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A B S T R A C T

We develop two improvements over our previously-proposed joint enhancement and separation (JES) frame-
work for child speech extraction in real-world multilingual scenarios. First, we introduce an iterative adaptation
based separation (IAS) technique to iteratively fine-tune our pre-trained separation model in JES using data
from real scenes to adapt the model. Second, to purify the training data, we propose a dynamic mask separation
(DMS) technique with variable lengths in movable windows to locate meaningful speech segments using a
scale-invariant signal-to-noise ratio (SI-SNR) objective. With DMS on top of IAS, called DMS+IAS, the combined
technique can remove a large number of noise backgrounds and correctly locate speech regions in utterances
recorded under real-world scenarios. Evaluated on the BabyTrain corpus, our proposed IAS system achieves
consistent extraction performance improvements when compared to our previously-proposed JES framework.
Moreover, experimental results also show that the proposed DMS+IAS technique can further improve the
quality of separated child speech in real-world scenarios and obtain a relatively good extraction performance
in difficult situations where adult speech is mixed with child speech.
1. Introduction

1.1. Child speech processing and challenges

Processing child speech is a crucial diagnostic tool for detecting
early childhood diseases and understanding the intentions of children
who lack language expression abilities (Gilkerson et al., 2008; Wang
et al., 2018, 2020; Yeung et al., 2021). In recent decades, this topic has
attracted attention from researchers in academic fields such as devel-
opmental psychology (Sattorovich, 2022) and cognitive science (Slobin,
2021), as well as in application domains such as diagnosing underlying
language disorders and measuring intervention effects (Kohnert et al.,
2020; Hus and Segal, 2021).

In 2008, the Language Environment Analysis (LENA) Foundation
launched a software tool (Gilkerson et al., 2008) that was trained on
a 150-h, hand-annotated dataset using Mel Frequency Cepstral Coef-
ficients (MFCC) features (Godino-Llorente et al., 2006) and Gaussian
Mixture Models (GMM) (Reynolds, 2009). The LENA tool analyzes
children’s language environments and has significantly impacted the
field of child speech processing. However, its high starting cost of at
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least US $5000 makes large-scale implementation challenging. In recent
years, there has been a surge of efforts in child-focused recordings
and related research. A new corpus, called Tong, which documents
language behaviors and monitors children’s continuous development,
was published in Xiangjun and Yip (2018). Although this corpus has
attracted widespread attention and aims to investigate the influence of
environmental factors on language behavior, access to the Tong corpus
may be restricted to researchers affiliated with specific institutions,
potentially limiting its widespread use within the research community.
Tang et al. (2019) studied the challenges that language learning poses
to children as the phonological environment changes. Despite the re-
searchers providing open-source access, the study primarily focuses on
the Mandarin tone sandhi process, limiting the generalizability of the
findings to other phonological alternations or languages.

Open-source access and a relatively large volume of data are es-
sential for research advancement. Established in 1984, the Children’s
Language Data Exchange System (CHILDES) and its database-formatted
counterpart, childes-db (Sanchez et al., 2019; MacWhinney and Snow,
1985; MacWhinney, 1996, 2000, 2001, 2014) provide a large and
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diverse collection of language data, making it an invaluable resource
for researchers studying child language acquisition and development
across various languages and sociocultural backgrounds. It was also
used in the ADReSS challenge at INTERSPEECH 2020 (Luz et al.,
2020) to explore automatic recognition methods of spontaneous speech
for Alzheimer’s patients at different ages, with childs-db included.
Although CHILDES has been a pioneer in disseminating large-scale
datasets about child speech behaviors, transcripts in CHILDES may
not always be in a standardized format or may require additional
processing, such as format conversion, cleaning, annotation, or parsing.
This can be time-consuming for researchers and may create challenges
in data analysis and comparison.

In Lyakso et al. (2019), a Russian phonetic database, AD-Child.Ru,
was presented, which contains phonetic data of children aged 4 to
16 accompanied by detailed records. Researchers revealed the devel-
opment of correlations between language uniqueness and differences
in children with autism spectrum disorder on this dataset in Lyakso
and Frolova (2020). AD-Child.Ru was also used to create an effi-
cient tool for the semi-automatic detection of axial spondylopathy
(axSpA) in patients with bone marrow edema lesions (Kucybała et al.,
2020). However, the generalizability of the findings and applications
developed using this corpus to other languages and cultures is un-
certain, as the dataset is specifically a monolingual study of Russian-
speaking children. Indeed, for various reasons, speech enhancement
and separation have been proven to be more challenging in multilin-
gual scenarios (Watanabe et al., 2017; Zhou et al., 2018). Some of
the reasons include the increase in acoustic variability due to multi-
ple languages and language-specific noise characteristics (Jansen and
Van Durme, 2011; Delcroix et al., 2015), the complexity of model train-
ing (Hershey et al., 2016a), and the lack of resources for low-resource
languages (Chen et al., 2020).

In Wang et al. (2020), we proposed a child speech extraction
system using joint speech enhancement and speech separation (JES)
in real-world conditions on BabyTrain (Lavechin et al., 2020), a mul-
tilingual real-scene large dataset. Using speech enhancement as the
pre-processing for speech separation, the joint system leads to a prelim-
inary performance improvement in child speech extraction compared to
direct-mapped binary classification networks. Nevertheless, JES treats
BabyTrain as a whole dataset in the real-world scenario and does not
fully exploit its multilingual potential across different subsets. There-
fore, we take a deeper look at it in this paper. Since the work of this
paper is based on (Wang et al., 2020), we will provide a more detailed
introduction to the scheme and the BabyTrain dataset in Section 2.

These children’s datasets have attracted significant interest in var-
ious fields and led to some novel technical approaches. However, the
processing of child speech faces numerous difficulties. Firstly, most of
the recordings are collected from devices worn by children throughout
the day. As a result, these recordings often contain a large number
of non-speech vocalizations, such as crying, snoring, and screaming.
Additionally, adults play crucial roles as participants and companions
in children’s living environments. Consequently, child speech is often
accompanied by adult speech, and many adults even imitate children’s
voices. Such speech mixtures present considerable challenges for re-
searchers. To address these challenges, more advanced voice signal
front-end processing technology is needed.

