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ABSTRACT

We study four data augmentation (DA) techniques and two model
architectures on realistic data for sound event localization and detec-
tion (SELD). First, based on ResNet-Conformer (RC), we compare
the four DA approaches on the realistic DCASE 2022 SELD test set
which is often not easy to handle due to room reverberations and au-
dio overlaps in spontaneous recordings. Experimental results show
that, except for audio channel swapping (ACS), the other three data
augmentation methods that work well on the simulated SELD data
set are no longer effective due to mismatches between simulated and
realistic conditions. Next, using ACS-based augmentation, the two
improved ResNet-Conformer networks further enhance SELD per-
formances in realistic conditions. By incorporating these two sets of
techniques, our overall system ranked the first place in SELD task of
the DCASE 2022 Challenge.

Index Terms— Sound event localization and detection, realistic
data, data augmentation, model architecture, DCASE 2022

1. INTRODUCTION

Sound event localization and detection (SELD) is a task to identify
various types of sound events and the corresponding direction-of-
arrival (DOA) in a sound scene over time [1]. It has broad appli-
cations, such as detection and localization of alarms, audio surveil-
lance, bio-diversity monitoring and virtual reality [2–4]. SELD has
attracted a lot of attention since it was introduced in the Detection
and Classification of Acoustic Scenes and Events (DCASE) Chal-
lenge in 2019 [1], which provides a standard data set for researchers.

The SELD problems contain two subtasks: sound event detec-
tion (SED) and sound source localization (SSL). In the early stages,
these two tasks are treated separately. For the SED, some conven-
tional methods are developed from the automatic speech recognition
(ASR) area, e.g., hidden Markov models (HMMs) [5] and Gaussian
mixture models (GMMs) [3]. Some studies utilize the support vector
machines (SVM) and non-negative matrix factorization (NMF) for
sound event detection [6, 7]. For the SSL, most conventional meth-
ods are based on the array processing approaches, such as acoustic
intensity vector analysis and steered response power [6,8]. In recent
years, neural network (NN)-based methods have been widely used
in SELD [1, 4, 9–14]. According to the modeling methods, these
methods can be roughly divided into two categories. The first one
adopts the deep neural networks for sound event detection (SED)

∗corresponding author

and still utilizes the physics-based signal processing algorithms for
sound source localization (SSL) [9]. The second one uses the NN-
based methods for joint modeling of detection and localization in
the SELD task, which has gained more and more interest and been
widely used in the DCASE Challenges [1, 4, 10–14]. In [4], two
branches, namely, the SED branch and DOA branch, are adopted
to perform the SED and SSL in a single network. In [11], a two-
stage method is proposed, which learns SED first, and then uses the
learned feature layers to estimate DOA. Then activity-coupled Carte-
sian DOA (ACCDOA) and multi-ACCDOA representations are pro-
posed [12, 13], which combine SED and DOA estimation together
and enable the SELD task to be solved through a single target. An
event independent network V2 (EINV2) is proposed in [14] to han-
dle the SELD task through a track-wise format.

One important factor of these NN-based methods is the model
architecture. Various architectures have been explored for the SELD
task [2,4,14,15]. In [4], convolutional and recurrent neural network
(CRNN) is adopted in SELD task and becomes a widely used ar-
chitecture in DCASE Challenges. In [14], Multi-head self-attention
(MHSA) is shown to be effective for SELD. In [2], the Conformer
[16] is adopted in ResNet to model the global and local information,
called ResNet-Conformer. Besides, densely connected multidilated
DenseNet (D3Net) and time-frequency RNN (TFRNN) are utilized
in [15], which helped their system achieve first place in the DCASE
2021 SELD task. The training data size is another important factor
for the NN-based methods. Different data augmentation techniques
have been explored, such as equalized mixture data augmentation
(EMDA), Cutout, SpecAugment and Mixup [17–20]. In [2], a four-
stage data augmentation approach is proposed, including audio chan-
nel swapping (ACS), multi-channel simulation (MCS), time-domain
mixing (TDM), and time-frequency masking (TFM).

