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Abstract—We propose an effective frame-level embedding
learning framework for few-shot bioacoustic event detection
(FSBED). First, the duration of different animal calls varies
greatly, so we innovatively propose a frame-level embedding
learning scheme, which can obtain adaptive event receptive fields
with more accurate frame-level units. Next, we develop a transfer
learning-based approach to deal with the mismatch between
training and testing data. Finally, we use the idea of semi-
supervised learning to solve the problem of too little labeled
data in few-shot learning. By incorporating these several sets of
techniques, our overall system ranked first place in the FSBED
task of Detection and Classification of Acoustic Scenes and Events
(DCASE) Challenge 2022.

Index Terms—DCASE, few-shot bioacoustic event detection,
frame-level embedding learning, transfer learning

I. INTRODUCTION

Few-shot bioacoustic event detection (FSBED) is a task

that focuses on sound event detection (SED) in few-shot

learning (FSL) setting for the animal (mammal and bird)

vocalisations [1], [2]. Obviously, the vocalisations of different

animals are diverse, and audio annotation is costly and time-

consuming. Therefore, compared with general SED [3]–[9]

tasks, it is difficult to obtain a large amount of labeled data in

bioacoustic event detection (BED) tasks. Thus, FSL [10]–[16]

is introduced into the BED task. FSL describes tasks in which

an algorithm must make predictions given only a few instances

of each class. Specifically, FSL is usually studied using N-way-
k-shot classification, where N denotes the number of classes

and k denotes the number of known examples for each class.

For the FSBED task, we need to extract information from five

exemplars (i.e., k = 5) vocalisations (shots) of mammals or

birds and detect and classify sounds in field recordings [1],

[2]. It has a wide range of applications, for example, it can

*corresponding author

greatly save the time of biologists annotating very long audio

recordings, and then they can monitor biodiversity and animal

behavior based on the annotated audio recordings.

In recent years, the FSBED task has attracted a lot of atten-

tion. The mainstream methods for this task are as follows. One

approach is template matching [17], which is commonly used

in bioacoustics based on spectrogram cross-correlation. This

approach performs event detection based on the normalized

cross-correlation between labeled sound events and unlabeled

audio recordings [1], [2]. Another approach is a prototypical

network [11] that aims to learn a classifier that can quickly

adapt to new classes with only a few examples. This method

has been widely used in FSBED tasks [1], [2], [18]–[24].

Although the prototypical network has achieved certain results

in this task, there are still some deficiencies that can be im-

proved. Firstly, since the support set has only a small number

of labeled samples, the class prototypes may not accurately

represent the class centers. Secondly, the feature extractor

is task-agnostic (or class-agnostic): the feature extractor is

trained with base-class data and directly applied to unseen-

class data [25]. Therefore, Yang [25] et al. proposed a mutual

learning framework with transfer learning aimed at iteratively

updating class prototypes and feature extractors. In addition,

some teams explored the role of data augmentation on FSBED

tasks [26], [27].

Although the above methods have achieved some success on

the FSBED task, they usually adopt a segment-level approach

to detect the presence or absence of a target sound event.

However, the official dataset contains recordings of vocali-

sations from different species of animals [1], [2], and their

vocalisation durations vary widely. For example, most audio

segments in the support set are only 0.02 to 0.05 seconds in the

Polish Baltic Sea bird flight calls (PB) class of the validation

set [2]. It is difficult for segment-level schemes to extract
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credible representative embeddings. Therefore, we propose

a frame-level framework. In addition, this task also suffers

from the training-test set mismatch and too little labeled data.

Therefore, we introduce some ideas of transfer learning and

semi-supervised learning into this task. Our contributions can

be summarized as follows:

(1) We propose a frame-level embedding learning framework

to improve retrieval resolution.

(2) Based on transfer learning, we use few labeled segments

for joint training with the training set to deal with data

mismatch.

(3) We introduce the idea of semi-supervised learning, and

add some high-confidence data predicted by the model

after one-stage fine-tuning as positive (POS) samples to

the next stage of training to reduce the impact of too few

labeled samples.

II. METHOD

(a) The training framework

(b) The testing framework

Fig. 1. The framework for training (a) and testing (b) of frame-level em-
bedding learning method. Step1 in (b) represents based on transfer learning,
we use few labeled segments for joint training with the training set. Step2
indicates that semi-supervised learning is introduced, and some high confi-
dence data predicted by the model after one-stage fine-tuning is added to the
next stage of training as positive samples. The upper right corner of (a) is a
sliding window randomly selected. The two FC (1024, 2) in (b) are the same
classifier.

