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Abstract—In the MMCSG task of the CHiME-8 Challenge,
achieving real-time speaker-attributed transcriptions with lim-
ited multi-modal data presents significant challenges. To cope
with the problem, we propose a novel ASR framework that
leverages both audio-only and multi-modal inputs in a streaming
fashion. For the audio-only modality, analyzing and emulating
the characteristics of real audio, we utilize a multi-channel
simulation to generate the augmented dataset, which efficiently
reduces the model training deviation between real and simulated
data. Additionally, we integrate the IMU data with audio data
in the network structure, demonstrating that the functional
filtered and encoded IMU data can assist audio information
in achieving better real-time speech recognition performance
with ablation experiments. Notably, our explorations based on
the above schemes not only secured first place in the MMCSG
sub-track but also represented the first investigation into the
effectiveness of leveraging IMU data for this task.

Index Terms—streaming ASR, multi-modal data, IMU data,
cross-talk, smart glasses, MMCSG, CHiME

I. INTRODUCTION

End-to-end speech recognition technology integrates the
acoustic model, language model, and pronunciation lexi-
con of traditional speech recognition models into a unified
system, providing a more efficient solution for automatic
speech recognition (ASR) tasks. To address the problem of
inconsistency between the lengths of the speech sequence
and the output sequence, connectionist temporal classification
(CTC) [1], recurrent neural network transducer (RNN-T) [2],
and attention-based approaches [3]-[6] are the most prominent
approaches in this field. In recent years, models based on the
Transformer [7] structure have shown excellent performance
in a range of tasks such as natural language understanding,
machine translation, and speech recognition [8]-[10].

In various practical application scenarios like cross-talk con-
versations with people wearing smart glasses, transcribing and
presenting the speaker’s content in real-time is an intriguing
implementation, providing prior information for subsequent
tasks such as translation and comprehension. The RNN-T-
based ASR system has demonstrated outstanding performance
in streaming and online applications and has been success-
fully deployed in production systems [11], [12]. Nevertheless,
attention-based encoder-decoder architectures represent the
most effective end-to-end ASR systems, yet their deployment
in a streaming context remains challenging, impeding their
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broader adoption in practice. To address this limitation, alter-
native streaming ASR approaches based on attention systems
have been proposed, including Neural Transducer (NT) [13],
Monotonic Chunk Attention (MoChA) [14], and Trigger At-
tention (TA) [15]. With the advancement and development of
multi-modal investigations, research has substantiated that in-
corporating video input into ASR systems benefits the model’s
recognition performance [16]-[18]. Recognizing that humans
naturally integrate information from multiple modalities to
gain a deeper understanding of their surroundings, researchers
are increasingly integrating a variety of sensors [19], [20]
in devices to collect multi-modal data in addition to video
information, aiming to supplement the audio-only modality
for better recognition performance.

The CHiME-8 organizers introduced an engaging task, ASR
for multi-modal conversations in smart glasses (MMCSG),
centering on the cross-talk between two participants recorded
with smart glasses, Project Aria [21]. Project Aria, equipped
with RGB cameras and non-visual sensors, namely two inertial
measurement units (IMUs), microphones, and so on, provides
valuable multi-modal information for speech recognition. The
goal of the task is to obtain speaker-attributed transcriptions
in a streaming fashion with multiple input modalities, where
the wearer of the glasses is referred to as SELF and the
conversation partner is referred to as OTHER. To tackle
this challenge, we explore the practical use of multi-modal
information for streaming ASR on smart glasses. Specifically,
our key contributions are summarized as follows:

e We propose two approaches for the CHiIME-8 MMCSG
task: audio-only streaming ASR and multi-modal stream-
ing ASR. These methods offer advanced solutions for
real-time transcription of two-person conversations in the
smart glasses scenario.

e We adopt a Fast-Conformer-based end-to-end neural
transducer as our audio-only ASR system, and perform
specific multi-channel simulation and data augmentation
strategy, which significantly improves the recognition
performance of the streaming model and won first place
in the sub-track of the MMCSG task.

« In the multi-modal system, we innovatively integrate IMU
data as an auxiliary input to the audio-only system,
resulting in effective improvement over the audio-only
baseline, where the filtering and encoding of the IMU
data play a crucial role in this enhancement.
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Fig. 1. The proposed audio-only and multi-modal streaming ASR architecture.

II. PROPOSED METHOD
A. Data Augmentation

Given the scarcity of real training audio (only 8.5 hours),
we employed a multi-channel audio simulation to generate
additional data. We utilize the Librispeech dataset [22] as a
clean speech corpus, randomly pairing single-channel audio,
designating one as SELF and the other as OTHER. As
background noise, we select the Deep Noise Suppression
(DNS) Challenge noise dataset [23]. The clean speech and
noise were convolved with the provided real room impulse
responses (RIRs) to simulate a realistic multi-channel spatial
environment. By adjusting the signal-to-noise ratio (SNR), we
generate multi-channel audio with both near-field (SELF) and
far-field (OTHER) characteristics. Additionally, to mitigate the
performance saturation of the model on large datasets, we
design various simulated overlap rates tailored to the realistic
scenario to reduce the training bias between real and simulated
data in experiments.