As described above, the SELD area has made great progress by
introducing NN-based methods. However, most of them are eval-
uated on the simulated datasets and have not been explored in real
scenes. Therefore, in this paper, we explore the two main factors
in NN-based SELD methods under realistic conditions by leverag-
ing the DCASE 2022 SELD dataset [21], namely data augmentation
methods and model architectures. The key contributions of this pa-
per are three-fold: (1) we explore different data augmentation meth-
ods on the realistic data and compare with their performances ob-
tained on the simulated data; (2) we improve the original ResNet-
Conformer for the SELD task, which can achieve better performance
under realistic scenes; and (3) by incorporating these two key meth-
ods, our overall system achieved first place among all submitted sys-
tems in the SELD task of the DCASE 2022 Challenge.IC
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Table 1: The statistics of duration (minute) and overlap ratio (%) for each class on the testing part of the DCASE 2022 SELD dataset.

Sound Class
Female
Speech

Male
Speech

Clapping Telephone Laughter
Domestic
Sounds

Walk Door Music
Musical

Instrument
Water Tap Bell Knock

Duration (min) 23.04 53.66 0.98 1.50 4.47 23.18 1.18 0.52 45.49 14.43 3.45 1.95 0.08

Overlap Ratio (%) 60.00 54.25 83.19 51.89 84.79 69.56 54.79 66.77 67.20 85.62 79.79 100.00 82.22

2. DATA ANALYSIS

Unlike previous iterations, the SELD task in DCASE 2022 uses
recordings of real sound scenes to evaluate the systems for the first
time, bringing significant differences in the dataset [21]. Through
analysis of the DCASE 2022 SELD dataset, the biggest difficulties
can be summarized into three aspects. First of all, the class pres-
ences depend on the natural actions and interactions in real scenes,
which may lead to the uneven distribution of classes. Table 1 lists
the statistics of duration and overlap ratio for each class on the test-
ing part of the released DCASE 2022 SELD dataset. As can be seen,
the duration of class ‘Female Speech’ is 53.66 minutes, while that of
class ‘Knock’ is only 0.08 minutes. This will pose a challenge to the
SED task. Secondly, unlike the simulated data which use the cap-
tured spatial room impulse responses (SRIRs) to generate the spatial
information, real SELD data contain more complex reverberations
changing with rooms, sound locations, and array positions. This will
increase the difficulty of the SSL task. Finally, it is very common for
sound events to occur simultaneously in real scenes. From Table 1
we can see that the overlap ratios of all events are more than 50%,
and the overlap ratio of class ‘Bell’ even reaches 100%. Especially,
the realistic overlapping regions are not the simple addition of sin-
gle sources with different signal-to-noise ratios (SNRs) like in the
simulated dataset. The high overlap ratios in real data will make the
SELD task face severe challenges.

In previous work [2], our team proposed a four-stage data aug-
mentation approach and employed the ResNet-Conformer to process
the simulated DCASE 2020 SELD task, which has achieved good
results. However, whether these methods are effective on more dif-
ficult real data is still unknown. Therefore, based on our previous
methods, we conduct an experimental exploration of data augmen-
tation methods on real data and also improve the ResNet-Conformer
for real scenarios. These two key methods bring the main improve-
ments for our DCASE 2022 SELD system [10].

3. TECHNIQUES FOR PERFORMANCE IMPROVEMENT

3.1. Data Augmentation

Audio Channel Swapping - In the DCASE SELD task, the 4-channel
first-order Ambisonics (FOA) spatial format 1 is conversed from the
32-channel recordings. Considering a sound source from the az-
imuth angle φ and elevation angle θ, we can decompose the sound
field on the FOA channels as: S1(t, f)

S2(t, f)
S3(t, f)
S4(t, f)

 =

 1
sin(φ)cos(θ)

sin(θ)
cos(φ)cos(θ)

 p(t, f). (1)

where p(t, f) is a point of the sound source in the time-frequency
(T-F) domain. Si(t, f) corresponds to the i-th channel in FOA data.

1There are two data formats, namely first-order Ambisonics (FOA) and
tetrahedral microphone array (MIC) in the DCASE dataset. We find that
FOA can achieve slightly better results than MIC. Therefore, the data aug-
mentation methods are all applied to the FOA data.

Therefore, the frequency-independent spatial responses of the FOA
channels can be obtained as:

H1(φ, θ, f) = 1, H2(φ, θ, f) = sin(φ)cos(θ),

H3(φ, θ, f) = sin(θ), H4(φ, θ, f) = cos(φ)cos(θ).
(2)

whereHm(φ, θ, f ) denotes the spatial response of them-th channel.
From Eq.2, we can see that the spatial responses of the FOA record-
ings can be represented as cosine functions, which correspond to the
DOAs. Therefore, the angle transformations of DOAs can be easily
expressed by this form. Eight DOA transformations were performed
for ACS augmentation in our submitted system, as detailed in [2],
and this method is also discussed in [22]. Note that the ACS method
preserves the reverberation characteristics of real data and doesn’t
simulate new overlapping segments.