The overall framework of our proposed FSBED method is

shown in Fig. 1. First, we use labeled data to train a frame-

level backbone model, as shown in Fig 1(a). Next, in the test

stage, since the correlation between the training set and the

test set is extremely low, we use few labeled fragments of

the test data to perform joint training with the training set, as

shown in Step1 in Fig. 1(b). FC (1024, 2) is the classification

weight of positive and negative examples in the test audio, and

FC (1024, 20) is a 20-class classifier composed of 19 classes

in the training set and positive examples in the test audio. The

classification loss generated by the two classifiers is jointly

backpropagated to update the model. Finally, we select some

high-confidence data as positive examples from the prediction

results generated by the model after fine-tuning in the first

stage and add them to the next stage of training to reduce

the impact of too few labeled samples, as shown in Step 2 in

Fig. 1(b).

A. Frame-Level Learning Framework

Existing methods for the FSBED task often use segment-

level modeling, which lacks the ability to capture short-term

events. We analyze this because it predicts at the segment level

in units of 17 frames, so it cannot accurately predict some

extremely short events (5 frames). Therefore, we propose the

frame-level system.

Our model uses 4 CNN layers of [11], and in order to obtain

finer granularity on the time axis, we remove the last two

MaxPool and add the repeat-interleave operation. The model

is shown in Table I.

TABLE I
THE NETWORK ARCHITECTURE OF FRAME-LEVEL EMBEDDING LEARNING

MODEL.

Block Kernel Channel Activation
CNN block1 conv, 3× 3 (1, 128) BN+ReLU

MaxPool2d(2) - -
CNN block2 conv, 3× 3 (128, 128) BN+ReLU

MaxPool2d(2) - -
CNN block3 conv, 3× 3 (128, 128) BN+ReLU
CNN block4 conv, 3× 3 (128, 128) BN+ReLU

FC FC(1024, 2) Softmax

In the training stage, we first perform Per-Channel Energy

Normalisation (PCEN) [28] with a sampling rate of 22050Hz.

431 window length and 86 window shifts (11ms for each

frame) are adopted for sliding window segmentation of PCEN

to get a large receptive field, and each frame in the window

is labeled, then we feed it into our frame-level model. After

repeating the representations 4 times to recover the length on

the time axis at the end of the model, the Cross-Entropy (CE)

loss is calculated as follows:

L = − 1

k ×B

b∑
i=1

c∑
j=1

(yi,j �Mi) log(f(xi)) (1)

where yi =
(
y1i , y

2
i , ..., y

k
i

)
, yki ∈ {0, ..., 19} is the ground

truth of one frame, and k is the window length. Specifically,

“1∼19” represents the label of 19 types of bioacoustic events

in the training set, and “0” represents background events.
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Mi ∈ {0, 1} denotes the training mask for frames in a window,

and “0” is for the overlapped frame of the POS event between

adjacent windows. xi =
(
x1
i , x

2
i , ..., x

k
i

)
, xk

i is one frame (128-

dimensional PCEN features). � denotes the dot product by

frame, f is the frame-level embedding network. b is the total

number of windows, and B is the total number of valid

windows in which Mi is not all 0. j represents the class index,

c is the total number of classes (i.e., 20).

In the test stage, we segment the data before the end of the

5th shot in support. Xp=
{(

xi, y
k
p

)}Np

i=1
, where xi denotes a

POS segment, ykp is the label of one frame in xi, which is 1. Np

is 5. We select the segments between Xp as negative (NEG)

set, Xn=
{(

xj , y
k
n

)}Nn

j=1
, where xj denotes a NEG segment,

ykn is the label of one frame in xj , which is 0. Nn is 5.

Xp ∩Xn = ∅. Xs = Xp +Xn, Xq = X −Xs, where X , Xs

and Xq represents the whole audio, support set and query

set, respectively. We create a new 2-classifier to define a 2-

classification on the Xs, and fine-tune the 2-classifier until a

set number of iterations.

B. Weight Sharing Transfer Learning

Considering that there may be differences between the

source domain (training set) and the target domain (test set),

fine-tuning the network only on the target domain may skew

the feature extractor. Therefore we combine the training set

and the POS in the test set to define a 20-classification task.

XTL = Xt +Xp, where Xt denotes the training set. Inspired

by [29], we share the weight of the 0 class in the 20-

classifier and the weight of the POS class in the 2-classifier.

Wp =
(
wT

p0, w
T
p1

)
, Wt =

(
wT

t0, w
T
t1, ..., w

T
t19

)
, where the Wp is

the weight of 2-classifier, wT
p1 is the weight of the POS class in

the 2-classifier, Wt is the weight of the decoder which is a 20-

classifier, wT
t0 is the weight of the POS class of the test set in

the 20-classifier. The wT
p1 shares the same tensor with the wT

t0.

