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ABSTRACT
The audio-visual direction of arrival (DOA) estimation has demon-
strated superior performance recently. In this paper, we present a
novel audio-visual multi-speaker DOA estimation network, which
for the first time incorporates multi-speaker lip features to adapt the
complex overlapping and noisy scenarios. Firstly, we encode the
multi-channel audio features, the reference angles and the lip Re-
gions of Interest (RoIs) detected from the video respectively to ac-
quire high-level representations. Then the multi-modal embeddings
of audio, speaker angles and lips are fused by a tri-modal gated fu-
sion module to balance their contributions to the output. The fused
embedding is sent to the backend network to obtain the accurate
DOA estimation with the combination of the predicted speaker angu-
lar vectors and the speaker activities. Experimental results show that
our proposed approach can reduce the localization error by 73.48%
compared to the previous work on the 2021 Multi-modal Information
based Speech Processing (MISP) Challenge corpus. Meanwhile, the
high accuracy and stability of localization results demonstrate the
robustness of the proposed model in multi-speaker scenarios.

Index Terms— Multi-speaker DOA estimation, audio-visual
sound source localization, lip embedding, multi-modal information,
gated fusion

1. INTRODUCTION
The direction of arrival (DOA) estimation aims to locate spatial posi-
tions of one or more sources relative to the microphone array utiliz-
ing captured speech signals. The DOA estimation has been applied
widely in speech enhancement [1], teleconferencing [2], automatic
speech recognition [3], and other acoustic signal processing areas.

Traditional array signal processing techniques have developed
a series of DOA estimation methods over decades, such as the
time delay of arrival (TDOA) based methods utilizing generalized
cross-correlation (GCC) [4]; subspace based approaches repre-
sented by multiple signal classification (MUSIC) [5]; the signal
synchronization based methods like the steered response power with
phase transform (SRP-PHAT) [6]; the blind identification of impulse
response based methods such as the adaptive eigenvalue decomposi-
tion (AED) [7]. Traditional methods have made impressive progress,
but they rely heavily on ideal assumptions such as the white noise
and the high SNR, which are difficult to maintain in real scenarios.

Lately, many researchers have explored deep learning based
approaches to improve the robustness of systems in adverse scenes.
Typically, the inputs of neural networks can be the GCC-PHAT
(Phase Transform) Patterns [8], the raw waveform [9], the magni-
tude and phase parts of frequency domain features [10], etc. And
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the outputs can be positions classified with a predefined angular res-
olution [11], or angles predicted by location regression [12]. Most
recently, the advanced transformer-based model [13] was proposed
to handle DOA estimation problem in multi-source scenes. Addi-
tionally, a DNN based steered response power (SRP) method [14]
utilizing spatial-temporal context information was published for
multiple moving sources. Although the accuracy of DOA estimation
has been improved thanks to the powerful learning ability of neural
networks, overlaps and heavy noises still pose great challenges.

Considering that humans naturally integrate auditory and visual
stimuli to obtain a profound understanding of the real world, some
studies have proposed to combining audio and visual information
for better insight into localizing sound sources. A novel real-time
audio-visual system to localize all active speakers with a full 360◦

was proposed in [15]. [16] adopted a novel deep generative beam-
former (DGB) to incorporate a deep learning process with the con-
ventional SRP-PHAT beamforming for audio-visual sound source
localization. A multi-speaker DOA estimation method utilizing the
reference angular vectors detected from the video as an assistance to
audio was proposed in our previous work [17], which is based on the
transformation between the pixel coordinate system and the camera
coordinate system according to the pin-hole camera model. With the
help of the reference angles from the video, this work addressed the
label permutation problem in multi-speaker DOA estimation.