Multi-Channel Simulation - Multi-channel simulation (MCS)
[2] is an augmentation technique to directly generate new data,
whose procedure can be summarized as two steps: (1) extracting
the spectral and spatial information from the non-moving single
sound event segments in original recordings; (2) randomly select-
ing the extracted spectral and spatial information to simulate the
multi-channel data. The details can be found in [2].

Time-Domain Mixing - We simulate the overlapping segments
by mixing two single sources in realistic recordings. Previous results
[2] on the simulated dataset show that TDM can improve the model’s
ability to handle overlapping segments.

Time-Frequency Masking - We also use the SpecAugment [19]
method to improve the generalization ability of the model. The time
and frequency masks are randomly applied on the extracted log Mel-
spectrogram features during the training process.

3.2. Model Architecture

The ResNet-Conformer [2] can capture both the global- and local-
level dependencies within the input audio sequences, which has been
proven effective in the simulated dataset. In the SELD task of the
DCASE 2022 Challenge, we employ the ResNet-Conformer as our
main model architecture. The overall architecture of the ResNet-
Conformer is shown in Fig. 1. As can be seen, we first use a
ResNet18 network to extract the deep representations. Then the
Conformer [16] is used to model the context dependencies within
the input. Suppose the input of one Conformer layer is z, we can
obtain the output as:

ẑ =
1

2
FFN(z) + z, (3)

z′ = MHSA(ẑ) + ẑ, (4)

z′′ = Conv(z′) + z′, (5)

o = Layernorm(
1

2
FFN(z′′) + z′′). (6)

where FFN(·), MHSA(·), Conv(·) and Layernorm(·) denote the
feed forward network, multi-head self-attention module, convolution
block, and layer normalization, respectively. The convolution block
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Fig. 1: The overall architecture of the ResNet-Conformer used in our DCASE 2022 SELD system, which mainly contains a ResNet18 network
and N Conformer layers. ‘MHSA’ means multi-head self-attention. ‘T-F’ means time-frequency. The red dotted boxes indicate the selected
positions for the time pooling, and we choose one of them to perform the time pooling.

can exploit the local features, and the self-attention can capture the
global context, which is beneficial for handling the SELD tasks.

ResNet-Conformer can achieve better performance than the
baseline CRNN. However, there is a disadvantage in the ResNet-
Conformer. In the DCASE 2022 SELD task, time pooling is usually
performed only once to make the time resolution of features the
same as the labels. However, the original ResNet-Conformer ap-
plies the time pooling at the ‘T-F Pooling 1’ (TFP1) position in the
first ResNet layer, as shown in Fig. 1. Therefore, a problem worth
considering is that applying pooling in the time dimension so early
may cause losses of information in subsequent neural networks.
Especially in real scenes, the time duration distribution of different
classes is extremely uneven, and some classes with less time dura-
tion need a higher time resolution for detection and localization. To
deal with this problem, we have made different improvements to the
model architecture. The first one is we only perform the frequency
pooling in the ResNet, and move the time pooling operation between
the ResNet and Conformer, as shown in ‘Time Pooing 2’ (TP2) in
Fig. 1, which is called ResNet-Conformer with middle pooling
(RCMP). Similarly, the second one is we only apply the time pool-
ing after the Conformer, as shown in ‘Time Pooing 3’ (TP3) in Fig.
1, which is called ResNet-Conformer with late pooling (RCLP).
Such adjustments help the model to obtain higher time resolution
under the same inputs.

