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ABSTRACT

In this study, we investigate on the effects of deep learning based
speech enhancement as a preprocessor to speaker diarization in quite
challenging realistic environments involving the background noises,
reverberations and overlapping speech. To improve the generaliza-
tion capability, the advanced long short-term memory (LSTM) archi-
tecture with the novel design of hidden layers via densely connected
progressive learning and output layer via multiple-target learning is
proposed for preprocessing. We build the deep model using synthe-
sized training data pairs generated from WSJO reading-style speech
and more than 100 noise types. Surprisingly, this proposed prepro-
cessor demonstrates a strong generalization capability to speaker di-
arization with the realistic noisy speech in highly mismatched con-
ditions, in terms of the speaking style, interferences, and the interac-
tion between them. Tested on three challenging tasks, namely AMI,
ADOS, and SeedLings, the state-of-the-art diarization system with
the novel LSTM-based speech preprocessor can yield consistent and
significant reductions of diarization error rate (DER) over the sys-
tems using unprocessed noisy speech and traditional enhancement
methods.

Index Terms— Speaker diarization, deep learning based speech
enhancement, densely connected progressive learning, multiple-
target learning, highly mismatch condition

1. INTRODUCTION

Speaker diarization, also referred as the who speak when task,
is to segment an audio recording into speaker homogeneous re-
gions [1], which is an essential part for many applications, such as
speaker adaptation in large vocabulary continuous speech recog-
nition (LVCSR) systems, speaker based indexing, navigation and
retrieval [2]. A complete diarization system should contain the
following stages: audio preprocessing, speech activity detection
(SAD), acoustic feature extraction, segmentation/clustering algo-
rithms. And segmentation/clustering, namely the core diarization
algorithm, is one most important part. Historically, the diarization
algorithms could be summarized into two categories. The first one
is based on hidden Markov model (HMM) where each hidden state
is a Gaussian mixture model (GMM) corresponding to a speaker [3].
The other one is the non-parametric method based on information
theory [4]. Besides the diarization algorithms, the other parts of the
pipeline can also affect the final diarization results. For instance, the
long-term conversational features for better overlap detection [5],
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the i-vectors to enhance speaker specific information [6], and system
fusion strategies [7, 8] were proposed and widely used.

Inevitably, a practical diarization system should address the en-
vironmental robustness problem in real applications, e.g., the back-
ground noises, reverberations and overlapping speech. However,
for this challenging problem, few studies have focused on front-end
speech enhancement or preprocessing for speaker diarization, espe-
cially in the single-channel case. For traditional enhancement ap-
proaches like Wiener filtering [3], LogMMSE [9], there are many
limitations in real applications, e.g., the weakness of tracking non-
stationary noises, due to the model assumptions made during the in-
ference. Moreover, the resulting denoised speech often suffers from
annoying artifact called musical noise [10], which can even degrade
the performance of speaker diarization system in realistic adverse
environments.

With the emergence of supervised deep learning techniques, the
great efforts are also made for speech enhancement area recently. In
[11, 12], ideal ratio masks (IRMs) were used to make binary classi-
fication on time-frequency (T-F) units for speech separation. Deep
denoising autoencoder was also studied on speech enhancement in
[13]. Previously, we proposed a deep neural network (DNN) frame-
work to learn the direct mapping from noisy to clean speech in log-
power spectral (LPS) domain, which demonstrated its superiority to
the traditional enhancement methods [14, 15], especially for track-
ing the non-stationary noises. In [16], Gao et, al. proposed a DNN-
based progressive learning (PL) approach which aimed at decom-
posing the complicated regression problem into a series of subprob-
lems. To increase the modeling capability, in [17], we adopted the
advanced long short-term memory recurrent neural network (LSTM-
RNN) with multiple-target learning of both LPS and IRM to capture
the long-term contextual information and make a better prediction.

