed method consists of two main com-
ponents. The first introduced component of SS-SELD is the
SS method as depicted by the blue dashed box in Fig.1. SS
illustrates the inference process of the separation model. As
mentioned earlier, due to the uneven distribution of sound
events, some events have short durations. Therefore, we sought
to enhance the richness of the data by sourcing the required
sound events from open-source datasets. Given a mixed audio
signal x(t), where t is the sample index in time domain. x(t)
contains target sound event s(t) and multiple Interfering sound
classes x1(t), · · · , xm(t):

x(t) = s(t) + · · ·+ xm(t), m = 1, . . . , n (1)

where n represents the number of events in the mixed audio.
The separation process is performed as follows:

fθ(x(t)) = ŝ(t) (2)

Here, fθ(·) denotes the separation model, θ represents the
model parameter set. ŝ(t) is the extracted sound. In this pro-
cess, we train a widely used time-domain model architecture,
namely, Conv-TasNet [23] on the dataset simulated from both
STARSS23 and Audioset. We first segment data into single-
event segments based their labels, which are then added in the
time domain to generate mix audios. Simulating training data
for the sound separation model also considers the proportion of
overlap in natural conditions. The separation model is capable
of filtering out the mixed audios and providing separated event
distributions, which can serve as guidance for further analysis
and modeling. It is worth mentioning that due to significant
differences between different event classes, we constructed
a dedicated training set for each class with that class as
the target. This allows us to achieve class-dependent sound
separation. This approach effectively mitigates detection errors
of low-intensity classes with significant overlap.

During the fusion process of SS-SELD, the mixture x(t)
will be first passed through Audio Channel Swapping (ACS)

to obtain augmented signal x′(t). Then for each class, x′(t)
will be sent into the separation model to obtain separated sound
ŝ(t) that only contains the specific class of interest. Afterward,
audio signal ŝ(t) and x′(t) undergo feature extraction modules
separately. Slm(k, l) denotes log Mel-spectrogram extracted
from ŝ(t), Xlm(k, l) and Xiv(k, l) denote log Mel-spectrogram
and intensity vectors extracted from x′(t), respectively. These
features are concatenated to train the SS-SELD model, result-
ing in output O for detection and localization. We can represent
the entire process using the following equations, corresponding
representations in Fig.1:

x′(t) = ACS(x(t)) (3)

ŝ(t) = SS(x′(t)) (4)

Slm(k, l) = FE1(ŝ(t)) (5)

{Xlm(k, l), Xiv(k, l)} = FE2(x′(t)) (6)

O = SELD(Slm(k, l), Xlm(k, l), Xiv(k, l)) (7)

where ACS(·), SS(·), FE1(·), FE2(·) and SELD(·) denote the
audio channel swapping, sound separation, separated sound
feature extraction, mixed sound features extraction and SELD
predicting operations, respectively. The final output O contains
both frame-level sound event labels and the angle information.

B. Sound Event Localization and Detection

Fig.1 (b) illustrates the training process of the traditional
SELD model. Mixture from STARSS23 undergo the data
augmentation technique ACS [24] to increase the data size by
approximately 8 times. The augmented mixture are then fed
into the feature extraction module, which extracts log Mel-
spectrogram containing event label information and intensity
vector features containing spatial location information. These
features are used to train the SELD which follows a similar
principle to the traditional SELD approach, consistent with
the SELD methodology employed in our winning solution for
DCASE 2022 TASK 3. For more detailed information, please
refer to reference [16].

III. EXPERIMENT SETUP

We evaluate SELD on the official development set of the
DCASE 2023 Task 3, which is collected in realistic spatial
soundscapes [22]. The set totals 168 recording clips (about
9 hours), which can be split into a training part (dev-train,
90 clips) and a testing part (dev-test, 78 clips) according
to the official set. We have utilized labeled segments of
individual sound events from Audioset [25], in addition to
the DCASE 2023 Task 3 dev-train data, to construct training
data for sound separation. The total duration of single-event
segments amounts to approximately 39.42 hours. Out of this
duration, 6.21 hours are obtained from the STARSS23 dev-
train dataset, while the remaining 33.21 hours are sourced from
the Audioset dataset. For each sound event class, we utilize its
corresponding single-event segments as targets and treat the
remaining sound events as noise. During the data simulation
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TABLE I
OVERLAPPING PERCENTAGE (%).

