
IMPROVING SEPARATION-BASED SPEAKER DIARIZATION VIA ITERATIVE MODEL
REFINEMENT AND SPEAKER EMBEDDING BASED POST-PROCESSING

Shu-Tong Niu1, Jun Du1,∗, Lei Sun2, Chin-Hui Lee3

1University of Science and Technology of China, Hefei, Anhui, P.R.China
2iFlytek Research, Hefei, Anhui, P. R. China

3Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT

In this paper, we propose an iterative separation-based speaker di-
arization (ISSD) approach to cope with the realistic data conditions.
In the proposed ISSD, we iteratively generate adaptation data ac-
cording to speaker priors and fine-tune the separation model, which
leads to a gradual performance improvement. To further reduce
some unavoidable speaker detection errors due to some undesir-
able prior errors using simple ISSD, we utilize speaker embedding
information and propose two post-processing techniques, namely,
speaker filtering and speaker recovery. We evaluate the diarization
performance on the two-speaker conversational telephone speech
(CTS) data set from DIHARD-III Challenge. When compared to
state-of-the-art clustering-based speaker diarization (CSD) system,
the proposed ISSD approach combined with the two post-processing
schemes yields a 47.72 % and 46.97 % relative diarization error rate
reduction on the development and evaluation sets, respectively.
ISSD is also one key contributing factor to the best-performing
system in DIHARD-III Challenge.

Index Terms— Speaker diarization, speech separation, itera-
tion, post-processing, DIHARD-III Challenge

1. INTRODUCTION

Speaker diarization is a task to segment speech into speaker-specific
regions [1]. It is an essential component for many applications,
such as conference summarization, speech transcription and domi-
nant speaker detection [2, 3]. It also serves as a front-end of auto-
matic speech recognition (ASR) to generate speaker-attributed tran-
scripts [4] for mixed speech.

Traditional clustering-based speaker diarization (CSD) systems
[5, 6] can be partitioned into multiple modules, including voice ac-
tivity detection (VAD), speaker feature extraction and speaker clus-
tering. First, they use VAD to detect the speech segments. Then, they
extract segment-based speaker embeddings, such as i-vector [7], d-
vector [8] and x-vector [9]. Finally, speaker clustering is utilized to
assign the speakers along with timing. In particular, [6] proposes the
variational Bayesian hidden Markov model with x-vectors (VBx),
which has achieved a state-of-the-art performance among clustering-
based systems. However, they can not handle the speaker-overlap re-
gions due to hard cluster assignments. Recently, end-to-end diariza-
tion techniques have attracted research attentions due to their poten-
tials to deal with such mixed-speech regions [10, 11]. End-to-end
neural speaker diarization (EEND) [10] treats the diarization task
as a multi-label classification problem, which can directly minimize
diarization errors. Inspired by personal-VAD [12], target-speaker
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voice activity detection (TS-VAD) [11] is then proposed and uses
speaker embeddings as additional inputs to directly predict the ac-
tivity of each speaker at each time frame.

As for speech separation, it tries to separate each source speaker
from multi-speaker speech mixtures [13]. The main separation net-
work models are either time-frequency (T-F) domain based [14, 15]
or time-domain based [16, 17]. The former performs separation on
the T-F units by applying a short time Fourier transform (STFT) to
speech. Nonetheless, the imperfect reconstruction of the phase lim-
its its performance. Recently, time-domain based networks show
their potentials [16, 17] in separating speech mixtures directly on
time domain through encoder-decoder architectures. However, these
separation algorithms are mostly evaluated on simulated data (e.g.,
the wsj0-2mix data set). When faced with realistic conditions, the
performance of these algorithms could often become unstable.

