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AbstractÐThe Machine Anomalous Sound Detection task aims
to design a system to detect unknown anomalous sounds given
only the sounds of machines working normally. The sounds
emitted by different types of machines often have different
characteristics, and the environments in which the machines
work (such as temperature, noise, etc.) are constantly changing,
which also affects the acoustic characteristics of the machine
sound, so this is a challenging task. To this end, we propose a
method for anomalous sound detection based on self-supervised
classification. First, we obtain an effective feature representation
of the sound by extracting frequency domain and time domain
features from the raw wave and extracting pre-trained features
based on the pre-trained model. Then, we design an auxiliary
loss based on the attribute information of the audio, which
helps the model to distinguish different operating conditions of
the machine. Finally, we extract latent representations from the
trained model, and calculate the anomaly score of the machine
based on the distance metric. Experimental results on the DCASE
2022 Challenge Task 2 dataset demonstrate the effectiveness of
our method. Moreover, we analyze the complementarity between
different feature representations, which proves that the feature
representations used in our method are effective.

I. INTRODUCTION

Anomalous Sound Detection (ASD) is the task of judging

whether a machine is working normally or abnormally based

on the sound it makes while working. The detection of machine

anomalous sounds is of great significance to the development

of the industry, so more and more researches have been

carried out on the ASD task in recent years. ASD is a

challenging task. On the one hand, in real-world conditions,

it is often easier for us to obtain the sound of the machine

working normally, while the anomalies are rare and highly

diverse. Therefore, we need to design the ASD system to

detect unknown anomalous sounds using only normal sounds.

On the other hand, the acoustic characteristics of machine

sounds are affected by changing operating conditions (such

as environmental noise, temperature, etc.), which makes it

difficult for the ASD system to accurately detect whether the

machine is working abnormally.

Recently, many methods have been used in the ASD task.

Among them, one main type is based on generative mod-

els, such as autoencoder (AE) [1], [2], [3], [4], [5], [6],

[7], interpolation deep neural network (IDNN) [8], flow [9],

WaveNet [10]. Another mainstream method is to use the

information of machine type and section ID to implement
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ASD based on classification [11], [12], [13], [14], [15], [16],

[17], [18]. Different section IDs of a machine represent dif-

ferent machine operating conditions that have changed, such

as operating voltage, factory noise, etc. However, methods

for detecting anomalies based on reconstruction errors (such

as AE) often suffer from performance degradation due to

the limitation that only normal samples can be used during

training, if the characteristics of some training samples are

similar to the abnormal samples during testing. Classification-

based methods are also likely to perform poorly because some

of the training samples (normal) have similar characteristics

to the test samples (normal or abnormal). At the same time,

if we only use the section ID information of the machine

for classification and ignore the different working conditions

of the machine, the ASD system often cannot detect anoma-

lous sounds well when encountering new working conditions.

Therefore, the discriminativeness of the acoustic features used

and the ability of the model to distinguish and adapt to different

working conditions are the keys to the success of the ASD

system.

Log-Mel spectrograms are often used as input features

for ASD systems [19], [20], [21], [22]. However, log-Mel

spectrograms may lose useful high-frequency information, so

time-domain features are extracted from the raw wave and con-

catenated with frequency-domain features to obtain STgram

features [23]. However, compared to log-Mel spectrograms,

the performance of ASD systems may be affected by the noise

contained in the temporal information that Tgram features may

bring in [23].

In order to obtain a more discriminative feature representa-

tion of machine sounds and help the model to distinguish and

adapt to different machine conditions, we develop an effective

ASD system. First, to utilize the complementarity between

different features, we extract the pre-trained features from the

raw wave based on the pre-trained model, and concatenate

them with the frequency domain and time domain features.

Second, in addition to the section ID, we also use the attribute

information (including different operating conditions of the

machine) to design auxiliary loss, so that the ASD system

can adapt to the new environments to achieve good anomaly

detection performance. Finally, in order to better measure the

difference between abnormal samples and normal samples, we

extract the latent embeddings of training and test data through

the trained self-supervised classifier to measure the cosine
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Fig. 1. The framework of the proposed anomalous sound detection system.

distance between test samples and training data to calculate

the anomaly score.