Woman Man Clap Telephone Laughter Domestic Footsteps Door Music Musical Water Bell Knockspeaking speaking sounds instrument tap

Overlap 59.98 54.25 83.19 51.89 84.79 69.56 54.79 66.77 67.20 58.62 79.79 100.00 82.22

Fig. 1. Framework of the proposed SS-SELD system. Note that (a) in the blue dashed box represents the inference process of SS. while (b) in the red dashed
box represents the inference process of the SELD model. In the data simulation part, the data from the dev-train set and open-source dataset are split into
single-event segments based on their labels. Once the target class is determined, other classes are considered as interference, and simulation is carried out
accordingly.

phase, we overlay the target sound event segments with other
sound event segments in the time domain to create mixed
audio. This allows us to simulate approximately 40 hours of
data, which is used for training the corresponding separation
model. All recordings from STARSS23 are 4-channel with a
24 kHz sampling rate. Similarly, single-channel speech from
Audioset are also downsampled to 24 kHz. There are 13 sound
classes in total. We apply the short-term Fourier transform
(STFT) with 40 ms frame length and 20 ms frame hop on 4-
channel first-order Ambisonics (FOA) [26] audios to extract
log Mel-spectrogram. We concatenate them to get the 11-
channel feature at each frame. Considering its outstanding per-
formance in real-world scenarios in recent years, the separation
models is trained on ConvTasNet architecture and the model
parameter settings can be referenced in [23].

For the SS-SELD training, the data size can be augmented
to 8 times by applying the ACS strategy, which results in
about 192 hours of data. We use the ResNet-Conformer as our
main model architecture [27]. The model employs 8 attention
heads, with input, key, and value vectors having dimensions
of 256, 32, and 32, respectively. It consists of 8 Conformer

layers. The optimizer used is Adam, and a warm-up learning
schedule is employed with a maximum learning rate of 0.001.
Batch-size is set to 32. The training process is conducted for a
maximum of 180,000 steps (which is around ). All experiments
are conducted on a NVIDIA Tesla V100 Graphic Card-32GB
GPU.

All methods are evaluated using SELDscore [28], which is
calculated as follows:

SELDscore =
ER20◦ + (1− F20◦) + LE′

CD + (1− LRCD)

4
(8)

LE′
CD =

LECD

π
(9)

where ER20◦ and F20◦ are location-dependent error rate and
F-score when the spatial error is within 20°. Note that the
F20◦ , LECD and LRCD are calculated through macro-averaging
follow the official definition.

IV. RESULTS AND ANALYSIS

The dev-train split of the official development set of the
DCASE 2023 Task 3 is used for training the SELD model as
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TABLE II
EXPERIMENTAL RESULTS FOR DEVELOPMENT SET OF DCASE 2023 TASK

3 BASELINE AND SOME SELD METHODS, AS WELL AS THE PROPOSED
SS-SELD METHOD. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑ SELDscore ↓

Baseline-FOA [22] 0.57 0.30 21.60 0.48 0.478
SEDDOA 0.41 0.59 14.05 0.70 0.304

Multi-ACCDOA 0.44 0.58 13.75 0.74 0.303
ACCDOA 0.42 0.59 13.72 0.72 0.300
SS-SELD 0.40 0.64 13.40 0.74 0.279

well as the newly proposed SS-SELD framework. The dev-test
split is used to validate the performance of the models.

Table II shows the overall experimental results of the
proposed method for development dataset. “ACCDOA”, “SED-
DOA” represent the ACCDOA- and SEDDOA-based modeling
method, where SEDDOA adopts a two-branch (SED and
DOA) approach for SELD modeling. “Multi-ACCDOA” rep-
resents the multi-ACCDOA-based method. SS-SELD denotes
the proposed SELD model with SS front-end, with the same
output format as SEDDOA. As shown in the table, each
proposed single model outperforms the two baseline systems
by a large margin. It can also be observed that compared to
the baseline, traditional SELD models (SEDDOA, ACCDOA,
Multi-ACCDOA) exhibit a decrease of approximately 0.18 in
SELDscore, dropping from 0.478 to around 0.300. Despite
attempting to use more data and iterative optimization, there
was no significant improvement in the performance of the
SELD models. However, with the assistance of the separation
method, our SS-SELD system further reduces SELDscore to
0.279, breaking through the bottleneck around 0.30 for SELD
performance. Additionally, the results of the ER20◦ and F20◦

metrics demonstrate that the inclusion of the separation method
significantly improves the model’s performance in the detec-
tion aspect. As the localization results rely on the accuracy of
the detection, the introduction of separation indirectly enhances
the localization performance, leading to improvements in LECD
and LRCD as well.