Our earlier separation-based speaker diarization (SSD) system
obtains results by detecting speaker presence in separated streams
[18]. There are some advantages in the previously proposed SSD
systems in handling speaker overlap segments, and the separated
streams thus obtained can be directly used for back-end process-
ing, such as ASR. To handle the possible instability in separation
performances, [18] proposes a separation guided speaker diariza-
tion (SGSD) approach utilizing a complementarity of speech sep-
aration and speaker clustering. Nonetheless, the selection strategies
in SGSD often depend on the characteristics of the data set. In this
paper, we utilize the semi-supervised training algorithms [19, 20]
and propose a more general method, namely, iterative separation-
based speaker diarization (ISSD). Moreover, we present some post-
processing techniques to further improve the ISSD performance in-
spired by [21]. The key contributions of this paper are three-fold:
(i) we alleviate the instability problem of the SSD performance by
incorporating an iteration mechanism; (ii) we demonstrate the ef-
fectiveness of our proposed ISSD system by analyzing the spectro-
grams and the corresponding labels of the separated speaker-specific
speech streams; and (iii) according to diarization errors in the ISSD
system, we propose two post-processing techniques which can filter
out the speech of irrelevant speakers and fill the missing segments,
respectively. Our experimental results are gathered on the CTS data
set from DIHARD-III Challenge, and the proposed ISSD system has
achieved better performance than CSD and SGSD systems. More-
over, we also find the proposed post-processing methods contribute
to further performance improvements.

2. PRIOR WORK

As shown in [18], our earlier separation-based speaker diarization
(SSD) framework consists of two parts: separation and detection.
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Fig. 1: Overall framework of the proposed approaches.

Given an utterance y(t) with a two-speaker mixture, we first segre-
gate the two voices of different speakers:

fsep(y(t)) = {x̂1(t), x̂2(t)} (1)

where fsep(·) is the separation model, x̂1(t) and x̂2(t) are two sep-
arated streams. In [18], we employ Conv-TasNet [16] as the sepa-
ration model fsep(·) which is trained on dataset simulated from Lib-
rispeech [22]. We use a permutation invariant training (PIT) [23]
based learning objective to update the model parameters:

L =
1

2

2∑
n=1

l(x̂n(t), xφ(t)) (2)

where x̂n(t) means n-th separated stream, xφ(t) denotes reference
speech with the permutation φ that minimizes L. l is calculated by
the scale-invariant source-to-noise ratio (Si-SNR):

l(x̂(t), x(t)) = 10 log10
||xtg(t)||2

||x̂(t)− xtg(t)||2
(3)

where xtg(t) =
<x̂(t),x(t)>x(t)

||x(t)||2 . x̂(t) and x(t) are the estimates and
targets respectively. In detection part, we use VAD model to detect
the speaker presence in separated streams, and obtain the diarization
results through combining the detection results along the time axis.

3. THE PROPOSED APPROACH

Fig. 1 illustrates the framework of the proposed methods, which
mainly contains two parts: iterative separation-based speaker di-
arization (ISSD) and speaker embedding based post-processing. In
the ISSD part, we alternately update the adaptation data and fine-
tune the separation model. In post-processing part, the speaker fil-
tering can filter out the speech of irrelevant speakers, and the speaker
recovery can recover the speakers in the missing segments. We will
elaborate on these methods in the following subsections.

3.1. Iterative separation-based speaker diarization (ISSD)

ISSD aims to adapt the separation model to realistic data by lever-
aging upon the information from prior diarization results. First, we
use the clustering-based speaker diarization (CSD) results as priors
to generate the adaptation data. Then, we fine-tune the pre-trained
model to adapt it to the test utterances. Ultimately, we use the re-
sults generated by the adapted model to update adaptation data for
the next iteration. The diarization results can be refined iteratively
through this process. The main components of the proposed ISSD
framework are summarized as follows.

Data update - The data updating part contains non-overlap se-
lection and data generation processes in Fig. 1. We first obtain the
diarization prior yi ∈ {0, 1}1×T which corresponds to speaker i in
test utterance y(t). Here, the elements of yi are defined as:

yi,t =

{
0 Speaker i is inactive at t
1 Speaker i is active at t

(4)

Then we eliminate the overlap segments in yi:

y′i = yi ·m (5)

where m ∈ {0, 1}1×T is the time mask with elements mt = 1 if
only one speaker is present at time t in prior results, and mt = 0
otherwise. We cut the test utterance y(t) according to y′i and obtain
the set including all speech segments belonging to speaker i:

Si = {si,j |j = 1, 2, . . . , N} (6)

where si,j is a speech segment of speaker i. N is the number of seg-
ments, which varies among different speakers. We simulate paired
speech mixtures by mixing two segments randomly selected from
S1 and S2 respectively.