In order to strengthen the classification ability of POS class,

we fine-tune the 20-classifier and the 2-classifier together.

C. Semi-Supervised Learning

As mentioned in [25], incomplete support sets data will

lead to the network cannot represent the category center,

and fine-tuning the model only in support is easy to over-

fitting. One way to solve this problem is finding supplementary

information, which can help the representation of model as

close to the true category center as possible. Inspired by [30],

we propose a pseudo-label filtering method with an adaptive

threshold. Specifically, we first calculate the ratio of POS

predicted correctly in each window in Xs to the total POS

in the window, and take the minimum ratio as the threshold

of the pseudo-label. Then, the softmax value of each frame

in Xq is screened by threshold-value (thre), and the pseudo-

label value is set to 1 if it is larger than the thre, or 0 if it

is smaller than the thre-0.2, otherwise -1, as shown in Eq. 2,

where p is the softmax output of the POS class in the 2-

classifier, and v is 0.2. The calculation method of the thre
is shown in Eq. 3, where j is the window index, Ns is the

total number of windows in Xs, nj is the length of the j-th

window, and yi is the label of the i-th frame xi in a window

(the labels of POS and NEG frames are 1 and 0, respectively).

After the frames in the query set Xq are pseudo-labeled,

the frames marked as 1 (POS) and 0 (NEG) are added to the

next stage of training together with the support set Xs and

training set Xt, while the frames marked as -1 in Xq are not

used for training. Finally, the total loss function is shown in

Eq. 4, where Ls is the CE loss of Xs, Lq is the CE loss of

Xq , and Lt is the CE loss of XTL, which is the same as Eq. 1.

y =

⎧⎨
⎩

1 if p > thre
0 if p < thre− v

−1 others
(2)

thre = min
j=1,...,Ns

nj∑
i=1

yiP (ŷ = 1 | xi)

nj∑
i=1

yi

(3)

Ltotal = Ls + Lq + Lt (4)

III. EXPERIMENTS AND ANALYSIS

A. Dataset Analysis

The dataset we use comes from DCASE 2022 Task5 [2],

which contains development set and evaluation set, and the

development set is divided into the training set and validation

set. They are derived from the sounds of many different

animals, including birds, hyenas, meerkats, jackdaws, humbug,

and more. The training set contains multi-class temporal anno-

tations, provided for each recording: positive (POS), negative

(NEG) and unknown (UNK). For the validation set, only one-

class temporal annotations (POS/UNK) were provided for each

record. During the challenge, the evaluation set provided only

the top five POS events of the category of interest for each

recording. Our results on the evaluation set are available on the

DCASE 2022 Task5 Challenge results page1. The full labels of

the evaluation set have not been released during the challenge,

so in this paper, we evaluate our method on the validation

set. The evaluation of this task is based on an event-level F-

measure with macro-averaged metric across all classes [2].

In the DCASE 2021 challenge, there is also the FSBED

task2. By analyzing this task in 2021 and 2022, it can be

found that the evaluation indicators for the two years are

consistent, but the datasets in 2022 have become more difficult.

The official validation set and evaluation set details are shown

in Table II. The sub-folders in Table II represent different

scenarios in the validation set and evaluation set, and different

scenarios correspond to different collections of bioacoustic

sources. The validation sets for 2021 and 2022 contain 2 (HV,

PB) and 3 (HB, PB, ME) different scenarios, respectively,

while the evaluation sets for 2021 and 2022 contain 3 (DC,

1https://dcase.community/challenge2022/task-few-shot-bioacoustic-event
-detection-results

2https://dcase.community/challenge2021/task-few-shot-bioacoustic-event
-detection
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ME, ML) and 6 (DC, CT, CHE, MGE, MS, QU) different sce-

narios, respectively [1], [2]. As can be seen from Table II, the

difficulties of the DCASE 2022 datasets are mainly reflected

in: 1) scenarios are more varied and complex; 2) the number

of events to be detected increases.

TABLE II
VALIDATION AND EVALUATION SET STATISTICS FOR THE FEW-SHOT

BIOACOUSTIC SOUND EVENT DETECTION TASKS OF DCASE 2021 AND

DCASE 2022.

