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Abstract—We propose a joint progressive learning (JPL)
framework of gradually mapping highly noisy and reverberant
speech features to less noisy and less reverberant speech features
in a layer-by-layer stacking scenario for simultaneous speech
denoising and dereverberation. As such layers are easier to learn
than mapping highly distorted speech features directly to clean
and anechoic speech features, we adopt a divide-and-conquer
learning strategy based on a long short-term memory (LSTM)
architecture, and explicitly design multiple intermediate target
layers. Each hidden layer of the LSTM network is guided by a
step-by-step signal-to-noise-ratio (SNR) increase and reverberant
time decrease. Moreover, post-processing is applied to further im-
prove the enhancement performance by averaging the estimated
intermediate targets. Experiments demonstrate that the proposed
JPL approach not only improves objective measures for speech
quality and intelligibility, but also achieves a more compact model
design when compared to the direct mapping and two-stage,
namely denoising followed dereverberation approaches.

I. INTRODUCTION

The presence of background noise severely degrades speech
quality and intelligibility in speech communication. Besides,
reverberation caused by the reflection of signal from room
walls and other objects further deteriorates the auditory envi-
ronment, especially in indoor environments [1]. In addition,
for many real-world tasks, such as speech recognition and
speaker recognition, the performance is greatly reduced under
such acoustic conditions. Therefore, to improve the quality
and intelligibility of the target speech under the condition that
noise and reverberation exist simultaneously is quite necessary.

In the past few decades, most studies on denoising and
dereverberation were carried through as two separate tasks
which are called as speech enhancement and speech dere-
verberation, respectively. Due to the limitations of traditional
methods under noisy-reverberant conditions, it is difficult to
deal with background noise and reverberation simultaneously.
Recently, benefiting from the development of deep learning
approach in various tasks [2] [3] [4], many methods have
been proposed to promote the speech quality and intelligibility
in adverse environments [5] [6] [7]. From the perspective of
deep learning, speech enhancement is regarded as a regression

problem in which the deep neural network (DNN) learns
the mapping between the noisy speech spectrum and the
corresponding clean speech spectrum [8] or different masks
[9] [10] to recover target speech. For instance, Ref. [11] pro-
posed a spectral mapping algorithm to perform denoising and
dereverberation simultaneously using a single DNN. However,
this implementation did not achieve improvements in terms of
speech intelligibility. In response to this issue [12] explained
that the different natures of noise and reverberation make it dif-
ficult for DNN to handle them together. In general, background
noise is an additive signal to clean speech, while reverberation
is a convolutional process with a room impulse response
(RIR) [13]. In consideration of the difference between noise
and reverberation, Ref. [14] proposed a two-stage strategy
for noisy-reverberant speech enhancement which means the
whole speech enhancement process is divided into denoising
stage and dereverberation stage sequentially and the model
of each stage was trained individually before joint training.
Moreover, another work on noisy and reverberant speech
enhancement was time-frequency masking in complex domain
by Williamson and Wang [15]. They introduced a complex
ideal ratio mask (cIRM) using clean-anechoic speech as the
desired signal for DNN-based enhancement. Furthermore, [16]
utilized the maximum a posteriori (MAP) method to solve the
speech dereverberation and denoising problem jointly. A half
quadratic splitting (HQS) method was adopted to solve the
joint MAP problem in a DNN framework by splitting it into
two minimization problems.

In this study, inspired by our previous work of progressive
learning for speech denoising only [17], we proposed a joint
progressive learning (JPL) framework based on signal-to-noise
ratio (SNR) and reverb time -60dB (RT60) measures for joint
speech denoising and dereverberation. In JPL, each hidden
layer implemented by the long short-term memory (LSTM)
architecture is guided to learn an intermediate target with a
specific SNR gain and RT60 estimation. Different from the
direct mapping approach [11] and the idea of two-stage design
in [14], we utilize the idea of divide-and-conquer and explicitly

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

274978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



Target3 
(Clean and Anechoic)

Input 
(SNR=-5dB, RT60=0.9)

Target2 
(SNR=15dB, RT60=0.35)

B
ack-p

ro
p

aga�
o

n

1E

2E

3E

LSTM

Target1 
(SNR=5dB, RT60=0.6)

: Data Copy

Fig. 1. An illustration of joint progressive learning

design multiple intermediate target layers with jointly denoised
and dereverberated speech to some extent. Moreover, a post-
processing is applied to further improve the enhancement
performance by averaging the estimations of multiple inter-
mediate targets. Experiments show that the proposed JPL
approach not only significantly improves objective measures
for speech quality and intelligibility, but also achieves a more
compact model design compared with the direct mapping and
two-stage approaches.