Nevertheless, the recent progress in deep learning based speech
enhancement are not widely investigated for speaker diarization.
This might be partially explained as that the generalization prob-
lem of deep learning approaches in highly mismatched conditions
can be well solved. In other words, it is unrealistic for speaker
diarization to rebuild a matched speech preprocessor for a specific
scenario. For example in [18], a feature mapping DNN is used to
map the noisy features to clean features, which improve the diariza-
tion performance in relatively matched condition. But it can not
well generalize to mismatch testing conditions due to the simple
NN architecture and the binding feature design with the diarization
algorithm. To address these issues, in this paper, we conduct a
comprehensive study on well-designed deep learning based speech
enhancement approach as a preprocessor to speaker diarization to
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test the generalization capability in highly mismatched conditions.
Accordingly, the advanced LSTM architecture with the novel design
of hidden layers via densely connected progressive learning and out-
put layer via multiple-target learning is proposed for preprocessing.
‘We build the deep model using synthesized training data pairs gener-
ated from WSJO reading-style speech and more than 100 noise types.
Surprisingly, this proposed preprocessor demonstrates a strong gen-
eralization capability to speaker diarization with the realistic noisy
speech in highly mismatched conditions, in terms of the speak-
ing style, interferences, and the interaction between them. Tested
on three challenging tasks, namely AMI, ADOS, and SeedLings,
the state-of-the-art diarization system with the novel LSTM-based
speech preprocessor can yield consistent and significant reductions
of diarization error rate over the systems using unprocessed noisy
speech and traditional enhancement methods. Furthermore, as a
preprocessor, our approach is independent with the diarization sys-
tem, e.g., the feature design, showing its superiority to the feature
mapping method in [18].

2. DIARIZATION SYSTEM

In this section, we briefly introduce the state-of-the-art information
bottleneck(IB) diarization algorithm proposed in [2] and the error
metric of diarization system, which are used in our experiments.

2.1. Information Bottleneck Framework

Suppose we have a set of speech segment X = {z1,Z2,...,Zm } to
be clustered, and Y = {y1,y2, ...yn } denotes the set of relevance
variables carrying meaningful information about the desired cluter-
ing output C = {c1, ¢, ...cp }. Thus the optimal clustering can be
found by maximmize the following function:

F=1(CY)— %I(C, X) )

where I(-,-) denotes the mutual information between two sets of
random variables. (3 is a Lagrange multiplier representing the trade-
off between amount of information preserved I (C,Y") and compres-
sion of the initial representation I(C, X). The objection function
can be optimized by agglomerative Information Bottleneck (alB)
method, which is a greedy approach. The algorithm is initialized
with each input element x; € X as an individual cluster. Subse-
quently, two clusters are merged to guarantee the decrease in the ob-
jective function is minimum at the current step. More optimization
details can be found in [4].

2.2. Error Metric

To measure the performance of a diarzation system, we use the di-
arization error rate (DER) [3], which is defined by the evaluations
campaigns organized by NIST. It compares the differences between
the ground-truth reference segmentation and the generated diariza-
tion output. The final DER result is the sum of three types of errors:

DER = Ewmiss + Era + Espir ()

where Eiss i the percentage of missed speech error (speaker not at-
tributed when speech segment exists), Era is the percentage of false
alarm error (speaker attributed in non-speech segment), Espy; is the
percentage of speaker misclassification error (wrong speaker label-
ing according to reference segmentation). Lower DER indicates bet-
ter diarization performance. Additionally, a non-scoring collar of

250 msec [1] is generally adopted in both sides of the ground-truth
segment boundaries to eliminate the effects of inevitably inaccurate
labeling.

Our speaker diarization system is implemented using IB toolkits
DiarTk [19]. 19 Mel-frequency cesptrum coefficients (MFCCs) are
extracted as the acoustic features by HTK toolkit [20] with a 10-msec
frame shift with a 30-msec analysis window. As reported in [21], the
awareness of the number of speakers has little effect on final diariza-
tion performance. So we manually set the max cluster number. In
our experiments, we use oracle SAD segments derived from human
transcriptions and ignore the overlap segments. Accordingly, the first
two parts, namely Fwmiss and Era, have no effects on final DER. We
focus on the speaker misclassification error to highlight the effects
of enhancement methods.

3. THE NOVEL ARCHITECTURE FOR PREPROCESSOR

In the conventional DNN architecture for speech enhancement [15],
the important temporal information is only considered via frame ex-
pansion. To model time sequences, recurrent neural networks (RNN)
seem to have a congenital advantage by using recursive structures be-
tween the previous frames and the current frame to capture the long-
term contextual information. However, the conventional RNN can
not hold information for a long period and the optimization of RNN
parameters via the back propagation through time (BPTT) faces the
problem of the vanishing and exploding gradients [22]. The prob-
lems can be well alleviated by the invention of LSTM [23] which in-
troduces the concepts of memory cell and a series of gates to dynam-
ically control the information flow. As shown in Fig. 1, all LSTM
layers consist of memory cells.