1.2. Speech enhancement and separation techniques

Enhancement and source separation are two key front-end signal
processing techniques. Speech enhancement can be used to suppress
background noise, while speech separation aims to separate target
speech from a speech mixture known as the ‘‘cocktail party’’ prob-
lem (Cherry, 1953; Arons, 1992; Haykin and Chen, 2005; Bee and
Micheyl, 2008). These techniques have led to a series of cutting-edge
applications in automatic speech recognition (ASR) (Demir et al., 2012;
2

Kanda et al., 2019), sound event detection (SED) (Heittola et al., 2011;
Kong et al., 2018; Turpault et al., 2020), and other areas such as call
customer service channels (Rustamov et al., 2019), multi-speaker meet-
ing minutes (Raj et al., 2021), and target instruction extraction of smart
speakers in domestic settings (Ling et al., 2021). Speech enhancement
and speech separation methods have undergone a long period of devel-
opment. Before the advent of deep learning methods, the non-negative
matrix factorization (NMF) method has been the mainstream speech
separation method (Vincent et al., 2014; Virtanen et al., 2015; Wood
et al., 2017) and a series of related technologies have been derived from
NMF. In Wood et al. (2017), by combining unsupervised dictionary
learning of non-negative matrix factorization with spatial localization
using the generalized cross-correlation method, a flexible blind source
separation algorithm called GCC-NMF was proposed and demonstrated.
The deep NMF method was introduced in Le Roux et al. (2015) and
shown to be competitive with deep neural networks on the 2nd CHIME
Speech Separation and Recognition Challenge corpus (Vincent et al.,
2013).

The above traditional algorithms have achieved significant results
in speech enhancement and separation tasks. However, the advan-
tages of deep learning have allowed it to quickly replace traditional
algorithms in many artificial intelligence fields, including the speech
signal processing area, leading to the emergence of various speech
separation methods. A joint deep neural network and recurrent neural
network optimization system was proposed in Huang et al. (2014) and
evaluated on the TIMIT speech corpus (Garofolo et al., 1993b). Com-
pared to NMF models, this system achieved approximately 3.8–4.9 dB
signal-to-interference ratio (SIR) gain while maintaining better source-
to-distortion ratio (SDR) and source-to-artifact ratio (SAR) (Green-
berg et al., 1993; Vincent et al., 2006; Emiya et al., 2011; Le Roux
et al., 2019). In recent years, transformers have become popular
and achieved state-of-the-art (SOTA) performances in many artifi-
cial intelligence fields. In Subakan et al. (2021), the transformer-
based SepFormer model was applied to the standard WSJ0-2MIX and
WSJ0-3MIX datasets, obtaining 22.3 dB and 19.5 dB SI-SNR gains.
Recent research on deep learning-based speech separation has also
demonstrated that time-domain methods outperform traditional time–
frequency-based methods on some simulated data. In Luo and Mes-
garani (2019), a fully convolutional end-to-end temporal audio sepa-
ration deep learning framework (Conv-TasNet) was proposed, which
significantly outperformed previous time–frequency masking methods
in separating two-speaker and three-speaker mixed speech (Kavalerov
et al., 2019; Ditter and Gerkmann, 2020).

Despite the continuous emergence of new network structures, re-
current neural networks (such as RNN, LSTM, GRU, and Bi-LSTM),
with their inherent advantages in time series modeling, have long
dominated sequence-to-sequence tasks. Among them, the representa-
tive LSTM has been widely used in sequence modeling and has proven
to be very effective on commonly used datasets such WSJ0 (Garofolo
et al., 1993a; Hershey et al., 2016b), AISHELL corpus (Bu et al.,
2017), TIMIT (Garofolo et al., 1993b), and CHIME series challenges’
datasets (Vincent et al., 2016; Barker et al., 2018; Watanabe et al.,
2020). However, the vast majority of researches focus on simulation
data. In Wang et al. (2018), we validated the excellent performance
of the progressive learning strategy for child speech separation on
simulated data. Progressive learning can bring certain improvements to
speech extraction, but it is challenging to alleviate some complex noises
in the audio, especially in real-world scenarios with complex audio
conditions. As for real data, the use of Conformer instead of recurrent
neural networks for the separation model introduced significant perfor-
mance gains in both word error rate (WER) and speaker-attributed WER
in Chen et al. (2021). In Shi et al. (2020), a common strategy called
Speaker-Conditional Chain Model was proposed to process complex
speech recordings. With the predicted speaker information from the
whole observation, the proposed model has been proven to help solve
the problem of conventional speech separation and speaker extraction

for multi-round long recordings under real scenarios. Despite some
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Table 1
Description of data in the BabyTrain (Lavechin et al., 2020) corpus. As shown in the leftmost column, the child-centered subsets cover a wide range of conditions, including various
scenarios in different languages. The ‘‘Tot. Dur.’’ column gives the total duration of the corresponding subset. The next few columns denote the accumulated duration of different
speakers, including KCHI: key children; OCH: other children; MAL: male adults; FEM: female adults; UNK: unknown speakers.

Subset Language Tot. Dur. (h) KCHI (h) OCHI (h) MAL (h) FEM (h) UNK (h) Quality Multi-scenarios Overlapped

War2 English(US) 0.83 0.23 0.00 0.00 0.00 0.15 Fair ✗ ✓

Paido Greek, Eng., Jap. 40.13 10.93 0.00 0.00 0.00 0.00 Good ✗ ✗

Vanuatu Mixture 2.48 0.20 0.08 0.08 0.15 0.02 Poor ✓ ✓

Tsimane Tsimane 9.50 0.62 0.38 0.18 0.47 0.00 Poor ✓ ✓

Namibia Ju|’hoan 23.73 1.93 1.53 0.68 2.37 1.02 Fair ✓ ✓

Lena_lyon French 26.85 4.55 1.23 1.15 5.03 1.00 Poor ✓ ✓

Aclew_starter Mixture 1.50 0.17 0.08 0.10 0.33 0.00 Fair ✗ ✓
completed and ongoing work, there is still a lack of relevant research
in real-world scenarios.

In recent years, many unsupervised adaptation techniques that typi-
cally utilize the pseudo-labeling methods have shown promising results
in various fields, including text classification (Liang et al., 2017; Xie
et al., 2020), and natural language understanding (Liu et al., 2021).
Pseudo-labeling methods also lead to various real-world speech process-
ing applications, such as speaker diarization (Takashima et al., 2021),
and speech recognition (Park et al., 2019; Laine and Aila, 2016).

Here, we first propose a new iterative adaptation based separation
(IAS) framework based on pseudo-labeling methods. The proposed IAS
framework is an application of pseudo-labeling and contains a speech
enhancement model and a single-output pre-trained speech separation
model which only extracts child speech. However, the pseudo labels
often contain errors which will mislead the adapted model. In addition,
as discussed above, child speech often tends to be present in extremely
complex speech scenes, so simply adopting a fine-tuning strategy may
not yield remarkable results. We find that during the iterative process,
there was still a lot of noises that could not be effectively removed.
Therefore, we hope to further explore some methods to locate children’s
speech in complex acoustic environments and adopt more stringent
suppression methods for other parts. Accordingly, a dynamic mask
based separation (DMS) framework following IAS (DMS+IAS) is further
proposed. By adjusting SI-SNR in Luo and Mesgarani (2019), a variable
length-position dynamic mask can be obtained and used to mask the
noise regions, alleviating the interference of errors in pseudo-labels.
The results in Section 4 show that IAS and DMS+IAS can achieve better
results than JES, with DMS+IAS attaining the best results on all selected
subsets.