B. Audio-only ASR Architecture

Our audio-only ASR model, depicted as the left branch of
Fig. 1, features a front-end with multiple super-directive beam-
formers followed by an ASR module. The N = 7 channels of
raw audio are processed by the Linearly Constrained Minimum
Variance (NLCMYV) beamformers [24] with predetermined
beamformer weights into K = 12 horizontal steering directions
plus one towards the speaker’s mouth, resulting in 13-channel
beamformed outputs. Mel filter bank (Fbank) features are then
extracted and concatenated from each direction. We subsam-
ple the Fbank features with a multi-channel convolutional
downsampling module and feed them into the ASR module.

OTHER OVERLAP

time (seconds) )

IMU Signal

Fig. 2. The speech spectrogram of SELF and OTHER speakers from a
randomly selected sample of the training set.

The pre-processing of the audio branch can be formulated as
follows:

X, = Beamformer (Xqydio) (D
X rbank = FbankExtractor (Xy ) 2)
F, = Multichannel CNN (X fpqnk) 3)

where X 40 is the audio sequence, Xy ¢ is the multi-channel
beamformed outputs, and F, is the high-level representations
of the audio modality fed into the backend ASR module.

The ASR module is adapted to receive multi-channel audio
inputs from single-channel ASR systems [25] and utilize
serialized output training (SOT) [26], [27] to detect and
separate speech signals from various directions. We use a
neural transducer as the end-to-end ASR module, consisting
of an encoder, a prediction network, and a joint network.
Specifically, a Fast-Conformer network [5] is employed as
the encoder, which processes input sequences into acoustic
representations and enhances training and inference efficiency
using a novel downsampling schema and limited context
attention. The prediction network functions as an internal
language model or decoder, while the joint network combines
outputs from the encoder and prediction network to create
the joint representation. In this paper, we employ the RNN-T
decoder and its associated losses.

C. Multi-modal ASR Architecture

Although previous studies have demonstrated that IMU
data exhibits synergy and complementarity with the sensor
wearer’s activities, enabled to support tasks like activity recog-
nition [28] and posture detection [29], its integration into
ASR systems remains insufficiently explored, particularly in
streaming applications. Remarkably, IMU sensors with high
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sampling rates can cover the fundamental frequency band of
the human voice (85-255 Hz) [30]. As highlighted in the
synchronized audio and IMU spectrums of Fig. 2, IMU sensors
on smart glasses capture the SELF speaker’s speech charac-
teristics, complementing information when the SELF speaker
is interfered with. Simultaneously, the IMU data recorded
with the accelerometer and gyroscope implicitly reveals the
SELF speaker’s facial orientation, which facilitates the multi-
speaker ASR model in distinguishing between the SELF and
OTHER speakers combined with the omnidirectional beam-
formed audio features, especially in high-overlap segments,
thereby reducing speaker substitution errors. Drawing from
these analyses, we propose supplementing audio modality with
IMU data collected by the smart glasses in the MMCSG task,
as described in Fig.1.

According to [31], human physical activities occur mostly
below 20 Hz and the sensitive IMU devices are typically prone
to noise interference, as confirmed by the low-frequency noise
highlighted in the IMU spectrum in Fig. 2. Therefore we first
employ a high-pass filter to remove components below 20
Hz, eliminating extraneous noise while preserving essential
motion information. Due to the differences in sampling rates
and characteristics between IMU and audio modalities, the
direct summation or addition fusion methods are inappropriate.
We design several IMU pre-encoders, including a causal
convolutional module, a stacked unidirectional LSTM, and a
1D version of the standard ResNet-18 architecture referred
to [32] to explore their performances. The encoded IMU
features are added with the audio representations along the
temporal dimension and fed into the conformer module to
learn profound interactions and semantic information within
modalities, advancing the recognition performance through
multi-modal fusion. The other parts of the multi-modal ASR
model are the same as the audio-only ASR model and the
multi-modal fusion can be formulated as follows:

Xy = HighpassFilter (X;m.) )
F, = ResNetlD (X},y) 5)
F,, = Conformer (Add (F,,F;)) (6)

where X, is the sequence of the IMU signal and high-pass
filtering operation in the frequency domain yields de-noised
IMU information Xy ¢. F; is the encoded IMU features by a
pre-encoder (exemplified by a ResNetlD encoder in Eq. 5)
and F, is the encoded audio features. F,,, is the multi-modal
representations output from the conformer module.

