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Abstract
We propose an unsupervised adaptation approach to improve
target-speaker voice activity detection (TS-VAD) in speaker di-
arization (SD) based on quality-aware masking (QM) in order
to reduce potential errors in the generated pseudo-labels. Fur-
thermore, the QM-TS-VAD adapted model can be used as a
teacher model to fine-tune a student SD model through knowl-
edge distillation (KD) to further mitigate the over-fitting issue.
Evaluated on the eight different domains in the DIHARD-III
evaluation corpus, our experimental results show that the pro-
posed QM-TS-VAD approach effectively enhances SD perfor-
mances, and the introduced KD method can further reduce er-
rors in seven of the eight domains. Finally, the proposed frame-
work outperforms the unsupervised adaptation approach in the
top-ranked system submitted to the DIHARD-III Challenge.
Index Terms: speaker diarization, unsupervised adaptation,
quality-aware masking, teacher-student knowledge distillation,
target-speaker voice activity detection

1. Introduction
Speaker diarization is a task to segment audio recordings ac-
cording to speaker identity, namely “who spoke when” [1, 2].
It can assist various downstream tasks such as speech separa-
tion and automatic speech recognition (ASR) [3]. To facilitate
the application of diarization under realistic conditions, the DI-
HARD Challenge was held [4, 5, 6], whose datasets are drawn
from different domains in real-world scenarios.

Traditional speaker diarization methods [7, 8] usually com-
prise several independent components. First, they use a voice
activity detection (VAD) model to detect the speech regions.
Then, they partition the detected speech regions into many short
segments to extract the speaker embeddings (e.g., i-vector [9],
x-vector [10]). Finally, they group the extracted embeddings
using clustering algorithms [11, 12] and assign the speakers
accordingly. These clustering-based speaker diarization (CSD)
methods are generally quite robust. For example, the Bayesian
HMM clustering of x-vector sequences (VBx) [13] method has
achieved first place in the DIHARD-II Challenge [5]. However,
one main drawback of CSD methods is that they cannot well
handle the overlapping regions where multiple speakers speak
simultaneously due to the inherent constraint that each cluster
can only be assigned to one speaker.

To handle the overlapping regions in diarization tasks,
many approaches have been explored. One category of methods
[14, 15] employs the overlap detector to assign the additional
speakers in the detected overlapping segments. The other one
uses the end-to-end framework to handle the overlapping prob-
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lem. End-to-end neural speaker diarization (EEND) [16, 17]
employs the multi-label classification framework to handle the
diarization problem. Recurrent Selective Attention Network
(RSAN) [18] recursively extracts the speakers through the time-
frequency residual masks. Target-speaker voice activity detec-
tion (TS-VAD) [19] takes acoustic features and speaker embed-
dings as inputs to estimate the activity of speakers.

Although end-to-end systems have shown promising re-
sults, there is still one main issue that needs to be solved
when applying them under realistic conditions: the real world
contains a wide variety of domains, which vary greatly from
speaker number, overlap ratios, environmental noises, and so
on [6]. To handle the domain variability, end-to-end methods
(e.g., EEND and TS-VAD) require labels for all speaker activi-
ties at each frame on different domains, which are hard to col-
lect under real conditions [20]. Therefore, unsupervised adap-
tation approaches attract more and more research attention. For
instance, both the first- and second-place systems [21, 22] in
DIHARD-III Challenge [6] utilized the unsupervised adaptation
techniques. Moreover, [20] proposed an iterative pseudo-label
method using unlabeled data for EEND. [23] also proposed a
continual training scheme for self-supervision domain adapta-
tion. These methods typically utilize the pseudo-labels to adapt
the pre-trained model. However, the generated pseudo labels
often contain errors which will mislead the adapted model. To
handle this problem, [24] proposed a quality-aware dynamic
masking method for two-speaker separation-based speaker di-
arization (SSD), which employs the separation model to judge
the quality of segments and purifies adaptation data through a
dynamic mask. However, the methods in [24] are limited to the
two-speaker conditions as the separation techniques have not
been well established under realistic multi-speaker scenarios.