The rest of the paper is organized as follows. In Section
II, we describe the proposed JPL approach. In Section III, we
present the experiments. Finally, we conclude in Section IV.

II. JOINT PROGRESSIVE LEARNING (JPL)

A. Signal model

In time domain, background noise is an additive signal to
clean speech while reverberation is a convolutional signal. In
this way, the noisy-reverberant speech x(t) can be formulated
as:

x(t) = r(t) + g·n(t) = s(t) ∗ h(t) + g·n(t) (1)

where r(t), s(t), h(t), n(t) denote reverberant speech, ane-
choic speech, room impulse response function and noise,
respectively. Besides, g is an adjustable factor of utterance
level employed to control the SNR level and ∗ refers to
convolution operation. The training data in our work are cre-
ated with different types of noise, SNRs, reverberation times
and speakers according to this equation. In order to restore
the anechoic speech s(t) from noisy-reverberant speech x(t),
intuitively we can perform dereverberation after denoising as
shown in [14], namely eliminating noise n(t) from received
speech x(t) firstly and then recover target anechoic speech
s(t) from reverberant speech r(t).

B. Motivation

Regarding to the abovementioned two-stage approach, the
handling of denoising and dereverberation is independent us-
ing two separate networks. However, in practice the corruption
process of s(t) with background noises and reverberation
could be coupled due to many complicated environmental fac-
tors. This motivates us to treat denoising and dereverberation
simultaneously in a progressive way by using deep learning
architectures to implement this process.

Based on the formulation of noisy-reverberant speech signal
in (1), our JPL approach aims to progressively make g and
h(t) close to zero and unit impulse response respectively.
Accordingly, we concretize the implementation of JPL by
using the SNR measure for g and RT60 measure for h(t).

C. Design of intermediate target layer and model training

The illustration of the proposed JPL is shown in Figure 1.
The ”Data Copy” means copying the current 257-dimensional
vector and then concat it with the next target layer. With clean
speech corrupted by the noise and reverberation, we redefine
the intermediate target layer to guide hidden layer to learn the
corresponding target illuminated by curriculum training. For
denoising, the design of each intermediate layer achieves a
specific SNR gain. As for dereverberation, we adopt RT60 in
the model training procedure which is defined as the time it
takes for the sound pressure level to reduce by 60 dB according
to [18]:

RT60 =
24 ln 10

c20
· V
Sa

(2)

where c20 is the speed of sound in the room for 20 degrees
Celsius, V is the volume of the room in m3, S stands for
total surface area of room in m2 and a refers to the average
absorption coefficient of room surfaces. In this study we utilize
RT60 as an indicator to measure the level of reverberation
and to guide the intermediate layer to learn the target speech
under lower RT60 condition. Table I lists the SNR and RT60
configuration of our JPL approach in training stage. For
instance, if the SNR of input noisy-reverberant speech is -
5dB, 0dB, 5dB and the RT60 is 0.9s, 0.8s, 0.7s, the SNR
and RT60 of first target layer to learn are set as 5dB, 10dB,
15dB and 0.6s, 0.5s, 0.4s, respectively. Similarly, for other top
target layers, the SNR of target speech is increased while the
corresponding RT60 is reduced as shown in Table I. For the
final target layer, the clean-anechoic speech is set. In fact, for
RT60-based progressive learning, as the position of source and
microphone is unchanged when generating the corresponding
RIR, gradually decreasing RT60 is equivalent to truncating the
original RIR, so that the RIR progressively approaches the unit
impulse response.

