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ABSTRACT

In this study, we explore long short-term memory recurrent

neural networks (LSTM-RNNs) for speech enhancement.

First, a regression LSTM-RNN approach for a direct map-

ping from the noisy to clean speech features is presented and

verified to be more effective than deep neural network (DNN)

based regression techniques in modeling long-term acoustic

context. Then, a comprehensive comparison between the pro-

posed direct mapping based LSTM-RNN and ideal ratio mask

(IRM) based LSTM-RNNs is conducted. We observe that the

direct mapping framework achieves better speech intelligi-

bility at low signal-to-noise ratios (SNRs) while the IRM

approach shows its superiority at high SNRs. Accordingly,

to fully utilize this complementarity, a novel multiple-target

joint learning approach is designed. The experiments under

unseen noises show that the proposed framework can consis-

tently and significantly improve the objective measures for

both speech quality and intelligibility.

Index Terms— speech enhancement, long short-term

memory recurrent neural network, direct mapping, ideal ratio

mask, multiple-target joint learning

1. INTRODUCTION

Single-channel speech enhancement aims to recover underly-

ing clean speech from the observed noisy speech signal in a

single microphone setting. In conventional algorithms, such

as spectral subtraction [1] and MMSE-based spectral ampli-

tude estimator [2, 3], the settings are unsupervised based on

mathematical assumptions about speech and noise, and of-

ten introduces artifacts (e.g., musical noise) and performance

limitations in enhanced speech. With the development of ma-

chine learning techniques, supervised approaches have shown

the potential of improving the quality of enhanced speech.

Non-negative matrix factorization (NMF) [4] is one typical

example where speech and noise bases are obtained sepa-

rately from training speech and noise data. However, the rela-

tionship between speech and noise could not be well learned

in the NMF approach.

Recently, with the emergence of deep learning techniques

[5], deep neural networks (DNNs) also demonstrate the pow-

erful modeling capability and achieve better performances

than the traditional methods in speech enhancement [6, 7].

Although the temporal information can be incorporated into

DNN training via frame expansion [7, 8], there are still lim-

itations in modeling long-term acoustic contexts because the

relationship between the neighbouring frames is not explicitly

modeled. Recurrent neural networks (RNNs) [9] may alle-

viate this problem by using recursive structures between the

previous frame and the current frame to capture the long-term

contextual information and make a better prediction. Nev-

ertheless, the optimization of RNN parameters via the back

propagation through time (BPTT) faces the problem of the

vanishing and exploding gradients [10]. Consequently, long

short-term memory recurrent neural network (LSTM-RNN)

[11] introduces the concepts of memory cell and a series

of gates to dynamically control the information flow, which

well solves the vanishing gradient problem. In comparison

to the DNN approach, LSTM-RNN was proposed in [12, 13]

to yield a superior performance of noise reduction at low

signal-to-noise ratios (SNRs). Moreover, the LSTM model

was verified to have a better speaker generalization capability

than DNN in speech separation [14].

In this paper, we conduct a comprehensive study on

LSTM-RNN based speech enhancement. First, a direct map-

ping approach using a regression LSTM-RNN to learn the

relationship between the noisy and the clean speech features

is proposed. Then compared with the previous LSTM-RNN

approaches [13, 14] to directly or indirectly learn the ideal

ratio mask (IRM) [15, 16, 17] of the time-frequency (T-F)

bins as the targets, we observe that the LSTM-RNN speech

enhancement models with different learning targets could ex-

hibit complementary properties at different SNR levels. We

therefore present an ensemble framework with multiple-target

joint learning to fully utilize the potentials of multiple learn-

ing targets and consistently improves the objective measures

of both speech quality and intelligibility for unseen noise sce-

narios. This is similar to multi-task learning in [18, 19, 20],

but here we emphasize different strategies of learning tar-

get on the same task. Furthermore, the single jointly learned

LSTM model can achieve a comparable performance with the

multiple LSTM-RNN ensemble with a much smaller model

size and lower computation complexity.