4. EXPERIMENTS AND RESULT ANALYSIS

We evaluate SELD on the official development set of the DCASE
2022 Task 3 [21]. The set totals 121 recording clips (about 5 hours),
which can be split into a training part (dev-set-train, 67 clips) and a
testing part (dev-set-test, 54 clips) according to the official set. We
follow this configuration and also add the 1200 one-minute synthe-
sized mixtures (synth-set) offered by organizers to build the basic
training set (about 23 hours). All above recordings are 4-channel
with a 24 kHz sampling rate. We apply the short-term Fourier
transform (STFT) on 4-channel FOA audios to extract log Mel-
spectrograms. Then we calculate the 3-channel acoustic intensity
vector (IV). We concatenate them to get the 7-channel feature at
each frame. In DCASE 2022 SELD task, the CRNN is still utilized

as the model architecture of baseline. We use the ResNet-Conformer
as our main model architecture [2]. The number of attention heads
is 8. The dimensions of input, key and value vectors are set to 256,
32 and 32, respectively. The number of Conformer layers N is set
to 8. Adam [23] is adopted as the optimizer. The tri-stage learning
rate scheduler [19] is used with an upper limit of 0.001. The max-
imum number of training steps is set to 120,000. To make a fair
comparison, the output format is unified as multi-ACCDOA in this
paper. The mean square error (MSE) loss with auxiliary duplicating
permutation invariant training (ADPIT) [13] is utilized to optimize
the model. We evaluate all methods with SELDscore [24], which is
calculated as:

SELDscore =
1

4
[ER20o + (1− F20o) + LE

′
CD + (1− LRCD)] (7)

where ER20o and F20o are location-dependent error rate and F-score
when the spatial error is within 20o. LE

′
CD = LECD/π, in which

LECD denotes the localization error between predictions and refer-
ences of the same class. LRCD is a simple localization recall metric.
Note that the F20o , LECD and LRCD in DCASE 2022 SELD task are
calculated through macro-averaging [21], which is different from the
micro-averaging used in previous challenges. However, the relative
trends of these two calculation methods are usually consistent.

4.1. Evaluation of the Data Augmentation Methods

Table 2 lists the performance comparison among different DA
methods on the SELD dataset from the DCASE 2022. To explore
whether these methods are effective under realistic conditions, we
first apply them separately to the SELD dataset based on the ResNet-
Conformer. As can be observed, the performances of these methods
are quite different on the realistic dataset. The ACS method still
achieves effective improvement (20.0% relatively), which is con-
sistent with its performance on the simulated dataset [2]. However,
the other three methods (MCS, TDM and TFM) bring limited im-
provements (2.0% to 4.0% relatively), which is very different from
their performances on the simulated dataset [2]. Even combing with
ACS, they still cannot achieve effective improvement. According
to the gap between the real and simulated data and the characteris-
tics of DA methods, the reasons for this difference can be roughly

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 08,2023 at 11:13:40 UTC from IEEE Xplore.  Restrictions apply. 



Table 2: The performance comparison among different data aug-
mentation methods on the SELD dataset of the DCASE 2022 Chal-
lenge, including ACS, MCS, TDM and TFM. ‘Base’ denotes the
basic training set. The model architecture is ResNet-Conformer.

Data ER20◦ F20◦ LECD LRCD SELDscore

Base 0.72 27.0% 25.40◦ 62.0% 0.50

ACS 0.56 42.0% 20.60◦ 67.0% 0.40 (20.0% ↓)
MCS 0.71 32.0% 21.26◦ 56.0% 0.48 (4.0% ↓)
TDM 0.69 28.0% 22.88◦ 59.0% 0.49 (2.0% ↓)
TFM 0.69 33.0% 22.50◦ 57.0% 0.48 (4.0% ↓)

ACS + MCS 0.57 42.0% 20.50◦ 66.0% 0.40 (20.0% ↓)
ACS + TDM 0.57 40.0% 18.61◦ 66.0% 0.40 (20.0% ↓)
ACS + TFM 0.55 46.0% 20.50◦ 64.0% 0.39 (22.0% ↓)

summarized in two aspects: (1) ACS method does not destroy the re-
verberation conditions and overlapping segments of real recordings,
so it can bring relatively large improvement in real scenes. How-
ever, MCS and TDM change the spatial information and generate
new overlapping segments, respectively, which are quite different
from the realistic scenes, therefore resulting in little performance
improvement; (2) the occurrences of simultaneous events are fairly
common in the realistic SELD dataset as illustrated in Table 1. This
leads to the reduction of single-event segments used for MCS and
TDM, making the corresponding improvements not obvious. As
for TFM, the experiments in [2] show that the improvement is ob-
vious when the data size is large in the SELD task. However, due
to the annotation complexity, the size of real data is usually small,
making it difficult for TFM to achieve sufficient improvement in
real scenarios. When combined with ACS, TFM can bring slight
improvement (from 0.40 to 0.39), but this improvement is still not
as obvious as that under simulated conditions. Therefore, in order to
improve the training efficiency, only the ACS method is employed
in our subsequent experiments.