The remainder of this paper is organized as follows. In Section 2,
we describe the BabyTrain corpus and review our previous works. In
Section 3, we elaborate on the proposed iterative adaptation and dy-
namic mask based separation techniques to improve JES. Experimental
results with detailed analyses are presented in Section 4. Finally, we
conclude our findings and discuss some future work in Section 5.

2. BabyTrain corpus and prior work

As mentioned in Section 1, there has only been a small collection of
child-centric speech corpora in recent years. However, most of them are
monolingual or single-speaker, and the corresponding acoustic scenes
are usually narrow, making it difficult to address various complex
scenes in the real world. In our previous study (Wang et al., 2020),
we have proposed some front-end techniques based on the real-world
multilingual BabyTrain corpus, which offers various complex scenes.
The two techniques proposed in this paper are derived from our previ-
ous works, so we first introduce the BabyTrain dataset and review some
previously-proposed algorithms next.

2.1. Data analysis

BabyTrain is a large corpus containing several child-centered sub-
sets ranging in age from 1 month to 5 years old (Bergelson et al.,
3

2017; Canault et al., 2016; VanDam et al., 2016; Pretzer et al., 2019).
Each recording is sampled at 44.1 kHz with a human transcription. It
contains 245-h recordings of various adverse environments in differ-
ent languages. Its sufficient amount of comprehensive data makes its
recording style cover almost all typical life scenes, including daily life,
indoor, outdoor, party scenes, etc. Table 1 gives a broad description of
the selected subsets of BabyTrain. The total duration of the selected part
is 105.02 h, which are sufficient to demonstrate the effectiveness of our
method in multilingual real-world scenarios. Some subsets even contain
recordings belonging to different scenes, such as two-person conversa-
tions, multi-person gatherings, etc. Moreover, the recording equipment
is worn by children with friction and obscuring by clothing, resulting in
poor audio quality in most parts of each recording, making it difficult
for conventional front-end processing. To visually demonstrate that
the BabyTrain utterances cover a wide range of acoustic scenes, we
plot spectrograms of three samples in Fig. 1. Fig. 1(a) indicates a
recording of a sleeping child snoring, while Fig. 1(b) represents the
audio of a father singing with his children at a family party. Finally,
in Fig. 1(c), a complex dialogue in a family gathering. As shown in the
figures, some recordings cover life scenarios with background noises
and overlap speech segments accounting for a significant proportion of
the recordings. Moreover, BabyTrain contains both far-field and near-
field speech. All of these present significant challenges for our child
speech extraction task to be discussed next.

2.2. Joint enhancement and separation

Due to the influence of unavoidable noises in real-world audio
recordings, it is often necessary to add a speech enhancement front-end
to remove the noises before the separation model. Based on this idea,
our previously-proposed JES system combines speech enhancement and
source separation (Wang et al., 2020) to deal with the complex scenes
in the BabyTrain corpus.

The processing flow of our baseline JES system is shown in the
middle part of Fig. 2. Feature extraction is first performed to extract
log power spectrum (LPS) features from speech, followed by speech
enhancement and source separation. To build the baseline JES system,
we train a pair of enhancement and separation models, as shown in
the left-hand and right-hand dotted boxes, respectively. Note that our
enhancement network is directly adopted from Sun et al. (2020). It is a
multi-target Bi-LSTM network that uses LPS and ideal ratio mask (IRM)
as learning targets. LPS is a very commonly used feature type extracted
from speech signal and IRM is defined as in Eq. (1), where 𝑠𝑡,𝑓 and
𝑛𝑡,𝑓 denote the power spectrum of child and adult speech signals at the
time–frequency (T–F) unit (𝑡, 𝑓 ), respectively.

𝑧IRM
𝑡,𝑓 =

𝑠𝑡,𝑓
𝑠𝑡,𝑓 + 𝑛𝑡,𝑓

(1)

LPS and IRM are commonly used in speech separation, where the
former has good preservation of the spectrogram but cannot completely
remove interfering speech, and the latter can remove interfering speech
more cleanly but can cause spectrogram loss (Bao and Abdulla, 2018).
Learning both targets can effectively remove noise while preserving the
target speech.

As for the separation network, we use a 3-layer Bi-LSTM network.
In the definition of IRM, 𝑠 refers to the power spectrum of clean
𝑡,𝑓
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Fig. 1. Spectrograms of three recording samples from the BabyTrain corpus in different scenarios. They are all recorded by equipments worn on children for 24 h a day: (a) a
clip of a child snoring while sleeping, (b) a pair of father and son singing to the music at a party, and (c) a family conversation scenario.
Fig. 2. Framework of our proposed joint enhancement and separation system, in which (a) and (b) represent the enhancement and separation model training stage, respectively.
child speech. However, the model does not directly learn clean child
speech but rather learns progressively denoised speech. The targets in
the model gradually reduce the noise present in the speech signal, ulti-
mately approaching the target clean speech. Likewise, the LPS features
extracted from the speech signal are also obtained through a step-by-
step approximation process. Therefore, The learning targets actually are
progressive log power spectrum feature (PLPS) and progressive ratio
mask (PRM), denoted as 𝐙PLPS and 𝐙PRM. The former represents the
LPS target for each progressive layer, and the latter can be calculated
by Eq. (2).

𝑧PRM
𝑡,𝑓 =

𝑠𝑡,𝑓 + 𝑛′𝑡,𝑓
𝑠𝑡,𝑓 + 𝑛𝑡,𝑓

(2)

where 𝑧PRM(𝑡, 𝑓 ) is the value of 𝐙PRM at the time–frequency (T–F) unit
(𝑡, 𝑓 ), and 𝑛′𝑡,𝑓 is the power spectrum of the residual adult speech in
the target speech. Note that the output of each layer is simultaneously
concatenated to the LPS of the original speech as input to the next layer.
Further detail can be found in Wang et al. (2020) and Sun et al. (2020).