2. LSTM-BASED SPEECH ENHANCEMENT

Recently, we have proposed a DNN-based speech enhance-

ment framework via a direct mapping from noisy to clean

speech in the log-power spectral (LPS) domain with purely

feedforward, fully-connected hidden layers. The overall sys-

tem, including feature extraction and waveform construction,

can be found in [7]. In this study, the DNN is replaced by

a deep LSTM, intending to leverage upon the memory struc-

ture that is capable of capturing some temporal constraints

not fully utilized in the original DNN-based architecture. We

will elaborate on the LSTM architecture and the design of the

learning targets next.

2.1. LSTM Architecture

Fig. 1. An illustration of the LSTM block.

To alleviate the problem of vanishing and exploding gra-

dients in conventional RNN [10], a design of the LSTM block

is proposed to control the information flow in [11]. As shown

in Fig. 1, several key components, namely memory cell state

ct, input gate it, forget gatef t , output gate ot and peepholes,

are included. The input and output vectors of the block at

the time frame t are denoted by xt and yt, respectively. �
is the point-wise multiplication of two vectors. As for the

non-linear activation functions, the logistic sigmoid function

is used in each gate and g is a hyperbolic tangent [21]. With

this architecture, the network can dynamically determine the

information to update, store, throw away, and output. Thus

it can efficiently take advantage of the temporal information.

Furthermore, the LSTM might well capture the inherent sta-

tistical properties of speech and noise for the subsequent sep-

aration operation, especially under non-stationary noise.

2.2. Design of Learning Targets

The learning targets of LSTM-RNN play an important role

in speech enhancement. Here, three learning targets are dis-

cussed. First, the proposed direct mapping approach, denoted

as LSTM-DM, uses a linear output layer and a minimum

(a) LSTM-DM

(b) LSTM-IRM

(c) LSTM-IM

Fig. 2. The comparison of different learning targets.

mean squared error (MMSE) objective function:

EDM =
∑
t,f

(
ẑLPS(t, f)− z̄LPS(t, f)

)2
(1)

where ẑLPS(t, f) and z̄LPS(t, f) are the estimated and the ref-

erence clean LPS features at the T-F unit (t,f ), respectively.

The truncated BPTT algorithm [10] is used to update the

LSTM parameters.

In [14], the IRM is adopted as the learning target. In this

study, we abbreviate it as LSTM-IRM. The IRM concept is

extended from the ideal binary mask (IBM) widely used in

computational auditory scene analysis (CASA) [22]. As a soft

mask defined below, IRM is shown to obtain a good speech

separation performance in [23].

zIRM(t, f) =
S(t, f)

S(t, f) +N(t, f)
(2)

where S(t, f) and N(t, f) represent the power spectra of the

speech and noise signals at the T-F unit (t,f ), respectively.

To perform a fair comparison only for the learning target, the

same input LPS features as in the LSTM-DM approach, dif-

ferent from those in [14], are employed. Then the correspond-

ing objective function is:

EIRM =
∑
t,f

(
ẑIRM(t, f)− z̄IRM(t, f)

)2
(3)

where ẑIRM(t, f) and z̄IRM(t, f) are the estimated and the ref-

erence IRMs, respectively. Please note that unlike IBM, IRM



is a continuous value in [0,1], thus MMSE is a more proper

criterion than cross entropy (CE). To guarantee the estimated

IRM in [0,1], the sigmoid function is used for the output layer.

Finally, an indirect mapping approach similar to [13, 24],

denoted as LSTM-IM, learns the IRM target via MMSE be-

tween the masked and reference clean LPS features:

EIM =
∑
t,f

(
log ẑIRM(t, f) + xLPS(t, f)− z̄LPS(t, f)

)2
(4)

where ẑIRM(t, f) is the estimated IRM from LSTM-RNN with

the logarithm operation and the noisy LPS features xLPS(t, f)
to generate the masked LPS features. Actually, LSTM-IM

can be considered as an intermediate approach of LSTM-DM

and LSTM-IRM. The comparison of the three learning targets

is illustrated in Fig. 2.