In this paper, we extend the quality-aware masking (QM)
method from two-speaker to multi-speaker conditions based
on TS-VAD, which we call quality-aware masking TS-VAD
(QM-TS-VAD). Moreover, we employ the knowledge distil-
lation (KD) method [25] on QM-TS-VAD to further alleviate
the over-fitting problem. Experiments on eight domains in the
DIHARD-III corpus show that the proposed QM-TS-VAD can
effectively alleviate the interference of errors in pseudo-labels,
and the introduced KD method can help the adapted SD model
achieve further improvement. The key contributions of this pa-
per are three-fold: (1) we extend the quality-aware masking
method from two-speaker to multi-speaker conditions based on
the TS-VAD model and propose the QM-TS-VAD framework;
(2) we introduce the KD method to further alleviate the over-
fitting problem caused by errors in pseudo-labels; and (3) by
incorporating these two methods, our final system achieves bet-
ter results than adaptation method in the champion system [21]
of the DIHARD-III Challenge.
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Figure 1: Overall framework of the QM-TS-VAD.

2. Prior Work
In [21], Wang et al. proposed an unsupervised adaptation frame-
work called iterative TS-VAD (ITS-VAD). Given an audio mix-
ture, they use the pre-trained TS-VAD model to remove the
overlapping regions in CSD results to obtain the non-overlap
speaker prior yi ∈ {0, 1}1×T for speaker i as:

yi,t =

{
1 Only speaker i is active at t, 1 ≤ t ≤ T
0 Otherwise, 1 ≤ t ≤ T (1)

where T is the utterance length. The hypothetical single speaker
segments for speaker i can be obtained according to yi:

Si = {si,j |j = 1, 2, . . . , Ni} (2)

where si,j is the j-th non-overlap segment for i-th speaker. Ni

is the total number of non-overlap segments for speaker i. These
segments will be used to simulate the adaptation data as in [21].
In model adaptation, the binary cross-entropy loss is used:

L1 = − 1

T

T∑

t=1

M∑

i=1

[
ci,t log

(
c′i,t
)
+ (1− ci,t) log

(
1− c′i,t

)]

(3)
where M is the speaker number in TS-VAD outputs. ci,t ∈
{0, 1} is the pseudo label of speaker i at frame t. c′i,t is the cor-
responding posterior probability estimated by adapted model.
Moreover, the adapted model can be used to generate speaker
priors in the next iteration. The results in [21] show that the
ITS-VAD can effectively improve the generalization ability of
the model, which is also one key technique in their champion
system of DIHARD-III Challenge [6]. However, the segments
in Si usually contain misleading information such as the inter-
fering speech from other speakers due to the errors in speaker
priors, which limits the performance of the adapted model.

3. The Proposed Framework
The overall framework of the proposed QM-TS-VAD is illus-
trated in Fig. 1. As can be observed, the whole framework
comprises three key components: non-overlap segment genera-
tion, quality-aware masking, and model adaptation. In the non-

overlap segment generation process, we utilize the speaker pri-
ors (pseudo-labels) from the CSD method and the pre-trained
TS-VAD model to obtain the hypothetical non-overlap seg-
ments. In the quality-aware masking process, we purify the
obtained segments through the quality-aware masks. Finally,
we use the purified segments to simulate the adaptation data
and refine the model. Moreover, in order to further mitigate the
over-fitting problem, we also introduce the knowledge distilla-
tion technique. Note that the non-overlap segment generation
and model adaptation are the same as in ITS-VAD [21]. There-
fore, we mainly introduce the quality-aware masking and KD
processes in the subsequent subsections.

3.1. Quality-aware masking

To purify the segments in Si, we employ the quality-aware
masking (QM) method. For each si,j , we first calculate the cor-
responding acoustic feature sequence (xi,j,t)

Ti,j

t=1 , where Ti,j is
the segment length. Then we feed them into the pre-trained TS-
VAD model FTS-VAD(·) along with the corresponding speaker
embedding ei which is obtained from the speaker priors:
(
pi,j,1, . . . , pi,j,Ti,j

)
= FTS-VAD

(
xi,j,1, . . . ,xi,j,Ti,j , ei

)

(4)
where pi,j,t ∈ (0, 1) is the posterior probability for speaker i at
frame t in segment si,j . The confidence level of the pre-trained
TS-VAD model on the quality of segment si,j can be reflected
in pi,j = [pi,j,1, . . . , pi,j,Ti,j ]