4.2. Evaluation of the Model Architectures

Table 3 compares the performances of different model architectures
introduced in Section 3.2 on DCASE 2022 SELD dataset. ‘Base’ de-
notes the basic training set offered by the organizers. We first com-
pare the different architectures using the basic training set. As can
be seen, the model can achieve better performance in both detec-
tion and localization tasks as the time pooling operation gradually
moves backward. This shows that with the higher time resolution,
the improved ResNet-Conformer can detect events more accurately,
and also can better track the movements of the sound sources in the
real scene. Finally, we train the modified RC with the ACS dataset,
and moving back the time pooling can achieve more significant im-
provements, yielding a 32.1 % relative improvement compared with
the baseline. We also added some post-processing methods during
the challenge, such as dynamic threshold and time-overlapped test-
ing [10], denoted as ‘RCLP + PP’ in Table 3. After fusing the ACC-
DOA and multi-ACCDOA based systems, we obtained the final re-
sults, which achieves a 52.8 % relative improvement compared with
the baseline and first place in the SELD task of DCASE 2022.

To better illustrate the impacts of different methods, we choose
one recording and present the corresponding SED results in Fig. 2.
As can be seen, the ‘RC + Base’ can roughly detect sound events,
but there are several obvious errors as shown in Fig. 2 (b): (1) mis-
takenly classifying the ‘class 8’ (green line, Music) into the ‘class 5’

Table 3: The performance comparison among different model ar-
chitectures on the DCASE 2022 SELD dataset. The model archi-
tectures include ResNet-Conformer (RC) (as in Table 2), ResNet-
Conformer with middle pooling (RCMP), and ResNet-Conformer
with late pooling (RCLP). PP means post-processing.

Models Data ER20◦ F20◦ LECD LRCD SELDscore

Baseline (CRNN)

Base

0.72 24.0% 26.61◦ 49.0% 0.53
RC (in Table 2) 0.72 27.0% 25.40◦ 62.0% 0.50 (5.7% ↓)

RCMP 0.70 32.0% 21.18◦ 58.0% 0.48 (9.4% ↓)
RCLP 0.71 31.0% 22.30◦ 64.0% 0.47 (11.3% ↓)

RC (in Table 2)
ACS

0.56 42.0% 20.60◦ 67.0% 0.40 (18.9% ↓)
RCMP 0.50 49.0% 17.47◦ 63.0% 0.37 (30.2% ↓)
RCLP 0.51 51.0% 17.34◦ 66.0% 0.36 (32.1% ↓)

RCLP + PP [10] - 0.41 61.0% 15.30◦ 74.0% 0.28 (47.2% ↓)
Submission [10] - 0.38 67.0% 14.80◦ 78.0% 0.25 (52.8% ↓)

(a) SED Reference (b) RC + Base

(c) RC + ACS (d) RCLP + ACS

Fig. 2: The visualization and comparison of SED results of differ-
ent methods, including ResNet-Conformer (RC) trained on the basic
training data (denoted as RC + Base), RC trained on the audio chan-
nel swapping (ACS) data (denoted as RC + ACS), and RCLP trained
on the ACS data (denoted as RCLP + ACS).

(yellow line, Domestic sounds) and ‘class 9’ (purple line in dotted
box, Musical instrument); (2) cannot distinguish between the ‘class
0’ (blue line, Female speech) and ‘class 1’ (red line, Male speech).
Through employing the ACS method, the model can better distin-
guish between these classes and the missing ‘class 0’ and ‘class 8’
are partially corrected. Meanwhile, the ‘class 5’ and ‘class 9’ are
also obviously shielded. Moreover, with higher time resolution, the
model can further distinguish between the ‘class 0’ and ‘class 1’, and
further shield ‘class 5’, as shown in Fig. 2 (d).

5. SUMMARY

We explore four data augmentation approaches and two improved
RC architectures with realistic recordings for SELD. We find that
the four augmentation methods behave differently in simulated and
realistic data sets. High feature resolution often benefits the model
performance. Moreover, a good combination of techniques can help
the models achieve further improvements. In the future, we will ex-
plore more effective techniques for SELD under realistic conditions.
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