For the network design, LSTM-based densely connected
multi-task learning is adopted as shown in Figure 1. All the
target layers are designed to learn intermediate speech features
with higher SNRs and lower RT60 simultaneously. LSTM lay-
ers are adopted as the hidden layers to learn each target. This
stacking style network can learn multiple targets progressively
and efficiently. As for objective function optimization, with
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TABLE I
SNR AND RT60 CONFIGURATIONS OF JPL IN TRAINING STAGE

SNR (dB) RT60 (s)

Input −5, 0, 5 0.90, 0.80, 0.70
Target1 5, 10, 15 0.60, 0.50, 0.40
Target2 15, 20, 25 0.35, 0.25, 0.15
Target3 Clean Anechoic

prediction errors from each target layer, a weighted minimum
mean squared error (MMSE) criterion is used to update all
network parameters randomly initialized with K target layers
as follows:

E =
K∑

k=1

αkEk (3)

Ek =
1

N

N∑
n=1

‖F (x̂0
n, x̂

1
n, ..., x̂

k−1
n ,Wk)− xk

n‖22 (4)

where x̂k
n and xk

n are the estimated and reference target log-
power spectra (LPS) feature vectors of D-dimensional for
kth target layer, respectively (k > 0), with N representing
the mini-batch size. x̂0

n denotes the nth D-dimensional vector
of input noisy LPS features. F (x̂0

n, x̂
1
n, ..., x̂

k−1
n ,Wk) is the

neural network function for kth target with the dense structure
using the previously learned intermediate targets from x̂0

n to
x̂k−1
n , and Wk represents the parameter set of weight matrices

and bias vectors before kth target layer, which are optimized in
the manner of the back propagation through time BPTT with
gradient descent [19]. In this work, K is equal to 3 according
Figure 1 and Table I. We set α1 = α2 = 0.1 and α3 = 1.

D. Post-processing

One benefit of joint progressive learning is that more than
one estimated target are obtained with the network. Moreover,
the estimated LPS features of different targets can provide rich
information with different preferences to noise suppression
or dereverberation in complex environments. Therefore, in
the inference stage, a post-processing method to average the
estimations of multiple targets can be adopted to further
improve the overall performance similar to [20].

III. EXPERIMENTS AND RESULT ANALYSIS

A. Experimental setup

In our experiments, clean and anechoic speech data is
derived from the WSJ0 corpus [21] and 115 noise types
were selected as our noise database. We utilized an RIR
generator [22] to generate the RIRs, which is based on the
image model [23]. In addition, we kept the distance (2m)
between the receiver and the speaker, so that the direct to
reverberant ratio (DRR) did not change much under each
RT60 condition. The RIRs in training set and test set are
generated with different room sizes, which are 4m×6m×3m
and 10m×7m×3m, respectively. For training set, firstly we
convolved 7138 utterances (about 15 hours) from 83 speakers

with the above mentioned RIRs at three RT60 values (0.9s,
0.8s, 0.7s) to generate reverberant utterances. And then we
corrupted the obtained reverberant utterances with 115 noise
types [24] at three SNR levels (-5dB, 0dB, 5dB) to build a
135-hour training set composed of pairs of clean-anechoic and
noisy-reverberant utterances. Similarly, 330 utterances from 8
other speakers, namely the Nov92 WSJ evaluation set, 3 RIRs
with three unseen RT60 values (0.75s, 0.85s, 0.95s), 5 unseen
noises including babble, buccaneer, factory1, hfchannel and
pink from NOISEX-92 corpus [25], were used to construct
the test set. Perceptual evaluation of speech quality (PESQ)
[26] and short-time objective intelligibility (STOI) [27] are
adopted to evaluate the intelligibility and quality of enhanced
speech.