Due to the diverse nature of the BabyTrain corpus, which includes
multi-language and multi-scenario subsets such as Namibia, Lena_lyon,
War2, and Tsimane, the simple JES processing may not yield satisfac-
tory results. To address this issue, we propose the iterative adaptation
and dynamic mask-based separation methods to enhance the baseline
separation model. This is achieved by fine-tuning the model with
specific data from each subset, leading to improved performance in
various scenarios.
4

3. Proposed iterative adaptation and dynamic mask based separa-
tion

Our proposed frameworks build upon the previously introduced
JES system, as shown within the blue dashed box in Fig. 3(a). The
separation model, which is trained on the entire BabyTrain corpus,
serves as our pre-trained model and forms the foundation for our
subsequent experiments. During the adaptive phase, we utilize the
development set to construct the training data for each BabyTrain
subset and evaluate the performance on the corresponding test set. In
this process, our fine-tuned models and the subset category are one-
to-one, which is equivalent to having this prior knowledge in the first
place during inference.

3.1. Iterative adaptation based separation

First of all, as JES is trained and tested on the entire BabyTrain
training set, we adopt JES to build a baseline system. Although JES
yields satisfactory results on the entire dataset, we believe that the
performance can be further improved for test data within each subset,
leading to better overall results. Therefore, we propose an iterative
adaptation based separation technique, denoted as IAS. In the IAS
system, the separated speech obtained with the pre-trained model is
treated as clean speech, and a new training set is created for each
subset to fine-tune the pre-trained model. Specifically, we segment
the separated speech into one-second intervals. Then, we calculate the
corresponding adult speech using Eq. (3), where 𝐱 represents adult
𝑎
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Fig. 3. Framework of our iterative adaptation based separation system with (DMS+IAS) and without (IAS) mask processing.
speech to be obtained, 𝐱𝑒 and 𝐱𝑐 denote the enhanced speech and
child speech, respectively. Note that we only focus on child speech and
simply remove other sources of audio. Therefore, our model adopts a
single-output separation model to extract child speech.

𝐱𝑎 = 𝐱𝑒 − 𝐱𝑐 (3)

We randomly mix child and adult speech for each subset to con-
struct a new training set. We then utilize the newly formed training set
to fine-tune our pre-trained separation model, which has been updated
in the previous iteration. Each fine-tuned model will help to generate
the data to train the new pre-trained model in the next iteration. 𝐙𝑛

𝑚
and �̂�𝑛

𝑚 are the 𝑛th 2𝐷-dimensional reference and estimated splicing
vectors of 𝐷-dimensional PLPS feature vector and 𝐷-dimensional PRM
vector for 𝑚th target layer, respectively, with 𝑚 = 1,… ,𝑀 representing
the layer index and 𝑛 = 1,… , 𝑁 representing the mini-batch index. The
loss function in 𝑚th target layer of our network is shown in Eq. (4):

𝐸(𝑚) = 1
𝑁

𝑁
∑

𝑛=1
‖𝑚(�̂�𝑛

0, �̂�
𝑛
1,… , �̂�𝑛

𝑚−1, 𝛬𝑚) − 𝐙𝑛
𝑚‖

2
2 (4)

𝐸(𝑚) represents the MSE loss between the prediction 𝑚 and target
𝐙𝑛
𝑚 at layer 𝑚. Here, we make it clear that 𝑚(�̂�𝑛

0, �̂�
𝑛
1,… , �̂�𝑛

𝑚−1, 𝛬𝑚)
is the 𝑚th layer’s prediction based on the learned target �̂�𝑛

0 to �̂�𝑛
𝑚−1

and the parameter set of the weight matrix and bias vector 𝛬𝑚 before
the 𝑚th target layer. 𝛬𝑚 is optimized using gradient descent in a
backpropagation through time (BPTT) manner. We stop the iteration
when the error rate related metrics cease to decrease. Then, the cor-
responding separation model will be chosen as our separation model
in the test stage. A diagram of this framework is shown in Fig. 3(a),
with the dotted box part named Mask processing skipped. Algorithm 1
presents the specific operation flow of IAS, in which the SSfine-tuned
and SSpre-trained represent the fine-tuned speech separation model
and the pre-trained speech separation model, respectively. Considering
the small amount of data in each development set, we only update
the parameters of the fully connected layer of the network, effectively
preventing the over-fitting problem. Simultaneously, the network can
5

Algorithm 1 Iterative adaptation based separation.
1: JES results: Use the previous JES system to obtain the preliminary

enhanced speech and separated speech, cut them into one-second
segments, note as 𝐱𝑒 and 𝐱𝑠;

2: Initial inputs: Set 𝑖 = 1, note that 𝐱𝑖𝑠 represents separated speech
in iteration 𝑖 and the JES system’s output 𝐱𝑠 = 𝐱0𝑠 ;

3: while 𝑖-th iteration do
4: 𝐱𝑖𝑐 = 𝐱𝑖−1𝑠 ;
5: 𝐱𝑖𝑎 = 𝐱𝑒 − 𝐱𝑖−1𝑠 ;
6: randomly mix 𝐱𝑖𝑐 and 𝐱𝑖𝑎 up to build a new training set;
7: SSpre-trained → SSfine-tuned;
8: if the error rate on validation set stops decreasing then
9: break;

10: end if
11: 𝑖 = 𝑖+1;
12: end while
13: Choose the model with the lowest error rate and apply it to the test

set.

adapt to a specific subset without altering the information learned by
the Bi-LSTM layers from large-scale data.

In the post-processing stage, we utilize the fine-tuned model of each
iteration corresponding to each subset for decoding and calculating
performance metrics.

The decoding formula is shown in Eq. (5), in which �̂�LPS is the
estimated decoded LPS of test speech, 𝐙LPS represents that of the noisy
input speech, and �̂�PRM

𝑀 stands for the final layer’s output PRM of our
system.

�̂�LPS = 𝐙LPS + ln(�̂�PRM
𝑀 ) (5)

At the end of each iteration, we calculate the relevant metrics. Due
to our focus on child speech separation in real-world scenarios, it is
not possible to obtain clean references, making it difficult to calculate
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Algorithm 2 Procedure of the post-processing.

1: Get masks: Take the fine-tuned model’s output 𝐙PRM ∈ R𝑇×𝐷 as
the mask, where 𝑇 represents number of frames and 𝐷 = 257 is the
dimension of IRM;

2: Calculate the mean: For a given frame 𝑡, �̄�PRM(𝑡) =
1
𝐷
∑𝐷

𝑓=1 𝑧
PRM(𝑡, 𝑓 ) is the mean of 𝐙PRM over dimension 𝐷 at

frame 𝑡;
3: Make decision: Set the threshold 𝑡ℎ, suppose �̂�(𝑡) is the predicted

label at frame 𝑡;
4: for t = 1 to 𝑇 do
5: if frame 𝑡 is not silent frame then
6: if �̄�PRM(𝑡) >= 𝑡ℎ then
7: label �̂�(𝑡) as ‘Child’;
8: else
9: label �̂�(𝑡) as ‘Adult’;
0: end if
1: end if
2: end for
3: Obtain labels: Compare obtained binary labels and calculate

metrics.