In this paper, we construct an advanced audio-visual framework
based on our previous work [17] to deeply mine the rich informa-
tion from the video to overcome the difficulties of high overlapping
ratios and heavy noises in real scenes. Specifically, our main contri-
butions are: Firstly, we propose to incorporate lip feature of speak-
ers into the audio-visual DOA task for the first time, which provides
helpful information for the active speaker prediction in DOA esti-
mation. Then we propose a multi-modal gated fusion method to bal-
ance the contributions of multiple embeddings to the network output.
Besides, a speaker-wise loss function is presented to jointly opti-
mize the predicted speaker active probabilities and the correspond-
ing angular vectors. A series of audio-visual ablation experiments
are designed to analyze the assistance and supplement of the visual
modality to the audio modality, and evaluated on the MISP2021 cor-
pus. Experimental results demonstrate that through combining au-
dio features, speaker angular vectors and lip features, our proposed
multi-modal DOA estimation network shows significantly improved
performances with a relative localization error reduction of 73.48%
compared to the baseline [17] with high accuracy and robustness.

The remainder of this paper is organized as follows: Section 2
introduces the overall architecture of our proposed audio-visual
DOA network. Then we describe the experimental setups, results,
and analysis in Section 3. Finally, we draw a conclusion in Section 4.IC
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Fig. 1. The flowchart of the proposed audio-visual DOA framework.

2. PROPOSED METHOD

Fig. 1 illustrates the overall flowchart of the proposed multi-modal
DOA estimation, which is a joint task of speaker localization and
diarization. We first encode audio features and video speaker an-
gles to acquire the audio embedding and the angular embedding re-
spectively, and employ a pre-trained lip-reading model to extract
the lip embedding simultaneously. Then the gated fusion module
takes multi-modal embeddings as inputs and the decoder combines
the predicted speaker angles and posterior probabilities to obtain the
final DOA estimation.

2.1. Audio encoder

In the process of audio signals, we apply Mel filter bank (FBANK)
features as the input features. Specifically, we perform a 64-
dimensional FBANK extractor on the 6-channel audio with a win-
dow size of 20 ms and a window shift of the same length. After
time-frequency analysis, the 6-channel FBANK features are fed
into an 18-layer ResNet as our audio embedding extractor fa. The
process can be formulated as:

Ea = fa (Fa) (1)

where Ea =
{
e1
a, e

2
a, · · · , eTa

a

}
, et

a ∈ RDa is the audio embed-
ding and Fa ∈ RC×Fmel×Ta is the FBANK features. And Ta is the
number of audio frames, C is the number of audio channels, Fmel

and Da are the dimensions of the FBANK features and the audio
embedding, respectively.

2.2. Angular encoder

To acquire the oracle angular information from the video modality,
we utilize an off-the-shelf face and lip detector based on YoLo-v5
algorithm1 to locate the face and lip Regions of Interest (RoIs) of
each person in the video, where lip RoIs are at almost the center
of face RoIs, regarded as the sound source locations. In this way,
we accurately acquire the pixel coordinates of the sound sources in
each video frame. Sequentially, the spatial annotation method [17] is
implemented to transfer coordinates of the located sound sources in
the pixel coordinate system to the camera coordinate system, and the
corresponding azimuth angles relative to the camera are calculated as

1https://github.com/ultralytics/yolov5

a result. We adopt the azimuth angles annotated from the video as the
oracle DOA information in our proposed audio-visual DOA estima-
tion model. Thus, we can compute the n-th speaker’s azimuth angles
in one sample as Φn = {ϕn,1, ϕn,2, · · · , ϕn,Tv}, where Tv is the
number of video frames. During encoding, we first express the az-
imuth angles as the angular vectors for better representation Xvn =
{xn,1,xn,2, · · · ,xn,Tv}, where xn,t = (cosϕn,t, sinϕn,t). Then
the Tv-frame angular vectors of N speakers (N is the number of
the speakers detected in the video) are encoded to obtain the angular
embedding by an 18-ResNet network fv formulated as:

Ev = fv (Xv) (2)

where Ev =
{
e1
v, e

2
v, · · · , eTv

v

}
, et

v ∈ RN×Dv . And Dv is the
dimension of the angular embedding for each person.