Dataset Validation Evaluation
Years 2021 2022 2021 2022

Total Audio Recordings 8 18 31 46
Total Classes 4 5 22 13

Total Sub-folders 2 3 3 6

Total Events 310 1077 2072 9605

B. Ablation Study

1) Experiments on Segment-Level Framework: Baseline
System. We adopt the transductive inference-mutual learning

(TI-ML) framework of the DCASE 2021 FSBED first-place

team as our baseline system [25]. We retrain it on the DCASE

2022 dataset and evaluate it on the 2022 validation set. The

experimental settings here are the same as [25]. In order to

improve the diversity of data and the generalization of the

model, we employ the mixup [31] data augmentation in the

training stage. The experimental results are shown in Exp No.1

and 2 of Table III, respectively. The total F-score in Exp No.2

increased by 8.3%.

The use of mixup enables our network to generalize well

enough, but in the ML framework, heavy fine-tuning of

networks with insufficient support may cause overfitting prob-

lems. Therefore, we remove the ML process and only slightly

fine-tune the 2-classifier. The results are shown in Exp No.3 of

Table III. Compared with Exp No.2, the F-score is increased

by 13.2%, which shows that our method is effective.

Negative Sample Selection. To get a “negative” category

center (also called “negative” prototype), the baseline system

assumes that the density of POS events is low, so the whole

audio is selected as a negative set. In addition, the “negative”

prototypes are generated by random sampling. However, we

found this hypothesis has low reliability in some conditions.

For some audio with a large proportion of POS samples, some

POS segments will be regarded as negative samples due to

the negative samples are randomly selected, which will lead

to poor test results. Therefore, an appropriate adjustment is

made in this work. We assume the time period in the middle

of five labeled supports and before the first labeled support

have higher reliability to be selected as negative samples. The

result is shown in Table III Exp No.4. Compared with the

result in Exp No.3, the total F-score increased by 1.3%. In

addition, after this strategy is used, we find that the stability

of our model output is greatly improved compared with before.

Sliding Window Strategy Adjustment. Through the visual

analysis of POS segments marked of each audio, we find that

the length of POS segments in different audio differs greatly,

but in the same audio is basically the same. It is hard to set

a suitable fixed window length for all audios, so we set an

adaptive window length according to the length of POS in

the support set provided by each audio. The adaptive window

length setting is shown in Table IV. After the introduction of

adaptive window length, we increased the overall F-score by

1.4% and the F-score of HB by 18.6%. The experiment result

is shown in Exp No.5 of Table III, which is the best result of

our segment-level framework.

2) Frame-Level Embedding Learning: we adopt a 5s win-

dow to segment the data and make predictions according to

the frame-level unit. In the training stage, We perform a 20-

classification task using the Adam optimizer [32]. LR is 1e-4,

and the StepLR is used with gamma 0.5 and step size 10. CE

loss is adopted, and the loss of overlap which is labeled 0 will

not be calculated. The number of iterations is 100.

In the prediction stage, we define a 2-classification task.

The 2-classifier is respectively initialized by calculating the 0-

1 ratio of support set. Only the last two layers of the encoder

and the 2-classifier are trained. Among them, the LR are 1e-4

and 1e-3, respectively. The number of iterations is 100. The

result is shown in Exp No.6 of Table III. Compared with the

best result of the segment-level framework which is shown in

Exp No.5, the frame-level framework achieves an increase of

10.4% and 4.2% on ME and PB respectively, and an increase

of 0.4% on the total F-score.

3) Semi-Supervised Learning: We set the threshold of

pseudo-label 1 by counting the number of POS frames pre-

dicted correctly in the support set, and frames in the query

set greater than and less than a threshold are then marked as

1 and 0, respectively. However, through the experiments, we

find that we can get a better result by labeling 0 for those

smaller than the threshold minus 0.2. In addition, we find that

only fine-tuning the support set before the 86 iterations and

adding semi-supervision after the last 14 iterations can achieve

a better result. The experiment result is shown in Exp No.7 of

Table III.

4) Weight Sharing Transfer Learning: As mentioned above,

we mix the source domain and the target domain and define

a 20-classification task. We make the 20-classifier and the 2-

classifier trained together, meanwhile, and share the weight

of class 1 of the 2-classifier and the weight of class 0 of the

20-classifier. Adam optimizer is used in the 20-classifier, and

LR is set to 1e-3. We fine-tune the 20-classifier 100 iterations.

Finally, we get our best performing system, as shown in Exp

No.8 of Table III.