commonly used separation metrics such as scale -invariant source-
to-noise ratio (SI-SNR) (Luo and Mesgarani, 2018) and SDR (Jörn-
vall et al., 1995). Therefore, inspired by Gilkerson et al. (2008) and
Hamers et al. (1989), we proposed Jaccard error rate (JER) and child
speech duration error rate (CSDER) for child speech separation in
real scenarios based on commonly used binary classification indicators
in Wang et al. (2020), which are defined in Eqs. (6) and (7),

JER = FA +Miss
Total

= FN + FP
FN + FP + TP + TN

(6)

CSDER =
|ECSD − OCSD|

Total
(7)

BER =
FARate +MissRate

2
= 1

2
( FP
FP + TN

+ FN
FN + TP

) (8)

where ECSD represents the child speech duration time detected by our
system and OCSD is the oracle child speech duration time. Total is
the duration of the union of child and adult speaker segments, FA is
the total child speaker time detected by our system but not attributed
to the reference child speaker, and Miss is the total reference child
speaker time but not detected by the system. It is worth mentioning
that such FA and Miss are not our commonly used false alarm rate and
missed alarm rate, but simply the number of wrong labels. In this paper,
we switch them to the false and missed alarm rates, which are widely
used in machine learning. The corresponding JER is also replaced by
the balanced error rate (BER), which can more reasonably characterize
the system’s capabilities. The calculation of BER is shown in Eq. (8),
and BER and CSDER are adopted as the evaluation metrics in this
paper. The separated speech is subjected to our post-processing method
to obtain the corresponding binary classification labels. Algorithm 2
demonstrates the post-processing procedure: we use the IRM nodes
of the output layer to generate the separation masks for each frame.
Then we calculate the mean of these masks over frequency domain
dimensions for each frame, and check the frames whose measured
mean is greater than a pre-defined threshold. Then these frames will be
labeled as child speech segments and the rest of the non-silent segments
are regarded as adult speech segments.

3.2. Dynamic mask based separation

As discussed earlier, due to the considerable complexity of the Baby-
Train corpus, it is often insufficient to directly treat speech decoded
from the pre-trained separation model as clean child speech. To address
this issue, we propose a variable length-position dynamic mask based
6

processing approach, denoted as DMS+IAS, as illustrated in the dotted
box in Fig. 3(a).

The main difference between DMS+IAS and IAS (as described in
Section 3.1) lies in the Mask processing step. Fig. 3(b) provides a
detailed illustration of this module. After obtaining separated speech
from the pre-trained model, we take it a step further by employing a
dynamic mask generation process to eliminate residual noises instead
of simply treating it as clean speech. As shown in Fig. 3(b), we use
an activated window to slide over the speech segment to locate child
speech and mask the remaining part.

Since our activated segment of the mask is continuous, and child
speech and other interfering speech might be interlaced in longer
speech segments, we divide the recordings into one-second segments
to ensure that there is only one target in each segment, making it more
convenient for the dynamic mask to locate it. The length and position
of this mask are variable, and we will describe how to determine them
next. Once the masked speech is treated as child speech, the subsequent
operations remain the same as in Section 3.1.

3.2.1. Determining lengths of activated windows
As mentioned earlier, the pre-trained model cannot perfectly extract

child speech. However, for specific speech segments, child speech does
retain the main parts of the separated speech. With this in mind, we
can locate the children’s parts in the separated speech and remove the
rest. We adopt a commonly used separation metric, SI-SNR (Luo and
Mesgarani, 2018), to construct an indicator as a rule for calculating
the active length of the dynamic mask:

𝑠 = SI-SNR(𝐱𝑠, 𝐱𝑒) = 10 log10
‖𝐱𝑡‖2

‖𝐱𝑛‖2
(9)

where 𝐱𝑡 = ⟨𝐱𝑠 ,𝐱𝑒⟩𝐱𝑒
‖𝐱𝑒‖2

, 𝐱𝑛 = 𝐱𝑠 − 𝐱𝑡 and SI-SNR is the function used
to calculate SI-SNR. After gaining 𝑠, we want to use it to scale the
active percentages of speech segments to [0, 1]. Inspired by the Sigmoid
function (Han and Moraga, 1995; Yin et al., 2003), we construct a
mapping function to achieve this goal, which is referred to as the
variable length mapping function (VLM) in Eq. (10).

VLM(𝑠) = max{ 1
1 + exp(−𝛼 × 𝑠)

, 0.5}, 𝛽1 < 𝑠 < 𝛽2 (10)

When 𝑠 > 𝛽2, i.e., our pre-trained model retains most of the speech,
e believe the separated speech can be considered clean speech, and
e choose not to mask these segments, setting VLM(𝑠) = 1. As for
< 𝛽1, which means these segments mostly contain noises, we fully
ask them, i.e., VLM(𝑠) = 0. For each subset, we visualize the distri-

ution of all speech and set 𝛽1 = the lower 95% confidence interval
oundary and 𝛽2 = the median, where 𝛼 is a hyperparameter. Fig. 4(a)
isplays the distribution of SI-SNR on the Tsimane subset and the
orresponding VLM function. The two black dotted lines on the left
nd right represent 𝛽1 and 𝛽2, which can be automatically determined.
he grey histograms represent the corresponding SI-SNR distributions
n the Tsimane dataset before and after the pre-trained separation
odel. Fig. 4(b) shows the mapping relationship between different SI-

NR values and VLM values. Through this mapping relationship, we
uccessfully establish the mapping of real values in the [0,1] range.
onsequently, we can determine the active length 𝑙 of speech through
q. (11). Note that 𝐿 is the frame number of the segment (one second),
nd ⌊∗⌋ represents the floor function.

= ⌊𝐿 × VLM(𝑠)⌋ (11)

It is also worth noting that for 𝛽1 < 𝑠 < 𝛽2, we set the minimum
ctive length of the dynamic mask to 𝐿

2 , as shown in Eqs. (10) and (11).
Our experimental results demonstrate that the complex overlapping
segments of child and adult speech may cause the SI-SNR value of
speech (especially the overlapping segment speech) to fluctuate signif-
icantly. This constraint can help avoid generating too many fragments

and preserve as much of the child speech as possible.
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Fig. 4. An example of 𝛽1, 𝛽2 and corresponding SI-SNR distribution. The gray bars in (a) represent the distribution of SI-SNR value. The two blue curves represent the Sigmoid
function and VLM function, respectively.
3.2.2. Determining locations of activated windows
As for the position determination problem, we employ a sliding

window to find the start frame (SF) defined in Eq. (12). For 𝑡 ranges
from 0 to 𝐿−𝑙, 𝐱𝑡∶𝑡+𝑙𝑠 and 𝐱𝑡∶𝑡+𝑙𝑒 represent separated and enhanced speech
segments with length 𝑙 and start frame 𝑡. We slide the sliding window
with a 𝑠𝑡𝑒𝑝 = 𝐿

1000 to find a position with the highest SI-SNR. The left
endpoint 𝑡 of such a window will be chosen as SF.