2.3. Lip encoder

The oracle angular information calibrated from the video is quite
useful for DOA estimation, providing an accurate angular reference.
Moreover, the performance of locating the active person only with
audio signals is not satisfactory, because of the multiple overlapping
sound sources and background noises in real scenes, such as the TV
noise in MISP2021. In view of this, we crop the lip Regions of In-
terest (RoIs) of the target speakers as assistance while detecting their
azimuth angles in Section 2.2. For the frames of missing lip detec-
tion, we search for the lip RoIs from the nearest non-empty frames
before and after them, then perform linear interpolations between
the non-empty frames. Finally we save the maximum range size of
detected lip RoIs for each speaker within each sample duration and
resize all the cropped lip RoIs to a fixed size of 96 × 96 × 3. After
this, we take the grayed-out lip RoIs of N speakers detected in the
video Lv = (l1, l2, · · · , lTv ) as the input to calculate the lip em-
bedding El utilizing a lip-reading model pre-trained on clustered tri-
phone [18] as our lip encoder fl, which consists of a spatio-temporal
convolution (including a convolution layer with 64 3D-kernels, a
batch normalization) followed by an 18-layer ResNet. We can for-
mulate the process as:

El = fl (Lv)

= ResNet 18 (BN (Conv3D (Lv)))
(3)

where El =
{
e1
l , e

2
l , · · · , eTv

l

}
, et

l ∈ RN×Dl . And Dl is the di-
mension of the lip embedding for each person.
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2.4. Tri-modal gated fusion module

To solve the temporal alignment problem of audio and video embed-
dings, we repeat two times for the angular embedding and the lip
embedding of the video. Besides we repeat N times for the audio
embedding before fusing it with the others.

Although simple element-wise addition, concatenation and dot
operations can fuse multi-embedding vectors, they are not highly ef-
ficient in capturing high-level correlations among them. Moreover,
with the help of reference angular vectors, the audio and speaker’s
lips provide more contributions to active speaker prediction rather
than localization. For these reasons, we incorporate the gated fu-
sion module into the DOA model to acquire high-level associations
among multiple embeddings. Specifically, we utilize a tri-modal
gated fusion module modified by the bimodal approach proposed
in the gated multimodal unit (GMU) network [19] to learn the fused
embedding Eg , which can be described as:

zt = σ
(
Wz ·

[
et
a, e

t
v, e

t
l

])
et
g = zt ∗ et

a + (1− zt) ∗ et
v +Wg · et

l

(4)

where Eg =
{
e1
g, e

2
g, · · · , eTa

g

}
, et

g ∈ RN×D is the fused em-
bedding, and D is the dimension of the fused embedding for each
person. And et

a ∈ Ea, et
v ∈ Ev and et

l ∈ El are the vectors of the
audio embedding, the angular embedding and the lip embedding at
time t, respectively. Meanwhile Θ = {Wz,Wg} are the parame-
ters to be learned and [·, ·, ·] denotes the concatenation operator. And
σ stands for the Sigmoid function.

During multi-modal gated fusing, the fusion module takes three
kinds of information as the input, and each ei corresponds to an
embedding vector associated with modality i. With a gate neuron
σ, the DOA network can control the contributions of the features
calculated from ei to the overall output eg of the fusion module.

2.5. Decoder

The fused embedding is fed into an 18-layer ResNet, followed by a
Multi-Scale Temporal Convolution Network (MS-TCN) [20] as the
temporal sequential modeling module. The outputs of MS-TCN go
through two branches respectively. One branch is a fully-connected
(FC) layer followed by the L2 normalization, corresponding to the
predicted angular vectors whose magnitudes are normalized as 1.
And the other is a FC layer followed by a Sigmoid activation, cor-
responding to the predicted active posterior probabilities. During
decoding, we binarize the active posterior probabilities by choosing
a threshold to select the corresponding speaker angular vectors as the
final DOA estimation.