Model adaptation - We use the trained separation model in [18]
as the pre-trained model. To adapt it to test utterances, we fine-tune
the pre-trained model utilizing the simulated adaptation data as in
Fig. 1 via Eqs. (2) and (3) as in SSD [18].

Result generation - As shown in the bottom middle part of Fig.
1, we use the adapted model to separate test utterance and obtain
two separated streams x̂1(t) and x̂2(t), and then use VAD to get a
variable number of M segments belonging to the n-th stream as:

Ŝn = {ŝn,j |j = 1, 2, . . . ,M}. (7)

By combining the time labels of the VAD segments in Ŝ1 and Ŝ2,
we can get the corresponding diarization results, which will be used
to update the adaptation data in the next iteration. In this study, we
focus on the two-speaker case. It’s also worth noting that there are
no overlap segments in the CSD results, so non-overlap selection in
the left module in Fig. 1 is not performed in the first iteration.

3.2. Post-processing

Speaker filtering - Although the iterative process can significantly
improve the separation performance in ISSD system, there might be
still some residual errors in separation results. Fig. 2 shows an exam-
ple of residual errors, in which the speech segments of one speaker
are assigned to the two streams. To handle this problem, we propose
a speaker filtering method. In speaker filtering, we use the mean
value of the embeddings extracted from the segments in Si as the
reference embedding of speaker i:

ei =
1

N

N∑
j=1

femb(si,j) (8)
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where femb(·) denotes the speaker embedding extraction model.
Then we use the cosine similarity between ei and the speaker em-
bedding femb(ŝn,j) as the score of segment ŝn,j on speaker i:

scoren,j,i = cos(ei, femb(ŝn,j)) (9)

where ŝn,j ∈ Ŝn is a VAD segment in stream n, which is defined in
Eq. (7). Then we get the corresponding speaker of the segment ŝn,j
by finding the index i which maximizes scoren,j,i, namely:

cn,j = argmax
i

(scoren,j,i) (10)

Through Eq. (10), we can get the set whose elements denote the
speaker indices corresponding to all segments in Ŝn, namely Cn =
{cn,j |j = 1, 2, . . . ,M}. We use the most elements of Cn as the
corresponding speaker of stream n:

bn = argmax
i

|{i ∈ Cn}| (11)

where | · |means finding the cardinality of a set. To filter out residual
speech in stream n, we calculate cos(ebn , femb(ŝn,j)), the cosine
similarity between embedding femb(ŝn,j) and the reference embed-
ding of speaker bn, and then compare it with a threshold in order to
exclude segment ŝn,j with less cosine similarity in the n-th stream.
Through this process, we can filter out the speech regions that are
most likely to belong to irrelevant speakers.

(a) ISSD result (b) Oracle result

Fig. 2: An example of residual errors in ISSD system.

Speaker recovery - Another problem in the ISSD system is illus-
trated in Fig. 3. When we use the oracle VAD information in the di-
arization task, some segments that contain speech in oracle VAD are
labeled as non-speech in the ISSD results. To handle these missing
segments, we propose a recovery mechanism. For each utterance,
we assume the set of missing segments is defined as:

M = {mj |j = 1, 2, . . . ,K} (12)

where K is the number of missing segments in the current utter-
ance. Since the duration of missing segments is usually very short,
we assume that there is only one speaker in mj , and we get the in-
dex of this speaker by maximizing the cosine similarity between the
embedding of mj and reference embedding like Eqs. (9) and (10):

dj = argmax
i

(cos(ei, femb(mj))). (13)

We add speaker dj to the time corresponding to segment mj in the
ISSD results. Through this process, we can label the missing seg-
ments with relatively accurate speaker identities.

(a) ISSD result (b) Oracle result

Fig. 3: An example of missing errors in ISSD system.

4. EXPERIMENTS

The Librispeech corpus [22] was adopted to simulate the training
set of the pre-trained separation model. We simulated about 250-
hour training data by randomly mixing two utterances from differ-
ent speakers. The Voxceleb1 & 2 data sets [24] were used to train
the speaker embedding extraction model. The CTS dataset from
DIHARD-III Challenge [25] was adopted to evaluate the proposed
methods, which contains development set and evaluation set. There
are 61 ten-minute utterances in each set, and each utterance contains
two speakers. The overlap ratio is quite large in both sets (11.9%
in the development set and 10.5% in the evaluation set), which can
reflect the model’s ability to handle the overlap segments.