Furthermore, we present the results for each individual class
as shown in Table III. It can be observed that the separation
method achieves significant improvements in the majority of
classes, especially for classes like ‘class11’ (i.e., Bell). These
classes have short durations within the entire test set but
poss distinct features. The separation method effectively distin-
guishes them from other classes. However, for the class Water
tap, the separation method is ineffective. Through specific
analysis, we discovered that Water tap sounds are often low
in volume, distant from the microphones (the official dataset
provides auxiliary video information, but it is not allowed to
be used during the testing process in the Audio-only track.
Therefore, we only utilized the video information for analysis
purposes.) More importantly, there exists interference noise
in the test set that closely resembles the sound of Water
tap. This makes it challenging for the separation model to
accurately isolate the target Faucet sounds, thereby misleading

Fig. 2. Comparison of spectrograms before and after sound separation, where
the colored rectangular bars at the top represent temporal event labels. The
target class in this case is laughter. The model is able to preserve the laughter
while effectively removing other sounds such as music.

the training of the subsequent SS-SELD model.
Fig.2 illustrates the spectrogram comparison of the input

mixture before and after separation. The colored rectangular
tags at the top represent different sound events, with laughter
being the target class in this example. The white regions
represent the target sound event, which is Laughter. It can be
observed that the input mixture contains background ‘class 8’
(Music) with high energy in the low-frequency range through-
out the entire audio segment, as well as overlapping conversa-
tions between different speakers (‘class 0’ and ‘class 1’, i.e.,
Female speaking and Male speaking), and occasional instances
of bell sounds. After passing through the separation model, the
target class, laughter, is preserved completely while effectively
removing the background music and other interfering sound
events. Additionally, in the first white rectangular region,
‘class 4’ (Laughter) in the original mixed audio is almost
completely masked by ‘class 8’ (Music). This would cause
significant interference for the laughter class in the SELD
methods. However, after applying the separation process, it
can be observed that the music sound is almost completely
removed, allowing the laughter to be clearly revealed. This
ensures ‘class 4’ can be detected more accurately. All of the
above indicate that the application of the separation model
can eliminate non-target classes with high energy, allowing
the extraction of target classes that may have been masked
by other sounds with lower energy. This provides a cleaner
reference for the SELD model.

In order to analyze the performance of the model more
comprehensively, we visualized the SED and DOA estima-
tion, presented in Fig.3. The horizontal axis in all subplots
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TABLE III
SELDscore COMPARISON BETWEEN SELD SYSTEM AND THE PROPOSED SS-SELD METHOD OF ALL 13 CLASSES FOR DEVELOPMENT DATASET. THE

BETTER RESULTS ARE HIGHLIGHTED IN BOLD.

Woman Man Clap Telephone Laughter Domestic Footsteps Door Music Musical Water Bell Knockspeaking speaking sounds instrument tap

SELD 0.243 0.231 0.254 0.345 0.377 0.341 0.458 0.318 0.241 0.257 0.276 0.338 0.278
SS-SELD 0.227 0.217 0.231 0.313 0.359 0.303 0.421 0.282 0.236 0.254 0.314 0.248 0.244

Fig. 3. The visualized results comparing SELD and SS-SELD, with the
two columns representing the detection results and azimuth angle results,
respectively. Different colors represent different events. The horizontal axis
represents time (s) for all subplots. The vertical axis in the left column
represents event class index, while the vertical axis in the right column
represents angles in degrees (°).

represents time in seconds, while different colors represent
different sound events. The first column represents the SED
results, where the vertical axis represents 13 sound event
classes. The occurrence of a color indicates the presence of the
corresponding sound event at that time. The second column
represents the DOA results. It is worth mentioning that the
presented information pertains to the azimuth angle. The trend
in the elevation angle is similar to that of the azimuth angle. To
avoid clutter and congestion in the figure, the elevation angle
information is not shown. The azimuth angle ranges from -
180° to 180°, illustrating the relative angles of sound events
with respect to the origin of the microphone array. The first row
represents the ground truth results, while the second and third
rows represent the results of SELD and SS-SELD, respectively.
From the figure, it can be observed that SS-SELD exhibits a
significant improvement over SELD in the ‘class 5’ (light blue
line, Domestic sounds), as shown in the dashed boxes. SELD
almost entirely missed the home-related sounds, thus failing
to provide angle information for this class. In contrast, SS-
SELD can detect the majority of these sounds and accurately
provide angle information. This further demonstrates that our
SS-SELD not only enhances the model’s detection capability
but also brings improvements in localization performance.

V. CONCLUSIONS

In this study, we explored the effectiveness of the sound
separation method in sound event localization and detection

task. By using a separation model as a front-end to obtain
separated audio for each event class, we were able to ex-
tract the features of both the sound event mixtures and the
separated sound. The combined SS-SELD model trained on
these features effectively improved the performance of single
SELD model. In future work, we will continue to explore
more effective and universally applicable separation strategies
to address the existing issues and enhance the performance of
the SELD model.
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