As for feature extraction, first the speech waveform was
sampled at 16kHz, and the corresponding frame length was
set to 32 msec (512 samples) with a frame shift of 16 msec
(256 samples). A short-time Fourier analysis was employed
to calculate the spectra of each overlapping windowed frame.
Thus, the 257-dimensional LPS features were produced and
normalized by global mean and variance before feeding them
into the neural network [28]

B. Implemented approaches for comparison

We built two different systems to compare with our JPL
approach. For all deep learning based systems, LSTM was
used with 1024 units for each layer. One competing sys-
tem is based on direct mapping [11] which estimates the
clean-anechoic speech features directly from noisy-reverberant
speech features. We explored different settings of the LSTM
architecture and the best configuration was achieved by 3
LSTM layers. We denote this system as Direct Mapping in
the subsequent sections. The other competing system is based
on the two-stage approach in which we perform denoising and
dereverberation sequentially as in [14]. In our implementation,
to perform a fair comparison, two separate networks were
jointly trained via a similar multi-task learning as in our JPL
approach. We also investigated different settings of LSTM
architecture for each network and the best configuration was
3 LSTM layers for denoising network and 1 LSTM layer
for dereverberation network. We denoted this system as Two-
Stage in the subsequent sections.

C. Result analysis

Table II and Table III list the average STOI and PESQ re-
sults of different systems across 5 unseen noise types at differ-
ent SNR levels and RT60 settings, respectively. Noisy+Reverb
refers to the unprocessed system. JPL-Target1, JPL-Target2,
and JPL-Target3 are our PPL systems by using Target1,
Target2, and Target3 for enhancement as shown in Figure 1,
respectively. JPL-PP denotes our JPL system using the post-
processing of Target2 and Target3 as introduced in Sec-
tion II-D.

First, both direct mapping and two-stage approaches
achieved similar STOI and PESQ improvements compared
with noisy-reverberant speech under 0dB and positive SNR
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TABLE II
THE AVERAGE STOI COMPARISON OF DIFFERENT SYSTEMS ACROSS 5 UNSEEN NOISES AT DIFFERENT SNR LEVELS, UNDER EACH OF RT60

STOI
NMRT60 (s) 0.75 0.85 0.95

SNR (dB) -5 0 5 10 15 -5 0 5 10 15 -5 0 5 10 15
Noisy+Reverb 0.483 0.554 0.621 0.671 0.700 0.471 0.536 0.597 0.642 0.669 0.459 0.521 0.579 0.621 0.646 -

Direct Mapping 0.490 0.610 0.695 0.745 0.773 0.469 0.588 0.676 0.727 0.755 0.457 0.573 0.661 0.714 0.744 85 MB
Two-Stage 0.496 0.622 0.707 0.757 0.783 0.476 0.598 0.685 0.737 0.764 0.463 0.585 0.672 0.725 0.753 106 MB

JPL-Target1 0.515 0.601 0.671 0.717 0.741 0.500 0.579 0.646 0.688 0.711 0.486 0.562 0.626 0.669 0.691 21 MB
JPL-Target2 0.545 0.647 0.722 0.766 0.790 0.527 0.625 0.698 0.742 0.765 0.532 0.609 0.682 0.727 0.750 46 MB
JPL-Target3 0.527 0.645 0.728 0.774 0.798 0.505 0.623 0.709 0.755 0.779 0.493 0.610 0.695 0.744 0.769 75 MB

JPL-PP 0.548 0.661 0.742 0.788 0.811 0.528 0.639 0.721 0.767 0.791 0.515 0.625 0.706 0.755 0.780 75 MB

TABLE III
THE AVERAGE PESQ COMPARISON OF DIFFERENT SYSTEMS ACROSS 5 UNSEEN NOISES AT DIFFERENT SNR LEVELS, UNDER EACH OF RT60

PESQ
NMRT60 (s) 0.75 0.85 0.95

SNR (dB) -5 0 5 10 15 -5 0 5 10 15 -5 0 5 10 15
Noisy+Reverb 1.23 1.35 1.53 1.67 1.76 1.18 1.31 1.46 1.60 1.67 1.24 1.33 1.47 1.60 1.67 -

Direct Mapping 1.13 1.46 1.75 1.93 2.06 1.08 1.39 1.68 1.86 1.98 1.09 1.37 1.64 1.82 1.92 85 MB
Two-Stage 1.12 1.47 1.77 1.97 2.09 1.07 1.39 1.68 1.89 2.00 1.08 1.36 1.64 1.83 1.94 106 MB