SF = argmax
𝑡

(SI-SNR(𝐱𝑡∶𝑡+𝑙𝑠 , 𝐱𝑡∶𝑡+𝑙𝑒 )), 𝑡 ∈ [0, 𝐿 − 𝑙] (12)

In Fig. 3(b), 𝜆 represents our trust in the mask operation. As our
confidence in the separation increases with each iteration, we can
adjust the value of 𝜆 to reflect our current confidence in the separation
results. In fact, our final clean speech 𝐱 in each iteration is a weighted
combination of the separated speech 𝐱𝑠 and masked speech 𝐱𝑚. In a
sense, this can also be considered a method of model fusion. By ad-
justing the value of 𝜆, we can control the contribution of the separated
and masked speech to the final output, allowing for a more accurate
and reliable separation result as the model’s confidence increases.

𝐱 = 𝜆 × 𝐱𝑚 + (1 − 𝜆) × 𝐱𝑠 (13)

In Eqs. (14) and (15), 𝐱𝑚 and 𝜆 are defined. It is important to
note that the dynamic mask 𝐝𝐦 is actually a vector with the same
dimension as the separated speech. The active frames are set to 1, and
the rest are set to 0. This allows us to selectively apply the mask to
the separated speech, preserving the desired child speech while sup-
pressing the unwanted noise or adult speech components. The process
of determining 𝐝𝐦 is illustrated in Fig. 3(b), which outlines the steps
for calculating the variable length-position dynamic mask. By using
this mask, the system can more accurately isolate child speech in each
iteration, further improving the overall performance of the separation
model.

𝐱𝑚 = 𝐱𝑠 ⊙ 𝐝𝐦 (14)

𝜆 =

{

0.5 iter = 1

1.0 iter = 2,…
(15)

Indeed, as shown in Eq. (15), our confidence in the separation
ability of the adapted model increases with each iteration. This is
demonstrated in Fig. 3(a), where the process of updating the training
data relies on a robust pre-trained model to assess speech quality and
generate the appropriate dynamic mask. In turn, model optimization
requires cleaner data to fine-tune the model parameters. As the pre-
trained separation model becomes more capable of generating accurate
dynamic masks, it can produce higher-quality adapted data. This im-
proved data can then be used to further refine the adapted model,
7

leading to better speech separation performance. In essence, the two
modules dynamically form a closed loop, working together to enhance
the overall separation ability of the system. Experimental results con-
firm that the dynamic mask can effectively address the challenges
mentioned earlier in this section. By building upon the IAS method, the
DMS+IAS approach offers even better speech separation performance,
demonstrating the value of this joint optimization strategy.

4. Experiments and result analysis

4.1. Experimental settings

We focused on child speech extraction and took BabyTrain as the
main dataset. We also introduced parts of some other datasets to
improve our data diversity. The configurations of our enhancement
experiments were the same as (Sun et al., 2020). In our pre-train stage,
the adult speech data were derived from four data sets, namely the
BabyTrain mega corpus, WSJ0 corpus (Garofolo et al., 1993a; Hershey
et al., 2016b), part of AISHELL-1 corpus (Bu et al., 2017) and part of
Librispeech corpus (Panayotov et al., 2015). The child speech segments
were derived from two data sets: the BabyTrain mega corpus and the
part with children aged from kindergarten to grade 5 of CSLU Kids
Corpus (Shobaki et al., 2000). We utilized the ground-truth labels from
the training set to obtain children’s segments and adults’ segments
(ground-truth labels are divided into two categories: child and adult).
Then, we randomly simulated child speech and adult speech to generate
training data. 19562 children’s utterances (about 55 h) were mixed
with the above 58,686 adult utterances at seven target inference ratio
(TIR) levels (−5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB, and 25 dB) to
construct a 500-h training set consisting of children’s utterance pairs
and mixed utterance pairs. Among them, the speech at the SNR of
−5 dB, 0 dB, and 5 dB were used as the model’s inputs. The segments at
the SNR of 5 dB, 10 dB, and 15 dB were used as the first layers targets of
progressive learning, those of 15 dB, 20 dB, and 25 dB were used as the
second layer’s targets, and the clean segments were the final learning
targets. The BabyTrain development set was used for fine-tuning, and
the BabyTrain test set was used for testing. All speech were resampled
at 16 kHz, frame length was set to 32 ms and frameshift was 16 ms.
The 512-point discrete Fourier transform (DFT) of each overlapping
windowed frame is calculated. Then the pre-trained separation model
was trained using the 257-dimensional LPS vectors with global mean
and variance normalization. The outputs of each layer are the 257-
dimensional PLPS and 257-dimensional PRM predicted by the model. It
should be pointed out that the Paido data set is a child reading words at

intervals in a tranquil environment. It does not contain any overlapping
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Table 2
BER and CSDER values comparison. SS represents speech separation, and JES represents joint speech enhancement and speech separation. BER and CSDER denote balanced error
rate and child speech duration error rate, respectively.

Systems BER CSDER

War2 Tsimane Namibia Vanuatu Lena_lyon Overall War2 Tsimane Namibia Vanuatu Lena_lyon Overall

SS 0.396 0.409 0.452 0.435 0.461 0.443 0.163 0.389 0.328 0.346 0.243 0.327
JES (Wang et al., 2020) 0.373 0.408 0.437 0.426 0.448 0.432 0.123 0.383 0.306 0.342 0.243 0.313
segments, the scene is also very single, and the content is very clean.
It is unsuitable for verifying the separation system in the real complex
scene, so this dataset is not included in the subsequent experiments.

It is also worth mentioning that in the previous work, we used
Microsoft CNTK (Seide and Agarwal, 2016) as our deep learning frame-
work for model training and decoding, but here we migrated the
prior work to the PyTorch (Paszke et al., 2019) framework due to
applicability and cutting-edge issues. Our network structure is 3-layer
progressive multi-target learning based Bi-LSTM (PMT-Bi-LSTM), 𝑀 in
q. (4) an Eq. (5) is 3. All experiments were conducted on GeForce
TX™ 3090. MSE was used as the optimization criterion in all pre-train
nd fine-tune stages. We used Adam as our optimizer, and the variable
earning rate was set to 0.01 for the first 10 epochs and 0.005 for the
est epochs. Batchsize was 32 in the pre-train stage and 64 in the fine-
une stages. LPS features were used as our inputs in the training and
ecoding period. PLPS and PRM are adopted as our training targets for
ll Bi-LSTM layers. The input of the current layer and the estimations of
he intermediate target are spliced together to learn the next target. The
umber of Bi-LSTM memory cells in each layer was 1024, and the PRM
utput of the final layer was used to decode the speech. 𝛼 in Eq. (10)
as set to 1.7, 𝛽1 and 𝛽2 were automatically decided according to the
istribution of SI-SNR. In the post-processing part, oracle VAD infor-
ation was used, and Kaldi1 was applied to extract i-vectors (Dehak

t al., 2011; Saon et al., 2013) to visualize the separated results. Note
hat our strategies and all parameter optimizations, including threshold
etting, were done on the development sets and tested on test sets.