3. MULTI-TARGET LEARNING AND ENSEMBLE

In principle, LSTM-DM should be the best choice for speech

enhancement if the underlying clean speech can be perfectly

reconstructed. However, due to the limited training data cov-

erage and the local optimal property of LSTM-RNN learning,

it would be difficult to learn the complicated relationship of

the unbounded noisy and clean speech features in LSTM-DM

than in LSTM-IRM with the bounded IRM as the targets. So

in practice, it is not easy to conclude that which approach is

better, especially for the unseen noise scenarios. Furthermore,

our preliminary experiments show that there is a strong com-

plementarity among these approaches at different SNR levels.

Inspired by this, a multiple-target joint learning and ensemble

framework, as shown in Fig. 3, is proposed to fully utilize

the potentials of learning multiple targets. This is similar to

multi-objective learning demonstrated recently in [19, 20].

3.1. Multiple-target Learning

The idea is to jointly learn the clean speech features and the

IRM in one single LSTM-RNN with the dual outputs:

EMTL =
∑
t,f

[(
ẑLPS(t, f)− z̄LPS(t, f)

)2

+α
(
ẑIRM(t, f)− z̄IRM(t, f)

)2]
(5)

where α is the weight coefficient of the two MMSE items cor-

responding to the dual outputs of ẑLPS(t, f) and ẑIRM(t, f).
On one hand, multi-task learning (MTL) builds one compact

LSTM-RNN model to obtain both estimated clean speech

and IRM information by sharing the weight parameters prior

to the output layer. Therefore a smaller model size and lower

computational complexity can be achieved compared with

constructing multiple LSTM-RNNs directly. On the other

hand, the model generalization capability might be improved

by incorporating multiple regularization items.

Fig. 3. Illustrations of multiple-target learning.

3.2. Multiple-target Ensemble

In the enhancement stage, the estimated clean speech and

IRM features could be combined via a simple average opera-

tion in the LPS domain similar to post-processing in [20].:

z̃LPS(t, f) =
1

2

[
ẑLPS(t, f) + log ẑIRM(t, f) + xLPS(t, f)

]

(6)

where ẑLPS(t, f) is the estimated clean LPS feature while

log ẑIRM(t, f) + xLPS(t, f) is the masked LPS feature. The

ensemble result z̃LPS(t, f) is the fed to the waveform recon-

struction module. The ensemble in the LPS domain is verified

to be more effective than that in the linear spectral domain.

4. EXPERIMENTS

The experiments were conducted on the TIMIT database [25].

We used 115 noise types in the training stage to improve the

generalization capacity of unseen environments. All 4620

utterances from the TIMIT training set were corrupted with

each noise type at six SNR levels, i.e., 20dB, 15dB, 10dB,

5dB, 0dB, and -5dB, to build 10-hour multi-condition train-

ing set, consisting of pairs of clean and noisy speech utter-

ances. The 192 utterances from the core test set of TIMIT

database were used to construct the test set for each combi-

nation of noise types and SNR levels. To evaluate on un-

seen noise types, three other noise types, namely Buccaneer1,

Destroyer engine and HF channel from the NOISEX-92 cor-

pus [26], were adopted. The quality and intelligibility of the

enhanced speech were measured by perceptual evaluation of

speech quality (PESQ) [27], and short-time objective intelli-

gibility (STOI) [28], respectively.

As for the front-end, all signals were sampled at 16kHz

rate. The frame length and shift were 256 and 128 samples,

respectively. The 257-dimensional feature vector was used

for both LPS and IRM targets. The computational network

toolkit (CNTK) [29] was used for training. The DNN model

consisted of the 1799-dimensional input layer (7-frame ex-

pansion), 3 hidden layers with 2048 nodes for each layer, and



Table 1. Average PESQ and STOI performance comparison of different systems on the test set across unseen noise types.
Noisy DNN-DM LSTM-IRM LSTM-IM LSTM-DM Multiple Models MTL Model

SNR PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

20 2.834 0.971 3.173 0.940 3.355 0.974 3.259 0.973 3.305 0.947 3.444 0.970 3.456 0.968

15 2.481 0.934 2.880 0.918 3.020 0.949 2.928 0.947 3.043 0.929 3.146 0.949 3.170 0.948

10 2.133 0.868 2.550 0.874 2.656 0.905 2.581 0.901 2.759 0.893 2.826 0.913 2.848 0.911