T. A large value of pi,j,t in-
dicates that the pre-trained TS-VAD model is highly confident
about the presence of speaker i at frame t. Conversely, when
pi,j,t is small, the pre-trained TS-VAD model lacks confidence
in the presence of the speaker i, and there may be other speak-
ers at frame t. Therefore, we can measure the quality of each
segment through the pre-trained TS-VAD model as shown in
Fig. 1. To purify the segment si,j , unreliable frames that most
likely belong to other speakers should be masked. To achieve
this, a threshold is required to determine whether a frame is of
poor quality. Therefore, we propose a dynamic threshold that
can change with the overall quality of the segment si,j :

τi,j = min


 1

Ti,j

Ti,j∑

t=1

pi,j,t, α


 (5)

where α > 0 is a pre-defined hyper-parameter. We can get the
corresponding mask mi,j by comparing each element in pi,j

with τi,j as:

mi,j,t =

{
1 pi,j,t >= τi,j

0 pi,j,t < τi,j
(6)

As demonstrated in Eqs. (5) and (6), if the overall quality of the
speech segment si,j is relatively poor, the threshold τi,j will
be reduced, and the corresponding quality assessment standard
will be looser. This guarantees that enough speech segments are
retained for simulation and the extremely poor-quality segments
are masked. Through applying the mask mi,j on segment si,j ,
we can attain the masked segment as:

s′i,j = si,j �mi,j (7)

where � is element-wise multiplication. Moreover, to further
improve the purity of the adaptation data, we conduct a second
round of data cleaning as shown in Fig. 1 by dropping the seg-
ments whose most parts are judged to be of poor quality. We
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Algorithm 1 Procedure of quality-aware masking

Initialization: Non-overlap Segments Si

1: for all segment si,j in Si do
2: First Round Data Cleaning:
3: Estimate the posterior probability pi,j for segment

si,j through pre-trained TS-VAD model using Eq. (4).
4: Calculate the threshold τi,j through Eq. (5).
5: Obtain mask mi,j by comparing all elements in pi,j

with τi,j as in Eq. (6).
6: Mask the segment si,j through Eq. (7) to obtain the

masked segment s′i,j .
7: Second Round Data Cleaning:
8: Calculate ri,j and µi,j using Eqs. (8) and (9).
9: if ri,j >= µi,j then

10: Drop the segment s′i,j .
11: end if
12: end for

realize this process by comparing the rate of poor-quality parts
in si,j with a dynamic threshold. The former is defined as:

ri,j = 1−
∑Ti,j

t=1 mi,j,t

Ti,j
(8)

The dynamic threshold is defined as:

µi,j = min ((1− τi,j) + β, γ) (9)

where β and γ are pre-defined hyper-parameters. 1− α+ β <
γ < 1 is used to limit the value of µi,j . When ri,j >= µi,j , we
directly drop the segment s′i,j . The purpose of Eq. (9) is to pro-
vide a looser screening strategy for poor-quality segments (i.e.,
τi,j < α) by using a larger µi,j . After the second round of data
cleaning, the remaining segments can be used to simulate the
adaptation data. The procedure of QM process is summarized
in Algorithm 1.

3.2. Knowledge distillation

Although the QM process can purify the segments, some un-
cleaned error regions still remain. Therefore, we employ the
knowledge distillation (KD) method to alleviate the over-fitting
problem in the model adaptation. During the KD process, the
teacher model should have robust performance. Therefore, we
don’t employ the pre-trained TS-VAD model and instead use the
QM-TS-VAD model which has undergone one round of adap-
tation as the teacher model. The student model has the same
structure as the teacher one, which is initialized with the pre-
trained TS-VAD model. For speaker i at frame t, there are
two classes in TS-VAD outputs, namely speech and no-speech
classes. Assuming the estimated values for these two classes
before softmax in the teacher model are q1i,t and q2i,t, and the
corresponding values in the student model are k1i,t and k2i,t. We
calculate the soft targets from the teacher model and the corre-
sponding softmax values from the student model as:

wd
i,t =

exp
(
qdi,t/T

)
∑2

d=1 exp
(
qdi,t/T

) (10)

zdi,t =
exp

(
kdi,t/T

)
∑2

d=1 exp
(
kdi,t/T

) (11)

wherewd
i,t is soft target. zdi,t is the corresponding softmax value

for student model under the same temperature T . Then we can

obtain the Kullback-Leibler divergence based distillation loss:

L2 = − 1

T

T∑

t=1

M∑

i=1

[
w1

i,t log

(
z1i,t
w1

i,t

)
+ w2

i,t log

(
z2i,t
w2

i,t

)]

(12)
The overall loss is obtained by incorporating L1 and L2 as:

L = (1− λ)× L1 + λT 2 × L2 (13)

where λ is a hyper-parameter controlling the weights of two
losses. By employing this overall loss, the adapted model can
learn more information during the adaptation process, which
can alleviate the over-fitting problem to some extent.

4. Experiments and Result Analysis
4.1. Experimental setup

The training set of the pre-trained TS-VAD model was drawn
from Switchboard-1 Release 2 (LDC97S62) [26], Voxconverse
[27] DEV set, AMI corpus [28], and the simulated multi-
speaker conversations from the Librispeech dataset [29]. The
total training set contains about 2500-hour single-channel au-
dio data sampled at 16 kHz. Similar to [21], we also evaluated
the performance on eight domains1 in DIHARD-III [6] evalua-
tion corpus. The considerable variations across these domains
impose strict requirements on diarization systems.

For TS-VAD, we extracted 100-dim i-vectors following the
pipeline in Kaldi2 as the speaker embeddings. We set the out-
put speaker number M to 8, which can cover most domains in
the evaluation set. Moreover, for the special conversational tele-
phone speech (CTS) domain which is up-sampled from 8 kHz
and includes only two speakers, a two-speaker TS-VAD model
was used, and the original 8 kHz Switchboard [26] training data
was employed. During pre-training, we trained the 8-speaker
TS-VAD model on the 2500-hour dataset for 2 epochs, which
is consistent with [21]. We also trained the 2-speaker TS-VAD
model for 20 epochs. In the adaptation process, we used the
VBx [13] as the CSD system in non-overlap segment genera-
tion. We simulated the adaptation data through the open source
pipeline3 as in [21, 30]. For a 10-minute utterance, we simu-
lated about 4-hour adaptation data. We only performed one it-
eration and ran one epoch in this iteration, which effectively im-
proves the efficiency compared with [21]. We used Adam [31]
to optimize the model. The batch size was set to 8. All hyper-
parameters were obtained from the DEV set of the DIHARD-III
corpus. The constant α and β were set to 0.5 and 0.1, respec-
tively. γ was set to 0.7. The λ and T were set to 0.1 and 10,
respectively. The diarization error rate (DER) [32] was utilized
as the metric without forgiveness collar. The oracle VAD infor-
mation was used for all systems in our experiments.

4.2. Experimental results

Table 1 lists the DER performance comparison among different
systems on the evaluation set. Based on this table, several ob-
servations could be made. Firstly, although the TS-VAD model
can handle overlapping speech, the more robust VBx method
can achieve better performance on different domains, except
for the CTS where TS-VAD is trained on matched telephone

1The eight domains are BROADCAST, COURTROOM, MAP
TASK, CLINICAL, SOCIOLINGUISTIC LAB, SOCIOLINGUISTIC
FIELD, CTS and MEETING. The detailed introduction is in [6].

2https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5
3https://github.com/jsalt2020-asrdiar/jsalt2020 simulate

3484



Table 1: DERs (%) comparison among different systems on the eight domains of evaluation set from DIHARD-III Challenge. ITS-VAD
means iterative TS-VAD. BROADC. is BROADCAST. COURT is COURTROOM. SOC. is SOCIOLINGUISTIC.