II. METHOD

The overall framework of our proposed anomalous sound

detection method is shown in Fig. 1. For the training data, we

first obtain an effective representation for each audio through a

feature extractor, and then a self-supervised classifier is trained

to learn the representation. Among them, the features extracted

by the feature extractor include log-Mel spectrograms, Tgram

features and pre-trained features. Specifically, the log-Mel

spectrograms are generated by short-time Fourier transform

(STFT) and Mel-filter banks, and Tgram features are extracted

from the raw wave based on TgramNet [23]. Finally, in order

to improve the representation ability of the feature and the

generalization of the model, we extract pre-trained features

based on the pre-trained model. During training, the attribute

information of each audio is used to calculate the auxiliary

loss, which helps us better train the self-supervised classifier.

For the test data, firstly, the effective representation is obtained

based on the feature extractor, and then the trained self-

supervised classifier is used to obtain the embeddings, so

that the cosine distances between the embeddings of the test

sample and the training data are calculated. There are only

normal sounds in the training data, while there are normal and

anomalous sounds in the test data. For anomalous samples,

they are obviously farther away from the normal samples, so

their anomaly score is higher.

A. Feature Extraction

In order to obtain a more powerful representation, the raw

wave needs to be processed by three parts of the feature ex-

tractor, and finally the three features are concatenated together

as a representation of the input audio.

The input a is a single-channel audio signal. First, the

spectrogram is obtained based on the short-time Fourier trans-

form, and then the log-Mel spectrogram (denoted as FL) is

obtained by passing through the Mel-filter banks and taking

the logarithm as follows:

FL = log-Mel(||STFT(a)||2), (1)

where log-Mel represents Mel-filter banks and logarithmic

operation, and the FL dimension is F × T (F is the number

of Mel-frequency bins, and T is the number of frames in the

time domain).

The log-Mel spectrogram may lose critical high frequency

information because the Mel-filter banks are used. In previous

work, [23] has demonstrated that extracting temporal feature

information from the raw wave based on TgramNet [23] is

highly complementary to log-Mel spectrogram. Therefore, we

obtain the Tgram feature FT based on TgramNet as follows:

FT = TgramNet(a), (2)

where TgramNet is a CNN-based network [23], and the

dimension of FT is F × T , which is the same as that of the

log-Mel spectrogram FL.

We use the pre-trained model to increase the generalization

of the model. First, general training is performed on a large

number of labeled or unlabeled data, and then fine-tuning is

conducted with a limited amount of target data to improve the

performance of downstream tasks.

We employ the wav2vec 2.0 [24] pre-trained model, which

uses a multilayer convolutional neural network to process the

raw wave of speech audio. We fine-tune it on the dataset

used in our experiments, and then based on this fine-tuned

model, latent representations FP of the training and test data

are obtained as follows:

FP = PTM(a), (3)

where PTM represents the pre-trained model, and the dimen-

sion of FP is F × T .

Finally, we concatenate the above three features to obtain

an effective representation FLTP of the input audio as follows:

FLTP = Concatenate(FL, FT, FP). (4)

where the dimension of FLTP is 3× F × T .

B. Auxiliary Loss

The datasets we use are from the development dataset and

additional training dataset of the Detection and Classification

of Acoustic Scenes and Events (DCASE) Challenge 2022 Task
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2 [25]. They are recorded in different environments or states

(e.g., different noises, different machine speeds, etc.), and the

file name of each audio gives its attribute label information.

Taking Slide rail in the dataset as an example, we can know

its attribute information such as velocity, acceleration and

factory noise. In the real world, the operating environment

and state of each machine are constantly changing, so if the

attribute information such as different environments or states

can be distinguished, it will help the model to adapt to new

environmental noise, machine working state and potential other

new conditions, so that the model can detect anomalous sounds

more accurately in different environments or states.

Therefore, when training the self-supervised classifier, in

addition to the cross entropy (CE) loss and batch hard triplet

loss [26] used to classify the section ID of the machine, an

auxiliary loss is also added to classify the different attribute

information of the machine. The loss function we use is as

follows:

Loss = LCE + LTriplet + LAuxiliary. (5)

C. Distance Metric

In order to get the outlier of each test sample, firstly, we

extract the embeddings of the training and test data based

on the trained self-supervised classifier, and then measure the

cosine distance between the test sample and the training data

(all normal samples) to obtain the anomaly score. Obviously,

for the anomalous sound in the test data, it is farther from

normal samples, and the anomaly score is higher, so as to

achieve the purpose of detecting anomalous sound. Compared

to directly obtaining the posterior probability from the softmax

layer of the self-supervised classifier to calculate the anomaly

score, the distance metric approach can characterize the dif-

ference between anomalous and normal samples based on a

more effective latent representation obtained from the model.