2.6. Optimization

The total speaker-wise BceCosLoss of the network is the sum of bi-
nary cross entropy (BCE) loss of speaker activities and the speaker-
wise Cosine loss of DOA estimation described as follows:

L = Lbce (γ̂, γ) + Lcos (x̂,x, γ̂) (5)

where Lbce (γ̂, γ) is the BCE loss of the predicted active posterior
probabilities γ̂ of target speakers and the ground-truth activities γ,
as well as Lcos (x̂,x, γ̂) is the speaker-wise Cosine loss of the pre-
dicted angular vectors x̂ =

(
cos ϕ̂, sin ϕ̂

)
and the corresponding

ground-truth x = (cosϕ, sinϕ), with ϕ̂ and ϕ being the predicted
angles and the corresponding ground-truth. We multiply the Co-
sine loss with the predicted speaker active posterior probabilities as

a speaker-wise weighting function, instead of optimizing the BCE
loss and the Cosine loss independently, calculated as:

Lcos (x̂,x, γ̂) = γ̂ (1− cos (x̂,x)) (6)

where cos (x̂,x) is the cosine distance between x̂ and x. We only
computed the BceCosLoss for frames with more than one labelled
active speakers.

We minimize the loss function by adopting Adam optimizer [21]
for 40 epochs with an initial learning rate of 3e-4 and a weight decay
of 10e-4, and utilizing cosine scheduler [22].

3. EXPERIMENTS

3.1. Experimental setup

We conduct our experiments on the far-field recordings of the
MISP2021 corpus [23]. The sample rate of the audio is 16 kHz,
and the video is recorded at 25 frames per second. We focus on the
azimuth angles because of the same heights of the sitting speakers
and the linear microphone array, whose midpoint coincides with the
origin of the camera. The multi-modal embeddings and the fused
embedding have the same dimensions of 512. Meanwhile, the output
DOA frame rate is the same as the video frame rate, i.e., 40 ms.

We report the mean absolute DOA Error for evaluation. Given
a predicted angular vector list x̂ and the corresponding ground truth
list x, we apply the Hungarian algorithm [24] to solve the assign-
ment problem. Then the absolute DOA Errors are computed as the
cosine distances of the matched pairs cos (x̂,x). For mismatched
pairs, we employ a punish angular offset of the maximum angular
range of sources appearing at that frame. We find the best model
with the lowest DOA Error on MISP2021 development set (DEV)
and apply it to MISP2021 evaluation set (EVAL) to calculate the
final DOA Error. We also report the accuracy of DOA estimation
where the output is considered true positive only when the DOA Er-
ror is under a threshold of 20◦, and the F1-Score calculated with the
precision and recall of the correct predicted frames in each sample.

We design several variants of different combinations among au-
dio features, speaker angles and lips for our proposed audio-visual
DOA estimation model, i.e, the AV(AL) DOA model. The inputs are
demonstrated as Table 1, specifically, A, AV(A), AV(L) and V(AL)
denote the Audio-only model, the Audio-Visual (Angles) model, the
Audio-Visual (Lips) model and the Video-only model respectively.
The networks which receive angular vectors as a reference, including
AV(A), V(AL) and AV(AL) models, output the angular differences
between the predicted angles and ground truth, while the others di-
rectly regress the angles. We utilize the permutation invariant train-
ing (PIT) strategy [17] to align the speaker labels in A DOA model
and adopt a bi-modal gated fusion without the parameter Wg for the
third embedding in AV(A), AV(L) and V(AL) DOA models.

3.2. Results and analysis of ablation experiments

We presented the localization performances of DOA estimation
models in Table 1. The A DOA model performed poorly with a high
DOA Error in multi-speaker scenes. The AV(A) DOA model as well
as the baseline model reduced the DOA Error with the assistance of
the angular reference. However it is not very helpful to determine
the activity of speakers as seen from the low F1-Score of 0.59 in
the baseline model. On the other hand, the AV(L) DOA model
effectively improved the F1-Score to 0.9 utilizing the speaker lips as
an auxiliary to audio. Yet, without the video angular reference, the
network cannot regress the speaker angles exactly, which leads to
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Table 1. Specific setups and experiment results for five variants of
proposed AV(AL) DOA model. And the baseline model is [17].

Model Inputs Metrics
FA XV LV DOA Error(◦) Acc F1-Score

A
√

- - 33.48 0.32 0.38
AV(A)

√ √
- 29.91 0.47 0.63

AV(L)
√

-
√

26.64 0.35 0.90
V(AL) -

√ √
8.72 0.84 0.90

AV(AL)
√ √ √

7.42 0.86 0.92
baseline

√ √
- 27.98 0.46 0.59

Table 2. The DOA Error metric of ablation experiments for different
fusion methods and loss functions on the proposed AV(AL) DOA
model, where ‘speaker-wise’ denotes the proposed BceCosLoss, and
‘speaker-independent’ means the BceCosLoss without multiplying
the Cosine loss with the BCE loss.