We used the VBx system [6] as the baseline and adopted the
VBx results to start the first ISSD iteration. We employed the Conv-
TasNet [16] as the separation model. In pre-training, we ran 75
epochs on 3-second long segments. In the iterative phase, we gen-
erated about 4-hour adaptation data according to the speaker priors
for each utterance. We fine-tuned the pre-trained model for only
3 epochs to prevent overfitting. The WebRTC VAD1 was used to
obtain the VAD segments of separated streams. To further improve
the diarization performance, we employed DOVER-Lap (DL) [26]
to combine different systems. In post-processing, the well-known
ResNet-34 architecture [27] was used as speaker embedding ex-
tractor. To alleviate the impact of segment duration on embedding
extraction, we split the segments into multiple one-second sub-
segments and applied post-processing on these data. The threshold
in speaker filtering was tuned on development set and fixed to be
0.3. We evaluated the proposed algorithms with diarization error
rate (DER) [28] which consists of miss (MI), false alarm (FA), and
confusion (CF) errors. The tolerance collar was set to zero and the
oracle VAD boundary information was used in all experiments.

4.1. Evaluation of the ISSD Framework

Table 1 lists a detailed DER performance comparison among dif-
ferent systems. NI and NE denote the number of iterations and
the number of epochs, respectively. We applied the Dover-Lap
(marked ”DL” in Table 1) to combine systems of the baseline and
three epochs in the first and second ISSD iterations. There are four
result blocks in Table 1. The SSD and SGSD systems in the second
and third blocks adopt the ISSD pre-trained model as the separation
model, which is the same as in [18]. Several observations could
be made here. First, when compared with CSD, SSD gets more
false alarms (FAs) and confusion errors (CFs). This is caused by
an unstable separation performance of the pre-trained model, which
is our motivation for adopting the iterative strategy in ISSD. It also
indicates that CSD is a good choice for providing priors in the first
ISSD iteration, which is sufficiently stable and accurate for gener-
ating adaptation data. Second, ISSD achieves the best performance
among the four systems. On the one hand, when compared with the
CSD and SGSD systems, ISSD can handle more overlap segments,
observing smaller MIs. On the other hand, when compared with the
SSD system, ISSD conducts a more robust separation, which can be
seen in smaller FAs and CFs. Moreover, we add the CSD system
as a voter in the fusion algorithm to mitigate the over-detection of
overlap regions (i.e., the false alarms) in the ISSD system, which
is proven effective in the results of ‘DL’. Finally, by comparing the
CSD results and the DL results in the first ISSD iteration, we can see
that the latter have smaller MIs and CFs (e.g., 10.5% and 3.7% ver-
sus 4.1% and 1.8% for ”Eval”). Smaller MIs can help discard more

1https://github.com/wiseman/py-webrtcvad
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Table 1: Detailed DER (%) comparison among different systems on
the CTS development and evaluation sets from DIHARD-III Chal-
lenge. DER consists of Miss (MI), False alarm (FA), and Confusion
errors (CF). DL indicates Dover-Lap. NI andNE denote the number
of iterations and the number of epochs, respectively.

System NI NE
Dev Eval

MI FA CF DER MI FA CF DER

CSD \ \ 12.0 0.0 4.2 16.22 10.5 0.0 3.7 14.20

SSD \ \ 3.6 11.0 6.2 20.84 3.3 8.7 6.9 18.93

SGSD \ \ 7.6 2.6 2.7 12.95 6.4 2.6 2.2 11.24

ISSD

1

1 4.1 5.6 1.8 11.51 3.6 6.0 1.5 10.97
2 4.3 5.0 2.0 11.36 3.5 4.6 1.5 9.67
3 4.4 4.9 2.1 11.31 3.6 4.5 1.7 9.80

DL 4.9 2.6 2.1 9.56 4.1 2.6 1.8 8.48

2

1 4.2 4.2 1.6 9.99 3.5 4.2 1.4 9.09
2 4.2 3.9 1.6 9.69 3.5 3.7 1.4 8.60
3 4.2 3.8 1.5 9.61 3.5 3.6 1.4 8.54

DL 4.6 2.6 1.6 8.83 3.8 2.5 1.4 7.77

overlap segments in the non-overlap selection, and smaller CFs ben-
efit in attaining more accurate separation targets. Hence, compared
with the first ISSD iteration, we can generate purer adaptation data
in the second ISSD iteration, which leads to better performance as
shown in Table 1. Note that the proposed ISSD approach is also one
key contributing factor to our top-performing system submitted to
DIHARD-III Challenge [29].