In the dataset we use, the test data has three types of section

IDs, namely Section 00, Section 01 and Section 02. The first

way to calculate the anomaly score is to obtain the posterior

probability pθ that each test sample predicted by the model

belongs to its correct section ID from the output of the softmax

layer, so as to calculate the anomaly score as follows:

Aθ(Xj) = log
1− pθ

pθ
, (6)

where Xj is the audio feature of the j-th test sample, pθ is the

softmax output of the model for the correct section ID, and

Aθ is the anomaly score for each audio.

To calculate the anomaly score based on the distance metric,

firstly, the embeddings of the training and test data are obtained

from the trained model, and then the distances between the test

sample and all the training data belonging to the same section

ID are calculated, and they are sorted from smallest to largest.

Thus, the anomaly score can be calculated as follows:

Aθ(Xj) = 1− max
k=1,...,K

(cos(ETest
i,j , ETrain

i,k )). (7)

where Xj is the audio feature of the j-th test sample, ETest
i,j

is the embedding of the the j-th test sample whose section ID

is i, and ETrain
i,k is the embedding of the the k-th training data

whose section ID is also i. There are a total of K training data

with section ID i.

III. EXPERIMENTS AND ANALYSIS

A. Dataset and Evaluation Metrics

We conduct experiments using the DCASE Challenge 2022

Task 2 [25] development and additional training datasets,

which are generated from the ToyADMOS2 [27] and MIMII

DG [28] datasets, with a total of seven classes of machines,

namely ToyCar and ToyTrain from ToyADMOS2 and Fan,

Gearbox, Bearing, Slide rail (Slider), and Valve from MIMII

DG. Each recording is a single-channel and 10-second long

audio. Each type of machine in the development dataset has

three section IDs (i.e., Section 00, Section 01 and Section 02),

and each type of machine in the additional training dataset

also has three section IDs (i.e., Section 03, Section 04 and

Section 05). The section is the unit in which performance

metrics are calculated. In our experiments, the training data

(only normal sound) from the development dataset and the

additional training dataset are used as training set, and the

test data (normal and anomaly sound) in the development

dataset are used for evaluation. When different audios are

recorded, there are differences in properties such as factory

noise, running speed, acceleration, etc. The data of each type

of machine is divided into the source domain and the target

domain. From the source domain to the target domain, there

are differences in these attributes. The training set gives these

attribute information. The specific number of attribute classes

is expressed as machine type (number of attributes) as follows:

ToyCar (22), ToyTrain (23), Fan (12), Gearbox (44), Bearing

(34), Slider (37), Valve (15).

The machine anomalous sound detection task is evaluated

using the area under the receiver operating characteristic

(ROC) curve (AUC) and the partial-AUC (pAUC) [25]. The

pAUC is calculated as the AUC over a low false-positive-rate

(FPR) range [0, p] (p = 0.1) [25]. The final anomaly score Ω
is given by the harmonic mean of the AUC and pAUC scores

over all the machine types, sections, and domains as follows:

Ω = h[ AUCm,n,d, pAUC | m ∈ M,

n ∈ S(m), d ∈ {source, target} ],
(8)

where h[·] represents the harmonic mean (over all machine

types, sections, and domains), M represents the set of machine

types, and S(m) represents the set of sections for machine type

m.

Similarly, the anomaly score for each machine is given by

the harmonic mean of the AUC and pAUC scores over all the

sections and domains as follows:

Ω = h[ AUCn,d, pAUC | n ∈ S(m),

d ∈ {source, target} ].
(9)
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TABLE I
EXPERIMENTAL CONFIGURATIONS FOR ABLATION EXPERIMENTS

Experiment No. Features Loss Anomaly Score Calculation Method

1(Baseline) LogMel CE Loss+Batch Hard Triplet Loss Classification Confidence (Eq. (6))
2 LogMel+Tgram CE Loss+Batch Hard Triplet Loss Classification Confidence
3 LogMel+Pre-trained Features CE Loss+Batch Hard Triplet Loss Classification Confidence
4 LogMel+Tgram+Pre-trained Features CE Loss+Batch Hard Triplet Loss Classification Confidence
5 LogMel+Tgram+Pre-trained Features CE Loss+Batch Hard Triplet Loss+Auxiliary Loss Classification Confidence
6 LogMel+Tgram+Pre-trained Features CE Loss+Batch Hard Triplet Loss+Auxiliary Loss Distance Metric (Eq. (7))

B. Ablation Experiments

On the basis of the baseline system, we conduct ablation

experiments from three aspects: features, loss, and anomaly

score calculation methods. The experimental numbers and

their corresponding experimental configurations are shown in

Table I. It is worth noting that in the following experiments,

except for the features, loss, and anomaly score calculation

methods, other experimental configurations are the same as

the baseline system.