System
Domain BROADC. COURT MAP TASK CLINICAL SOC.LAB SOC.FIELD CTS MEETING

VBx 4.22 3.08 3.41 11.08 6.04 8.05 14.20 33.20
TS-VAD 5.56 3.88 4.75 15.87 6.71 9.45 6.41 31.13

ITS-VAD [21] 4.46 3.07 3.20 10.03 3.81 7.10 6.11* 28.17
QM-TS-VAD 4.26 3.06 1.67 9.93 3.76 6.86 5.90 27.79

QM-TS-VAD + KD 4.23 3.12 1.59 9.81 3.69 6.67 5.85 27.48
* The original number in [21] is 9.71. Here we use a better two-speaker model as mentioned in Section 4.1, which leads to better performance.

dataset and MEETING domain whose overlap ratio is quite
high. This indicates that the performance of the pre-trained
TS-VAD model is unstable when encountering domain variabil-
ity. Secondly, employing the iterative unsupervised adaptation
method (ITS-VAD) in [21] has led to significant and consistent
performance improvements across eight domains. This indi-
cates that the ITS-VAD approach can effectively improve the
model by leveraging adaptation data. Thirdly, after applying
the quality-aware mask (i.e., QM-TS-VAD), almost all eight do-
mains have different degrees of improvements compared with
the ITS-VAD method, especially in the MAP TASK domain
where the relative improvement is 47.8%. This implies that
the quality-aware masking can efficiently purify the adaptation
data and improve the model performance. Moreover, note that
for ITS-VAD, the number of iterations in some domains may be
greater than one [33], while the proposed QM-TS-VAD only re-
quires one iteration, which significantly improves the efficiency
of the adaptation process. Furthermore, apart from the COURT
domain, the remaining seven domains show performance im-
provements after introducing the KD method (QM-TS-VAD +
KD), indicating that the KD method can alleviate the over-
fitting problem caused by misleading data that have not been
masked in the QM process. Besides, the proposed techniques
add minimal computation time, mainly from the data genera-
tion (about 300 seconds per utterance) and model refinement
(about 2-4 minutes per utterance) processes.

4.3. Analysis on quality-aware masking process

As illustrated in Table 1, the improvement brought by the QM
process varies in different domains. For instance, in the COURT
domain, the application of the QM process brings minimal im-
provement (from 3.07% to 3.06%), whereas in the MAP TASK
domain, the QM process can bring nearly 50% relative improve-
ment (from 3.20% to 1.67%). To analyze the reason for this
phenomenon, we conduct a statistic analysis when applying the
QM on the COURT and MAP TASK domains. Fig. 2 shows the
histograms of relative frequency (%) for posterior probabilities
(PP) estimated by the pre-trained TS-VAD model and the cor-
responding thresholds on MAP TASK (MT) and COURT do-
mains. As both domains have relatively good speaker priors,
the majority of posterior probabilities are close to 1, where the
QM process will not be applied. Therefore, we only consider
the posterior probabilities less than 0.5. As shown in Fig. 2 (a),
the posterior probability distribution of MT is relatively uni-
form, indicating that the pre-trained model lacks confidence in
a considerable portion of data. Consequently, the distribution
of corresponding dynamic thresholds is also relatively uniform
as shown in Fig. 2 (b), which can filter out a considerable num-
ber of segments that may contain potential interferences. On the
contrary, possibly due to the pre-training dataset containing cor-
pus with dialog styles similar to the COURT domain, the pre-

(a) The PP of MT (b) The threshold of MT

(c) The PP of COURT (d) The threshold of COURT

Figure 2: Relative frequency (RF) statistics for posterior proba-
bilities (PP) estimated by the pre-trained TS-VAD and the corre-
sponding thresholds on MAP TASK (MT) and COURT domains.

trained TS-VAD model is very confident in the COURT domain.
The corresponding posterior probabilities under 0.5 are concen-
trated around 0, as shown in Fig. 2 (c). This makes the cor-
responding dynamic thresholds also around 0, as in Fig. 2 (d),
resulting in a small portion of the data being masked, thereby
leading to minimal changes in performance. However, setting a
minimum value for the dynamic thresholds would mask a con-
siderable amount of data on COURT, leading to a decrease in
performance as well. Therefore, the improvements achieved by
the QM process in a relatively matched scenario are relatively
small, which is consistent with our intuition.

5. Conclusion
In this paper, we propose an unsupervised adaptation approach,
called QM-TS-VAD, with quality-aware masking for speaker
diarization. Moreover, we introduce a knowledge distillation
(KD) technique in addition to QM-TS-VAD. Experiments on
the eight domains from DIHARD-III Challenge show that QM
can effectively purify the adaptation data, and KD can further
alleviate the over-fitting problem. In the future, we will explore
speaker priors to better purify the adaptation data.
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