.2. Ablation experiments for joint enhancement and separation

In Wang et al. (2020), we did not give the ablation experiments
hat quantitatively present the effectiveness of the enhancement model
n a joint speech enhancement and separation system. So here we first
resent the ablation experiments of the enhancement model on the test
ets in Table 2. From the table, we can see that the enhanced model
mproves the system’s performance to a certain extent, but there is
o noticeable improvement in the BER of the Tsimane set and the
SDER of the Lena_lyon set. Considering the fact that these two datasets
re relatively more complex relative to the other datasets (as can be
een in Table 1), we believe that the quality of the data itself limits
he improvement of system performance, which further increases the
ecessity in using dynamic masks to clean the data.

Fig. 5 compares the spectrograms before and after processing by
he SS and the JES systems. The top rectangle represents the sound
ategory, the blue segments represent the target child speech, the gray
nes represent the non-negligible background noises, and the red ones
epresent adult speech. The circles on the spectrograms mark the target
peech, and the boxes illustrate noises. It can be seen from the figure
hat the separation model performs better for relatively single target-
peaker segments, such as the child speech in the first and third circles,
s well as adult speech in the first boxes. However, for complex scenes
ith multiple overlaps, the enhancement model will inevitably cause

ome damage to the human voice while suppressing the noise. As a
esult, the voice distortion in the overlapping segment is relatively large
as shown in the second circle), which causes an inevitable loss of the
arget speech while suppressing the noises. In addition, the boxes on the

1 https://github.com/kaldi-asr/kaldi.
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far right show that the addition of the enhanced model can sufficiently
suppress the low-frequency background noises, which can make the
separated child speech purer.

4.3. Results using iterative adaptation

In general, the JES system can improve the performance of the
separation model to a certain extent but is limited by factors such as
the quality of speech. The separation performance is not significant. It
has been further improved with the introduction of the proposed IAS
system, and we will present the relevant results in this subsection. Since
our adaptive training set is generated by cutting the development set
and adding noise randomly, in order to avoid overfitting, we simply
give the results of the development set and focus on the results of the
test set. Moreover, the speakers in the test set are independent of the
development set, which can better illustrate our method’s effectiveness
in different languages.

We selected the results of five representative subsets to draw a bar
chart as shown in Fig. 6. The deep-blue bars represent the JES system,
and the light-blue bars refer to the IAS system. It can be seen that
compared with JES, IAS can further reduce the error rate on subsets
of different languages, improve the separation accuracy, and realize
a certain degree of adaptation. Table 3 presents an overall BER and
CSDER comparison among different separation methods on selected
subsets of the BabyTrain test set. Baseline represents the system trained
only on the specific subset (i.e., no pre-trained JES). JES denotes joint
speech enhancement and speech separation system. IAS stands for
our newly proposed iterative adaptation based separation framework.
JES+GT represents the JES system fine-tuned on supervised dev set
using the ground-truth label. This would convey a clearer picture of
how much of the errors can be recovered by our systems compared
with using clean references. Since the development set (i.e., the training
set for the adaptive stage) of each subset is relatively small, all the
optimal values can be reached in the first few iterations, and then it
begins to fluctuate. Moreover, different subsets achieve the optimal
results in different iteration rounds, in order to avoid the results being
too messy, we only give their respective optimal results here. It is
worth mentioning that the results of other non-optimal iteration rounds
are also generally better than JES. Our proposed IAS method achieves
better results than the previous JES system, both on the subset with
little data (e.g., War2 and Tsimane) and on the subset with relatively
more data (e.g., Lena_lyon and Namibia). For example, the IAS method
has an improvement of 2.3% and 4.3% in BER and CSDER on the
Lena_lyon dataset compared with the JES method. By comparing the
overall results of the baseline, JES+GT, and IAS, we find that the BERs
of baseline and JES+GT are 0.491 and 0.400. In the BER of 0.091
that baseline is more than JES+GT, IAS can recover 74% of them and
reach the BER of 0.423. Likewise, IAS can recover 63.0% of CSDER
(0.378, 0.281, and 0.224 for baseline, IAS, and JES+GT). This shows
that the IAS method can achieve good results in most cases. However,
due to the constraints of voice quality, if the speech quality is very
poor at the beginning, directly adopting an iterative strategy will make
speech quality difficult to control or even get worse, such as in Vanuatu,
which contains a significant portion of non-speech scenes, with only
background noise. This phenomenon further enhances the confidence
we have in improving the data quality. The dynamic mask can remove
some noises well, making the voice quality controllable and bringing a
lower error rate, reflected in Section 4.4.

https://github.com/kaldi-asr/kaldi
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Fig. 5. Spectrograms comparison of an utterance from the test set. In (a), the red bars represent the speech regions of adults, while the blue bars represent the target child speech,
and the gray bar denotes environmental noises. (b) gives the original spectrum. (c) and (d) show the results processed by SS and JES, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Bar charts of BER and CSDER results on several subsets of the development set. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 7. T-SNE graph comparison between adult and child speech on Namibia test set. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Table 3
BER and CSDER values on test sets. Baseline represents the system trained only on the specific subset (i.e., no pre-trained JES). JES denotes
joint separation and enhancement systems. IAS and DMS+IAS stand for our proposed iterative adaptation based separation framework without
and with dynamic mask operation. JES+GT represents the JES system fine-tuned on supervised dev set using the ground-truth labels.