Method Add Cat Dot FBP Gated
speaker-independent 8.56◦ 11.6◦ 8.42◦ 9.95◦ 7.69◦

speaker-wise 8.53◦ 9.84◦ 8.09◦ 9.55◦ 7.42◦

a low localization accuracy. Considering the usefulness of angular
vectors for the angle regression and speaker’s lips for the active
speaker prediction respectively, we combined them as the V(AL)
model to analyze the localization performance. Significantly, the
V(AL) DOA model effectively reduced the DOA Error by 19.26◦

absolutely relative to the baseline with a high localization accuracy.
The proposed AV(AL) DOA model fused the audio-visual infor-
mation and achieved the optimal performance in reducing the DOA
Error by 73.48% and improving the localization accuracy by 86.95%
relative to the baseline. As seen from the high F1-Score in AV(L),
V(AL) and AV(AL) DOA models, the effectiveness of incorporating
the lip features into the audio features and speaker angles indicated
that the lip features capture the important information for active
speaker prediction that is difficult to be captured by the others.

We also explored the effects on the five models by statistically
calculating the DOA Errors corresponding to the number of people
participating in the conversation as Fig. 2. As the number of speak-
ers rises, the DOA Errors of the A, AV(A) and AV(L) DOA models
increase sharply, which is caused by the increased overlap of utter-
ances in multi-speaker conversation and the rapidly increasing angu-
lar range. In the V(AL) DOA and AV(AL) DOA models, the DOA
Errors are controlled within a range of about 30◦, demonstrating that
the proposed model has high robustness in multi-speaker scenarios.

A series of ablation experiments for fusion methods were con-
ducted. We adopted the common element-wise addition, concatena-
tion, dot operations as compared in [25] and the multi-modal factor-
ize bilinear pooling (FBP) [26] as the comparisons to the proposed
multi-modal gated fusion. As the experimental results in Table 2
indicate, the gated fusion method achieves a relatively good per-
formance among the other methods for better representation of the
fused embedding, while the others have poorer localization abilities.

We also designed a set of experiments to compare the speaker-
wise BceCosLoss with speaker-independent BceCosLoss (without
multiplying Cosine loss by BCE loss) in Table 2. As seen from low
DOA Error, the speaker-wise BceCosLoss has improved localization
performances to a certain extent among different fusion strategies,
showing its validity in jointly optimizing BCE loss and Cosine loss.

Fig. 3 is a randomly selected localization example of the base-
line and our proposed AV(AL) model. The three people sitting in
the room had tiny movements in conversation. As illustrated in red
boxes, the missing detections of three speakers in the baseline were

Fig. 2. A comparison of the DOA Error among five models with the
increasing number of speakers involved in the conversation.

Fig. 3. An example for comparing the localization ability of the
proposed AV(AL) DOA model with the baseline model.

rectified by the AV(AL) model with the help of the speaker lips par-
ticularly in overlapping segments.

4. CONCLUSION
In this paper, we propose a novel audio-visual multi-speaker DOA
estimation model which incorporates speaker’s lips by gated fusion.
The proposed AV(AL) DOA model fuses speaker lip features with
audio features and video angular vectors to make full use of video
information. We also explore the effectiveness of a tri-modal gated
fusion module with other fusion strategies, and a speaker-wise Bce-
CosLoss to enhance the localization capability. A set of ablation
experiments were conducted to validate the effectiveness and auxil-
iary of video lip features to DOA estimation. The proposed model
achieves an excellent localization performance with a 73.48% reduc-
tion in DOA Error while improving localization accuracy by 86.95%
relatively. It is inevitable that incorporating visual modality into au-
dio modality requires greater computational complexity, but the per-
formance of the model can be improved significantly. In the future
we will explore effective techniques to compress the model and im-
prove its real-time capability for DOA estimation applications.
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