5 1.793 0.772 2.184 0.802 2.281 0.835 2.226 0.830 2.433 0.837 2.486 0.855 2.496 0.852

0 1.482 0.656 1.805 0.700 1.914 0.737 1.869 0.734 2.066 0.756 2.131 0.771 2.111 0.765

-5 1.235 0.541 1.444 0.577 1.552 0.612 1.535 0.620 1.662 0.645 1.756 0.660 1.719 0.642

AVE 1.993 0.790 2.339 0.802 2.463 0.835 2.400 0.834 2.545 0.835 2.632 0.853 2.633 0.848

the 257-dimensional output layer. For all LSTM-RNNs, we

used 2 LSTM layers with 1024 cells for each layer. The model

parameters were randomly initialized. A validation set was

adopted to control the learning rate (initialized as 0.01) which

was decreased by 90% when no gain was observed between

two consecutive epoches. Each BPTT segment contained 16

frames and 16 utterances were processed simultaneously [29].

α for multiple-target learning was set to 1.

4.1. Experiments on Learning Different Single Targets

Table 1 lists the average PESQ and STOI performance com-

parison of different systems on the test set. “Noisy” denotes

noisy speech with no processing and “DNN-DM” represents

the original DNN-based system using the direct mapping ap-

proach. Several observations could be made. First, using the

same direct mapping approach, LSTM-DM consistently out-

performed DNN-DM in all metrics under all SNR levels, indi-

cating its effectiveness in modeling some long-term acoustic

context. Second, for the PESQ measure, the LSTM-DM ap-

proach yielded better results than LSTM-IRM except for the

20dB case with an average PESQ gain of 0.082 (from 2.463

to 2.545) while the LSTM-IM approach generated the worst

performance. Finally, for the STOI measure, we observed

the mixed results for the three LSTM-based approaches. The

LSTM-DM achieved better STOIs at low SNRs (e.g., an av-

erage STOI gain of 0.033 at -5dB over LSTM-IRM) while

the LSTM-IRM showed its superiority at high SNRs (e.g.,

an average STOI gain of 0.027 at 20dB over LSTM-DM).

More interestingly, only the LSTM-IRM and LSTM-IM ap-

proaches obtained better STOIs than the noisy baseline for all

SNR levels, while direct mapping (including DNN-DM and

LSTM-DM) degraded the performance at high SNRs. This

was consistent with the original intent to improve the speech

intelligibility using the mask concept.

4.2. Experiments on Multiple-target Learning

In the rightmost two columns of table 1, two ensemble ap-

proaches were compared in terms of average PESQ and STOI

on the test set across unseen three noise types. The ensem-

ble of multiple models, namely LSTM-DM and LSTM-IRM,

using Eq. (6), is the most direct way to demonstrate the

complementarity of different learning targets. Accordingly,

the PESQ and STOI measures were improved over using

one single model. However, the model ensemble requires a

larger storage and more computational complexity. The pro-

posed multiple-target learning approach could well address

this problem by using only one single compact LSTM-RNN.

Compared with the model ensemble, MTL model yields

comparable PESQ results and a worse STOI performance

at low SNRs. But for MTL LSTM-RNN, with almost the

same model size as the a single LSTM-RNN, it could achieve

promising results over the best LSTM-RNN for learning one

target, e.g., an average PESQ gain of 0.088, and an average

STOI gain of 0.013. Meanwhile, the proposed MTL train-

ing process can reduce relatively 40% of computation time

in comparison with the total time of trianing two separete

systems such as LSTM-DM and LSTM-IRM.

5. CONCLUSION AND FUTURE WORK

We investigate on the design of objective functions for

LSTM-based speech enhancement and observe the strong

complementarity among different learning targets. We then

propose multiple-target deep learning and ensemble strategy

which largely improves both the speech quality and intelli-

gibility with almost the same model size and computational

complexity as the LSTM-RNN model for learning one target.

In future studies, we will use larger datasets and also explore

various LSTM architectures for speech enhancement, source

separation and speech dereverberation, and extend them to

multiple-channel processing of microphone array speech.
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