Subset BER CSDER

Baseline JES IAS DMS+IAS JES+GT Baseline JES IAS DMS+IAS JES+GT

War2 0.450 0.373 0.366 0.354 0.343 0.134 0.123 0.078 0.066 0.053
Tsimane 0.480 0.408 0.395 0.395 0.390 0.435 0.383 0.267 0.170 0.158
Namibia 0.499 0.437 0.429 0.424 0.415 0.355 0.306 0.297 0.283 0.269
Vanuatu 0.469 0.426 0.445 0.381 0.356 0.479 0.342 0.313 0.243 0.207
Lena_lyon 0.498 0.448 0.425 0.421 0.398 0.323 0.243 0.200 0.192 0.167
Aclew_starter 0.502 0.454 0.449 0.447 0.435 0.249 0.206 0.182 0.147 0.139

Overall 0.491 0.432 0.423 0.415 0.400 0.378 0.312 0.281 0.244 0.224
Fig. 7 shows the comparison of the spatial distance between adult
and child speech before and after different separation strategies, where
the red dots represent the adult speech and the blue ones represent the
child speech (Van der Maaten and Hinton, 2008). Fig. 7(a) represents
the mapping of adult speech and child speech distance information
in two-dimensional space in the original utterances. Although there is
an inherent gap between adult speech and child voice, many mixed
regions still exist. Note that parts of the adult speech deviate from the
main parts and are closer to the child parts, as shown in the upper
right corner of the figure. We did a point-to-audio mapping of these
parts and found that these deviated parts are mainly the overlapping
segments of adult–child speech and some adults imitate the children’s
voices to tease the child, which is exactly the significant challenge
for child speech processing that we mentioned earlier. As previously
introduced, the children wear the recording device, so the energy of
the children’s voices is stronger, and the adults’ voices are far-field.
Hence, these parts of the speech will be more inclined to the child’s
parts in terms of spatial distance. From the figure, these parts are at
the edge of the child speech, but there are still some overlap regions.
In Fig. 7(b), the original audio was processed by our JES approach. It
can be found that compared with Fig. 7(a), the red and blue points
start to separate. The overlap parts in the lower left corner become
less, and the upper right corner almost has no overlap regions, but it
is still close to the blue edge. This indicates that the JES system plays
a vital role, but it is not easy to separate the mixed speech of adults
and children in some extreme cases. By observing Figs. 7(b) and 7(c),
the separation performances are further improved after adopting our
proposed IAS system. The main parts of adult and child speech are
separated by a more considerable distance in Fig. 7(c). This indicates
that our IAS method can obtain targeted breakthroughs on each subset.
However, IAS does not deal well with the speech segments in which
adults imitate children and the corresponding parts are still quite close
to the child parts.

Fig. 8 shows the ground truth labels and the spectrograms com-
parison of different methods and the mixtures. The top rectangular
box is the ground-truth label. The red, blue, and gray rectangular
segments represent adult speech, child speech, and the existence of
noises, respectively. Note that the two dark colors on the gray bar
represent the sharp noises generated by the collision of household
products. From top to bottom are the original speech without any
10
processing, the speech processed by JES, IAS, and DMS+IAS. The white
circles on the spectrograms represent the child speech, and the white
boxes represent the adult speech. By comparison, we can find that the
proposed IAS system is better than the JES method in extracting child
speech, as shown in the white circles. However, IAS is not much better
than JES for suppressing adult speech, as shown in the white boxes.

The above results show that, compared with the JES system, both
qualitatively and quantitatively, our IAS system can achieve better
results on subsets of different languages and styles to achieve the goal
of adaptation.

4.4. Results using dynamic mask

Due to the complexity and difficulty of controlling speech quality in
real scenarios, we believe that the introduction of DMS can further im-
prove the performance of the IAS system. In this section, we discuss the
experimental results of the DMS+IAS system following the discussion
in Section 4.3.

In Fig. 6, the gray bars refer to the DMS+IAS systems. We can find
that our proposed DMS+IAS system is not only able to achieve optimal
results on single-scene subsets (such as War2 & Aclew_starter) but also
brings improvements on complex scene datasets (such as Namibia &
Vanuatu). In Table 3, we can see that the introduction of DMS can
further improve the model performance and achieve the best results
in both BER and CSDER on all subsets. For example, compared with
the JES method, the DMS+IAS method has an improvement of 4.5%
and 9.9% in BER and CSDER on the Vanuatu dataset, where IAS fails
to work. By comparing the overall results of the baseline, JES+GT, and
DMS+IAS, we find that the BERs of baseline and JES+GT are 0.491
and 0.400. In the BER of 0.091 that baseline is more than JES+GT,
DMS+IAS can recover 83.5% of them and reach the BER of 0.415.
Likewise, DMS+IAS can recover 98.7% of CSDER (0.378, 0.244, and
0.224 for baseline, DMS+IAS, and JES+GT). Overall results show that
the results of DMS+IAS are better than those of IAS, which are both
better than JES.

We elaborate in Section 4.4 that IAS does not deal well with
the speech segments in which adults imitate children, as shown in
Fig. 7. In contrast, the introduction of DMS alleviates this problem
and separates the speech of adults and children better than IAS in this
brutal scene (as is shown in Fig. 7(d)). But the distance between them
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Fig. 8. Spectrograms comparison of an utterance from the test set. In (a), the red bar represents the speech regions of adults, while the blue bar represents the target child speech,
and the gray bar denotes environmental noises. (b) gives the original spectrum. (c)–(e) show the results processed by JES, IAS, and DMS+IAS, respectively. Black parts on gray
bars represent sharp high-frequency noises. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
is still relatively close, which limits our extraction performance to a
certain extent. The bottom spectrogram in Fig. 8 represents the speech
processed by DMS+IAS. It can be seen that the proposed DMS+IAS
system is significantly better than the JES method and the pure IAS
framework in retaining the child speech, as shown in white circles.
Our proposed DMS+IAS systems also suppress adult speech to some
11
extent, as is shown in the white boxes. These experimental results above
demonstrate the effectiveness of our method.

It is worth mentioning that the development sets of War2 and
Aclew_starter only remain 13.4 and 24.3 min long, respectively, and
the results of the development sets and the test sets both show that
when we get a complete unknown test recording, we can also use it as
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a separate subset for processing. The separation result of this recording
is obtained through the pre-trained separation model first. Afterward,
a new training set is constructed based on the separation results of this
recording and the original sentence, and an adaptation based separation
model can be obtained by finetuning the pre-trained model with little
computational cost and time.

5. Conclusion

In this paper, we first propose an IAS framework to improve over
our previously-proposed JES system to deal with real-world recordings
of child speech in multi-speaker and multi-lingual environments. To
purify the data used in fine-tuning adaptation, we further propose a
DMS framework to correctly obtain variable length-position dynamic
masks that match well with the meaningful speech segments needed.
Experimental results show that the proposed DMS+IAS framework is
valid on both BER and CSDER metrics.

The DMS+IAS approach demonstrated its potential for practical
applications in real-world scenarios. However, under real-world con-
ditions, how to better extract children’s speech while removing adult
speech as much as possible is still a problem that needs to be studied
in the future. In our future work, we will further extend our research
to even more complex and severe speech-overlap conditions, and also
explore its application in other fields, such as diarization and egocentric
speech separation (Hershey et al., 2016a; Yang et al., 2019; Sell and
Garcia-Romero, 2014).
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