To further improve the generalization capability of LSTM archi-
tecture, the novel design of hidden layers via densely connected pro-
gressive learning and output layer via multiple-target learning is pre-
sented (denoted as LSTM-PL-MTL), as illustrated in Fig. 1, which
is inspired by our previous work [17, 16]. The overall LSTM archi-
tecture aims to predict the clean LPS features given the input noisy
LPS features with acoustic context. All the target layers are designed
to learn intermediate speech with higher SNRs or clean speech. For
the input and multiple targets, LSTM layers are used to link between
each other. This stacking style network can learn multiple targets
progressively and efficiently. In order to make full use of the rich
set of information from the multiple learning targets, we update the
progressive learning in [16] with dense structures [24] in which the
input and the estimations of intermediate target are spliced together
to learn next target. Then, a weighted MMSE criterion in terms of
MTL is designed to optimize all network parameters randomly ini-
tialized with K target layers as follows:

K
E = ZakEk+EIRM
k=1
1 N
Be = § 2L WGk o % A =l )
1 N
By = ﬁZl||f1RM(f<2,f<£,...,fcnK*l,AmM)fx?fMH%

where F), is MSE corresponding to k™ target layer while Firy is
MSE for MTL with IRM in the final output layer. X% and x* are
the n™ D-dimensional vectors of estimated and reference target LPS
feature vectors for k™ target layer, respectively (k > 0), with N
representing the mini-batch size. X2 denotes the n™ vector of input
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noisy LPS features with acoustic context. Fx (X%, %5, ..., %kt Ax)
is the neural network function for k™ target with the dense structure
using the previously learned intermediate targets from %%, to XF~1,
and Ay, represents the parameter set of the weight matrices and bias
vectors before k™" target layer, which are optimized in the manner of
BPTT with gradient descent. x®M . Fiem (f(?“ Xh, . &5*17 Arm),
and Arm are corresponding versions to IRM targets. «y is the
weighting factor for k™ target layer.

The LSTM-PL-MTL architecture in Fig. 1 is (257%7)-1024-
(2574257)-1024-(257+257+257)-1024-(257:257), denoting the di-
mension of both LPS and IRM feature vectors is 257, 7-frame
expansion is used for input, the number of LSTM memory cells in
each layer is 1024, and K=3. ax=1.0 and a;=0.1 (k < K). As a
comparison, a two-layer direct mapping LSTM network which only
consists of conventional recurrent LSTM layers, is built as our base-
line model. Note that the IRM output of LSTM-PL-MTL is used to
reconstruct the enhanced speech waveform. By using new structure,
the enhanced speech has better intelligibility and less distortions.
More details of the preprocessor can refer to [25].
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Fig. 1. An illustration of the novel architecture for preprocessor.

4. EXPERIMENTS AND RESULTS

4.1. Database

To train deep models for enhancement, 115 noise types are adopted
and clean speech of WSJO corpus is employed as in [16]. 7138 ut-
terances (about 12 hours of reading style speech) from 83 speakers,
denoted as SI-84 training set, are corrupted with the above men-
tioned 115 noise types at three SNR levels (-5dB, 0dB and 5dB) to
build a 36-hour training set, consisting of pairs of clean and noisy
utterances.

A variety of datasets were used as the testing sets to explore the
generalization capability of enhancement methods in adverse condi-
tions, including the widely-used AMI meeting corpus [26], the soon-
to-be-published ADOS (Autism Diagnostic Observation Schedule)

Table 1. High mismatches between training and testing.

Training Testing
Corpus WSJO ADOS SeedLings AMI
Distance Near Far Near Far
Style Reading Conversation
Interferences | Additive noise | Background noises, reverberations
Interaction Simulation Unknown, real noisy speech
Child? None Kids | 6-month baby | None

corpus [27], and SeedLings corpus of day-long child language ac-
quisition recordings [28].

AMI corpus consists more than one hundred of recorded meet-
ings of 4-5 participants. The conversations are recorded in parallel
on multiple devices, including a tabletop array of 8§ microphones
and head-mounted microphones on each meeting participant. We
conduct our experiments on two conditions: ‘SDM’, a single dis-
tance microphone from the far-field array; ‘MDM’, a beamformed
version of multiple distant microphones in the array by using Beam-
formlt tool [29]. Both the development and evaluation sets of AMI
are adopted for testing, including 34 meetings totally.

The conversations in ADOS are recorded between children and
trained clinicians in a semi-structured interview mode. The record-
ings are extracted from the ceiling microphone as described in [27].
The recordings of SeedLings are extracted via a device worn in a
breast pocket by the child, so the sounds of the child and those sur-
roundings are all included. Thus, the acoustic environment for the
conversations varies throughout the day. More interestingly, all these
children in SeedLings are only 6 months old who can seldom speak
clear sentences.