1) Baseline System: The log-Mel spectrogram is used as the

input to the baseline system. To generate log-Mel spectrogram,

the short-time Fourier transform (STFT) with 1024 FFT points

is applied, utilizing a window size of 1024 samples, a hop

length of 512 samples and a dimensional Mel basis of 128.

We choose the time-delay neural network (TDNN) as the

baseline classifier. To train this model, Adam optimizer [29]

is used with the learning rate of 0.0002 for 100 epochs, and

CE loss and batch hard triplet loss are adopted. In addition,

the calculation method of the anomaly score of the test data

is shown in Eq. (6). The performance of the baseline system

on the test data is shown in Table II.

TABLE II
MACHINE ANOMALY SCORES FOR BASELINE SYSTEM (%)

Experiment No. 1(Baseline)

ToyCar 50.08
ToyTrain 48.96
Bearing 59.82

Fan 57.83
Gearbox 63.56

Slider 77.18
Valve 69.92

Total 59.63

2) Pre-trained Features: We use TgramNet to extract

Tgram features and concatenate them with log-Mel spec-

trograms to obtain STgram [23] features. Meanwhile, the

wav2vec2.0 pre-trained features are concatenated with log-Mel

spectrograms. Finally, the two features are connected to log-

Mel spectrograms simultaneously. The experimental results are

shown in Table III.

As can be seen from Table III, after the Tgram features

and pre-trained features are concatenated respectively, the

total anomaly score is improved from 59.63% to 61.05% and

60.38%, respectively. When these two features are concate-

nated at the same time, the total anomaly score improves from

59.63% to 63.26%, a total improvement of 3.63%. And in the

TABLE III
MACHINE ANOMALY SCORES UNDER DIFFERENT FEATURES (%)

Experiment No. 1 2 3 4

ToyCar 50.08 48.10 49.88 50.46

ToyTrain 48.96 50.14 50.20 51.32

Bearing 59.82 57.34 55.96 59.16
Fan 57.83 74.54 55.55 70.43

Gearbox 63.56 62.09 69.29 65.07

Slider 77.18 71.10 73.43 78.76

Valve 69.92 77.49 83.01 82.01

Total 59.63 61.05 60.38 63.26

anomaly scores of each type of machines, except for Bearing,

the other six types of machines perform better than the

baseline. However, when these two features are concatenated

separately, the anomaly scores on only some machines are

improved relative to the baseline, which illustrates that the

feature representations obtained by concatenating these two

features at the same time are highly discriminative.

3) Auxiliary Loss: Through the above ablation experiments,

we demonstrate the effectiveness of concatenating Tgram

features and pre-trained features with the log-Mel spectrogram

simultaneously. Based on this, the auxiliary loss is designed

to train the model based on the attribute information. The loss

function is shown in Eq. (5). Auxiliary loss can be used to dis-

tinguish different environments and states of audio recording,

so as to help the model better adapt to different environments

and states, and then more accurately detect anomalous sounds.

The experimental results are shown in Table IV.

TABLE IV
MACHINE ANOMALY SCORES UNDER DIFFERENT LOSS FUNCTIONS (%)

Experiment No. 4 5

ToyCar 50.46 53.92

ToyTrain 51.32 51.20
Bearing 59.16 57.85

Fan 70.43 78.34

Gearbox 65.07 74.39

Slider 78.76 78.10
Valve 82.01 79.01

Total 63.26 65.40

Observing Table IV, we can find that after the auxiliary loss

is added, although it is slightly decreased on some machines,

the performance is significantly improved on three machines

(i.e. ToyCar, Fan, Gearbox), and the anomaly score is increased

by 3.46%, 7.91%, and 9.32% respectively, and the final total
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anomaly score is also increased from 63.26% to 65.40%, which

shows the effectiveness of the auxiliary loss.

4) Distance Metric: In the above experiments, we used

the posterior probability to calculate the anomaly score (as

shown in Eq. (6)). On the basis of the previous experiments,

we extract the embeddings of training and test data based on

the trained self-supervised classifier, and then use the distance

metric to calculate the anomaly score of the machine (as shown

in Eq. (7)). The experimental results are shown in Table V. It

can be found that the performance of the ToyCar has been

significantly improved after using the distance metric, and

the anomaly score of ToyCar has increased from 53.92% to

69.70%. At the same time, there are also certain improvements

in ToyTrain, Bearing, and Gearbox. On the total anomaly

score, it improved by 2.89%, which demonstrates that the

distance metric can more effectively measure the difference

between anomalous and normal samples based on the latent

representation obtained from the model.