JPL-Target1 1.30 1.53 1.73 1.87 1.94 1.26 1.47 1.66 1.78 1.85 1.30 1.48 1.66 1.78 1.84 21 MB
JPL-Target2 1.39 1.70 1.95 2.11 2.20 1.34 1.63 1.88 2.03 2.11 1.41 1.62 1.85 1.99 2.06 46 MB
JPL-Target3 1.22 1.59 1.90 2.09 2.20 1.16 1.51 1.82 2.01 2.11 1.17 1.49 1.77 1.95 2.05 75 MB

JPL-PP 1.34 1.70 1.99 2.17 2.27 1.28 1.62 1.91 2.09 2.18 1.30 1.60 1.87 2.04 2.13 75 MB

(a) Noisy-Reverberant Speech (Factory Noise, SNR=5dB and RT60=0.75)

(b) Clean-Anechoic Speech

(c) Direct Mapping Approach

(d) Two-Stage Approach

(e) Our Approach

Fig. 2. Spectrograms of an utterance example

level conditions. For instance, the STOI gain was 0.095 at the
input SNR of 15dB and RT60 of 0.85s while the PESQ gain
was 0.33 for the two-stage approach. However, about more
than 0.1 PESQ decline was observed for -5dB condition with
all values of RT60 which indicated that these two comparing
systems did not work in the extremely adverse environments
with quite low SNR and large reverberation. Second, compared
with direct mapping and two-stage approaches, JPL-Target3
could achieve remarkable improvements for both STOI and
PESQ, e.g., STOI increasing from 0.757 to 0.774 and PESQ
increasing from 1.97 to 2.09 at SNR=10dB and RT60=0.75s.
Moreover, JPL-Target2 was strongly complementary with
JPL-Target3, namely yielding better STOI at low SNRs and
worse STOI at high SNRs. The reason is that these two
targets make different tradeoffs between noise/reverberation
reduction and introduced nonlinear distortions. Accordingly,
the post-processing system JPL-PP by combining Target2 and
Target3 achieved the best overall performance for both STOI
and PESQ measures. Finally, our JPL-PP consistently and
significantly outperformed the most competing system Two-
Stage in terms of STOI and PESQ for all SNR levels and
all RT60 settings, especially under adverse environments, for
instance more than 0.2 PESQ gain and 0.05 STOI gain at
SNR=-5dB and RT60=0.75.

Our proposed JPL approach not only yielded better STOI
and PESQ results but also achieved more compact model
design than direct mapping and two-stage approaches. As
shown in the rightmost columns in Tables II and III, NM
denotes the size of deep models for enhancement in each
system. Clearly, all JPL models were smaller than those in
direct mapping and two-stage approaches. JPL-Target1 are
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more compact than JPL-Target3 in that it is not necessary to
go through the whole network to compute Target2 and Target3
as shown in Figure 1. In real applications, JPL-Target2 is
a good solution as it makes a better tradeoff between the
performance and efficiency.

Figure 2 shows spectrograms of an utterance corrupted
by factory noise at SNR=5dB/RT60=0.75 and enhanced by
different approaches. The direct mapping could achieve a good
noise reduction but with severe speech distortions while the
two-stage method reduced speech distortions as shown in blue
rectangle boxes of Figure 2(c) and Figure 2(d). Compared with
direct mapping and two-stage approaches, our JPL approach
using post-processing achieved the best restoration of speech
segments, leading to the improved speech quality and intelli-
gibility.

IV. CONCLUSIONS

In this study, we propose a JPL framework for noisy-
reverberant speech enhancement. In contrast to the direct
mapping and two-stage methods, we attempt to recover clean
and anechoic speech as a simultaneous elimination of noise
and reverberation combined with progressive learning. More-
over, since each intermediate target provides complementary
information, post-processing to integrate different targets can
also be performed to further improve speech quality and
intelligibility. Experiments demonstrate that the proposed JPL
framework achieves good PESQ and STOI improvements
across all noise levels and reverberation conditions. In the
future, the generalization capabilities of JPL in real-world
environments will be explored.
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