Please note that all the test sets are recorded in realistic noisy
conditions. Therefore, there are high mismatches between the train-
ing and testing, as shown in Table 1. For example, the reading style
speech data are used in training while all testing data are conversa-
tional speech. The far-field speech data are recorded in AMI and
ADOS. For the interferences, only additive noises are considered
in training while both background noises and reverberations with
unknown interaction with speech exist in testing. Both ADOS and
SeedLings have child data. All these mismatches make those tasks
quite challenging for our proposed enhancement approach.

4.2. Results

Several notations are first defined. ‘Noisy’ denotes unprocessed
noisy speech. ‘Log-mmse’ and ‘PSNR-wiener’ represent two tra-
ditional methods [9, 30] for the comparison with deep learning
based approaches. ‘DNN’ is the regression-based deep learning ap-
proach in [15]. ‘LSTM’ and ‘LSTM-PL-MTL’ are two LSTM-based
approaches introduced in Section 3.

4.2.1. Evaluations on AMI

On SDM data of AMI corpus, we conduct a comprehensive com-
parison between different enhancement methods. Several observa-
tions could be made in Fig. 2. First, the traditional methods like
Log-mmse and PSNR-wiener do not work well and even lead to di-
arization performance degradation. Second, the generalization capa-
bility of DNN is poor due to its simple architecture. Finally, both
LSTM and LSTM-PL-MTL achieve better DER results than unpro-
cessed system for all settings of maximum cluster number. The well-
designed LSTM-PL-MTL yields the best results and significantly
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Fig. 2. Diarization results across different maximum cluster numbers on SDM data of AMI corpus.

outperforms LSTM for all cases, demonstrating the strong gener-
alization capability to mismatched conditions.

For the MDM data, we can also use the deep learning based ap-
proaches as a post-processing to eliminate the nonlinear distortions
by the beamforming algorithm. As shown in Table 2, the similar
trend to SDM case can be observed. The proposed LSTM-PL-MTL
achieves a relative DER reduction of 16.7% over MDM beamformed
data, indicating that deep learning based post-processing is strongly
complementary with the conventional beamforming techniques.

Table 2. Average DER results (in %) across different settings of
maximum cluster number (4-10) on MDM data of AMI corpus.
Noisy DNN LSTM LSTM-PL-MTL
25.9 26.4 22.5 21.6

Table 3. Average DER results (in %) across different settings of
maximum cluster number (2-10) on ADOS and SeedLings.

Noisy | Log-mmse | PSNR-wiener | LSTM-PL-MTL
ADOS 36.3 40.0 36.0 29.2
SeedLings | 45.3 47.0 46.7 39.2

4.2.2. Evaluations on ADOS and SeedLings

We give the DER comparison among the traditional methods and
the best LSTM-PL-MTL architecture on ADOS and SeedLings, as
listed in Table 3. Similar to the results on AMI corpus, the traditional
methods can not improve the performance over the unprocessed case
while LSTM-PL-MTL yields relative DER reductions of 19.6% and
13.5% for ADOS and SeedLings, respectively.

Finally, to illustrate why LSTM-PL-MTL based speech pre-
processing can help diarization, we choose a conversation from
SeedLings which contains a female adult and a male child, and the
max cluster number is set to 2. The overall DERs for each recording
are 44.5% before preprocessing and 13.2% after preprocessing. A
15-second segment is shown in Fig. 3. Before denoising, many adult
segments are misclassified as child due to the presence of huge grat-
ing noises from carry-on microphone. After denoising, all the adult
segments are correctly classified. However, a short child segment
in the ending is largely eliminated as our deep model mistakes it
as noises, which can be explained as the child data is not used as
the speech data to train our enhancement model. To address this
problem, we need to include child data for training of deep models
in the future.

Reference:

i

Femaleﬁaut: | S— |

=

eﬁchlld: —

Fig. 3. Visualization of a diarization example from SeedLings.

5. CONCLUSION

In this paper, we investigate the effects of deep learning based
speech enhancement as a preprocessor for speaker diarization. The
proposed preprocessor based on well-designed LSTM architecture
demonstrates a strong generalization capability with the realistic
noisy speech in highly mismatched conditions and yields consistent
and significant reductions of DER over the systems using unpro-
cessed noisy speech and traditional enhancement methods.
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