TABLE V
MACHINE ANOMALY SCORES UNDER DIFFERENT ANOMALY SCORE

CALCULATION METHODS (%)

Experiment No. 5 6

ToyCar 53.92 69.70

ToyTrain 51.20 52.04

Bearing 57.85 58.70

Fan 78.34 76.95
Gearbox 74.39 76.83

Slider 78.10 77.35
Valve 79.01 77.09

Total 65.40 68.29

C. Performance Comparison

Table VI shows the performance comparison of our pro-

posed method with other competing methods (AE, Mo-

bileNetV2) [25]. AE is based on reconstruction error and

MobileNetV2 is based on machine section ID classification

to detect anomalous sounds. It can be seen that our method

outperforms other methods on six types of machines. More-

over, compared with the best performance of other methods,

our method has a significant improvement on ToyCar, Fan,

Gearbox, Slider, and Valve by 15.30%, 18.45%, 13.76%,

19.35%, and 14.96%, respectively. Furthermore, our method

also improves by 11.71% over the best results of other methods

on the total anomaly score, which clearly shows that our

method has good performance for anomalous sound detection

of different machines.

D. Results Analysis

As can be seen from Table III, compared to concatenating

one of the Tgram features and the pre-trained features sepa-

rately, when these two features are concatenated with the log-

Mel spectrogram at the same time, the anomaly score of most

types of machine and the total anomaly score will be better,

which reflects the complementarity of these two features. Tak-

ing Slider as an example, the t-distributed Stochastic Neighbor

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON MACHINE

ANOMALY SCORES (%)

Algorithm MobileNetV2 AE Our Method

ToyCar 54.40 51.30 69.70

ToyTrain 51.56 39.77 52.04

Bearing 60.64 54.91 58.70
Fan 57.53 58.50 76.95

Gearbox 60.17 63.07 76.83

Slider 51.69 58.00 77.35

Valve 62.13 50.60 77.09

Total 56.58 52.71 68.29

(a) Tgram (Section 00) (b) Tgram (Section 01)

(c) Pre-trained (Section 00) (d) Pre-trained (Section 01)

(e) Tgram + Pre-trained (Section 00) (f) Tgram + Pre-trained (Section 01)

Fig. 2. t-SNE visualization of latent embeddings for Slider’s test data. (a)
and (b), (c) and (d), (e) and (f) respectively show the visualization results of
Section 00 and Section 01 in the test data when Tgram features, pre-trained
features, and both are concatenated with log-Mel spectrograms, respectively.
Normal samples are marked with ª•º, and anomalous samples are marked
with ª×º. Orange and green represent the data of Section 00 and Section 01
respectively.

Embedding (t-SNE) cluster visualization of latent features

when Tgram features and pre-trained features are concatenated

separately and when they are concatenated simultaneously is

shown in Fig. 2. As can be seen from Fig. 2(a) and Fig. 2(b),

the normal and abnormal samples of Section 00 can be well

distinguished, but some of the normal and abnormal samples

of Section 01 are overlapping. In Fig. 2(c) and Fig. 2(d), some

normal and abnormal samples in Section 00 are overlapping,

but the normal and abnormal samples in Section 01 are easier
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to distinguish. However, from Fig. 2(e) and Fig. 2(f), it can

be found that when these two features are concatenated at the

same time, both normal and abnormal samples of Section 00

and Section 01 are well distinguished. Therefore, these two

features are complementary, and the feature representation ob-

tained when they are concatenated with log-Mel spectrograms

at the same time is more discriminative, so the performance

of the ASD system in detecting anomalies will be better.

IV. CONCLUSIONS

In this paper, we have proposed an effective self-supervised

method for machine anomalous sound detection. First, we

obtain a more discriminative feature representation of machine

sounds by combining frequency-domain features, time-domain

features and pre-trained features extracted from the raw wave.

Then, we use the attribute information of machine sounds

to design auxiliary loss when training the model to help the

ASD system to distinguish and adapt to different environments

and working conditions, so that it can detect anomalous

sounds more accurately under different working conditions.

Finally, we use the distance metric to calculate the machine’s

anomaly score based on the latent embeddings extracted from

the trained self-supervised classifier. The experimental results

demonstrate the effectiveness of the proposed method. Our fu-

ture work includes developing a more efficient model structure

for machine anomalous sound detection.
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