Observing that our frame-level system does not obtain the

best result on HB, we analyse that since HB is dominated by

mosquito sounds, and the frequency of mosquito sound is low,

which leads to many short mute segments in a long-term POS

segment. In response to this problem, the adaptive window

length can judge the class of the entire window according to

some effective segments in the window, while the frame-level

system is prone to event truncation problems, resulting in a

decrease in HB detection effect. We have tried the optimization
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THE DCASE 2022 TASK5 VALIDATION SET, INCLUDING TRANSDUCTIVE

INFERENCE-MUTUAL LEARNING/TRANSDUCTIVE INFERENCE (TI-ML/TI), DATA AUGMENTATION (DATA AUG), NEGATIVE SAMPLE SELECTION

OPTIMIZATION (NEG), ADAPTIVE WINDOW LENGTH AND FIXED WINDOW SHIFT SCHEME (ALFS), SEGMENT-LEVEL/FRAME-LEVEL MODEL

(SEGMENT/FRAME), SEMI-SUPERVISED LEARNING (SSL) AND TRANSFER LEARNING (TL).

Exp No. Methods Validation Set F-score
TI-ML/ML Data Aug Neg ALFS Segment/Frame SSL TL HB ME PB Total

1(Baseline) TI-ML � � � Segment � � 46.0 51.3 33.9 42.4

2 TI-ML � � � Segment � � 70.3 55.0 37.3 50.7

3 TI � � � Segment � � 66.6 78.4 52.3 63.9

4 TI � � � Segment � � 67.3 81.9 52.7 65.2

5 TI � � � Segment � � 85.9 79.3 48.1 66.6

6 TI � � � Frame � � 69.0 89.7 52.3 67.0

7 TI � � � Frame � � 80.7 87.6 51.4 69.3

8 TI � � � Frame � � 77.0 90.0 53.7 70.2

TABLE IV
ADAPTIVE WINDOW LENGTH AND FIXED WINDOW SHIFT SCHEME. THE

“//” DENOTES ALIQUOTING.

X Window Length Window Shift
X ≤ 17 17 4

17 < X ≤ 100 X 4
100 < X ≤ 200 X // 2 4
200 < X ≤ 400 X // 4 4

X > 400 X // 8 4

method of median filtering, and although it has achieved a

better result, it can not completely solve this problem.

C. Results Analysis

Fig. 2. DCASE 2022 Task5 F-score results for each team (best scoring system)
on the evaluation and validation sets. Systems are ranked according to the F-
score on the evaluation set. Ranked 1st is our best frame-level system. Ranked
14th and 15th are the official baseline systems based on template matching
and prototypical network, respectively [2].These results and technical reports
for the submitted systems can be found on the Task 5 results page 1.

1) Performance Comparison: There are 15 teams partic-

ipating in DCASE 2022 Task5. Fig. 2 shows the results of

all teams and two baseline systems on the validation and

evaluation sets. It can be seen that our frame-level system

ranks 1st in both validation and evaluation sets. The 3rd place

team of used an event-length adapted ensemble of prototypical

networks [18]. The 2nd place team adopted segment-level

modeling and used AudioSet as additional data to expand the

training data [19]. Our frame-level system achieves 10.2% and

12.0% higher F-scores on the validation set and evaluation set

than the best results of the 2nd and 3rd teams, respectively.

It is obvious that our method has competitive performance on

the FSBED task.

2) Visualization and Analysis: To better illustrate the im-

pact of different approaches, we selected two audio recordings

and presented the corresponding FSBED results in Fig. 3.

As can be seen, compared with Ground Truth (blue line),

although the system using data augmentation can detect some

sound events, there are obviously missed detections (such as

ME1.wav) and false detections (such as R4 cleaned record-

ing TEL 20-10-17.wav). We obtained our best segment-level

system (i.e., Exp No.5) after removing the ML framework,

changing negative sample selection method and sliding win-

dow strategy. Compared with the Baseline+Aug system, it can

reduce the occurrence of missed detection and false detection.

As we improve the modeling accuracy, our final frame-level

system (i.e., Exp No.8) can further improve the detection

accuracy and get closer to Ground Truth.

(a) ME1.wav

(b) R4 cleaned recording TEL 20-10-17.wav

Fig. 3. The visualization and comparison of FSBED results of different
methods, including data augmentation used on baseline system (denoted as
Baseline+Aug), the best segment-level system (denoted as Seg), and the best
frame-level system (denoted as Frame).
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IV. CONCLUSIONS

In this paper, we propose a frame-level embedding learning

framework for FSBED, which improves the accuracy of detect-

ing different bioacoustic events. Our method won the 1st place

in DCASE 2022 task 5. In the future, considering that different

types of bioacoustic events are quite different, more effective

fine-tuning strategies can be explored to make the model more

adaptable to detect new bioacoustic events. In addition, pre-

training and more data augmentation methods can be tried to

improve the generalization of the model. As the performance

of the system is further improved, the FSBED system can

better help biologists annotate more animal recordings at the

lowest possible time cost to monitor biodiversity and animal

behavior.
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