To better illustrate the effectiveness of our proposed ISSD sys-
tem, we selected two speech segments that were falsely separated
in the SSD system (i.e., two failure cases in [18]). We present the
corresponding ISSD results in Fig. 4. In the first case, as shown in
Fig. 4 (a), the SSD system assigns speech segments from different
speakers to one data stream, which results in many confusion errors
(DER = 42.5%, CF = 36.1%). At the bottom of Fig. 4 (a), we can
see that the ISSD system can better distinguish between these two
speakers, and generates a more accurate result (DER = 4.62%). In
Fig. 4 (b), the speech segments of one speaker are separated into two
streams in SSD, resulting in many false alarm errors (DER = 82.4%,
FA = 78.1%). The ISSD system can assign these segments to a sin-
gle speaker more accurately and generate much better results (DER
= 9.62%), as shown in the bottom of Fig. 4 (b).

4.2. Evaluation of the Proposed Post-processing Techniques
Table 2 lists the results after post-processing with speaker filtering
(or ‘SF’) and speaker recovery (or ‘SR’). We only show the results
of the third epoch (NI = 2, NE = 3) due to a space limitation,
when applying post-processing to the results after the second ISSD
iteration. Dover-Lap is marked ‘DL’, which is used to combine the
three processed epochs and the baseline system. From this table, we
can observe that speaker filtering can help the ISSD system achieve
better performance. The improvement mainly comes from the re-
duction of FAs, which means speaker filtering can filter out speech
from irrelevant speakers and reduce the false alarm errors. More-
over, it is shown that speaker recovery can further improve the ISSD
performance after the speaker filtering process. The performance im-
provement is due to the reduction of CFs rather than the reduction of
MIs. One reason is that we simply assign the neighborhood speaker
to missing segments in the original ISSD system, and the speaker
recovery process fills in a more accurate speaker in these missing
segments. Finally, we performed a DL fusion between the ISSD re-
sults processed by SF and SR and the results of the baseline system,
yielding the lowest overall DERs (8.48% for ”Dev” and 7.53% in

(a) Selected segment 1 (b) Selected segment 2

Fig. 4: The spectrograms and diarization labels comparison between
SSD system and ISSD system in two selected speech segments. The
regions which were falsely separated are marked with rectangles.

Table 2: Detailed DERs (%) of post-processing methods on the CTS
domain of development set and evaluation set from DIHARD-III
Challenge. NI and NE denote the number of iterations and the
number of epochs, respectively. DL indicates Dover-Lap. SF and
SR indicate speaker filtering and speaker recovery, respectively.

Method
Dev Eval

MI FA CF DER MI FA CF DER

ISSD (NI = 2, NE = 3) 4.2 3.8 1.5 9.61 3.5 3.6 1.4 8.54
+ SF 4.4 3.4 1.6 9.40 3.7 3.4 1.4 8.41
+ SR 4.3 3.4 1.3 9.09 3.7 3.4 1.2 8.25
+ DL 4.9 2.2 1.4 8.48 4.1 2.2 1.3 7.53

”Eval”) as shown in the bottom row in Table 2. Moreover, our SF
and SR approaches are also suitable for the multi-speaker (more than
two speakers) scenarios, not just for the two-speaker case.

5. CONCLUSION

In this paper, we propose the ISSD framework to handle the instabil-
ity of separation performances in the original SSD systems. More-
over, we propose two post-processing techniques with speaker fil-
tering and speaker recovery to reduce the impacts of residual speech
and missing segments in ISSD. Experimental results on the CTS data
of DIHARD-III Challenge demonstrate that our proposed ISSD ap-
proach can achieve better diarization performances when compared
with the CSD and SSD systems. When combined with the two pro-
posed post-processing algorithms, further improvements can also be
observed. In the future, we will explore ISSD in multi-speaker sce-
narios where more than two speakers are mixed.
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