D. Streaming ASR Mechanism

Since the model is non-autoregressive in the training stage
while streaming ASR is not allowed to access the global
information, we adopt various methods to keep consistency
in the training and inference process. Firstly, normalization
is avoided to process the Fbank features and we replace the
convolutional and downsampling layers in the system with cor-
responding causal modules. The original BatchNorm [33] lay-
ers are replaced by LayerNorm [34] layers. Moreover, we use

the chunk-aware look-ahead approach [35] to limit the length
of the context for the self-attention layers. This approach
helps the model reduce unnecessary repetitive computation
and accelerates the inference speed. The larger look-ahead
contributes to higher accuracy with higher latency. During the
inference stage, we utilize the caching mechanism in [35] to
convert the non-autoregressive Fast-Conformer encoder into
an autoregressive recurrent model by caching intermediate
activations computed from the processing of previous time
steps. This mechanism avoids duplicated computations and
leads to a more efficient streaming inference.

ITI. EXPERIMENTS
A. Experimental setups

The MMCSG dataset is a multi-modal dataset of in-room
dialog scenes recorded with Project Aria glasses, consisting of
172 recordings for training, 169 recordings for development,
and 189 recordings for evaluation. Each recording contains
a conversation between two participants wearing Aria glasses
with potential background noise. We operate experiments with
the following modalities: 7-channel audio recorded at 48 kHz
and IMU data (including accelerometer and gyroscope signals)
recorded at 1 kHz. For the audio-only system, we apply multi-
channel simulation in Section II-A with the Librispeech clean
speech corpus and the DNS noise dataset in addition to the real
audio dataset, while we only adopt real multi-modal dataset
for the multi-modal system. In both the audio-only and multi-
modal systems, we utilize a Fast-Conformer pre-trained model
[36] to initialize the network. We use only RNN-T loss instead
of a hybrid RNN-T/CTC loss, and train all models with Adam
[37] optimizer and Noam learning rate scheduler [7] with
an initial learning rate of 0.5 using Pytorch. The sub-tracks
divide the latency of the submitted systems into four ranges
according to different thresholds: 150 ms, 350 ms, and 1000
ms, by calculating the average delay time for each system
to correctly recognize words according to the task evaluation
rules, and report the average multi-speaker word error rate
(WER) of SELF and OTHER speakers on the development
set to select the optimal models, where the multi-speaker
WER includes errors in recognizing speakers in addition to
the standard insertion, deletion, and substitution errors.

B. Results and analysis

1) Audio-only Streaming ASR: We first applied data aug-
mentation (e.g., speed perturbation) to increase the diversity
of real data, depicted as ‘Real Data + DA’ in Table I
Subsequently, we divided the Librispeech clean speech into
three equal parts to generate the simulated audio dataset ‘SD1’
(comprising splitl, split2, and split3), totaling approximately
1200 hours of cross-conversation scenarios. However, when
we progressively added simulated data to the real data by
splits, the recognition performance of the model initially
improved but gradually stagnated, especially for the OTHER
speaker the optimization was negligible with only a 1.4 drop
of WER at an attention context size of (70, 13) compared to
the ‘Real Data’ baseline.
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TABLE I
ABLATION EXPERIMENTS ON AUDIO-ONLY STREAMING ASR MODEL
USING MULTI-CHANNEL SIMULATION DATA.

Dataset Attention SELF OTHER OVERALL
Duration Context Size | WER [%] | WER [%] | WER [%]
(70, 1) 17.9 24.4 21.15
Real Data (70, 6) 15.0 214 18.20
(70, 13) 143 203 17.30
(70, 1) 18.3 233 20.80
Real Data + DA | (70, 6) 15.1 204 17.75
(70, 13) 14.1 19.6 16.85
Real Data + A | @D 146 220 18.30
s (70, 6) 124 19.7 16.05
(70, 13) 1.7 18.9 15.30
Real Daa « A | @D 13.1 220 17.55
ey (70, 6) 1.0 19.5 15.25
(70, 13) 104 18.8 14.60

Recognizing the high overlap rate of about 11% exhibited
in conversations in training set, the OTHER speaker’s speech
(far-field) is often overwhelmed by that of the SELF speaker
(near-field), as reflected in the “overlap” segments in Fig. 2.
We regenerated split4 and splitS with pluralistic overlap rates
from 5% to 30% to cope with the performance degradation.
Merging the new sets split4-5 with splitl leads to a multi-
overlapping simulation dataset ‘SD2’. As indicated in rows
10~12 of Table I, the model trained with varying overlap
rates outperformed that trained with a single overlap rate by an
overall 15.6% advancement at (70, 13) attention context size.
Incorporating varied overlap rates provides more representa-
tive training examples, closely mirroring real-world scenarios.
Based on a threshold of up to 1000 ms for a streaming system,
we increased the attention context size to (84, 20), contributing
to a substantial improvement by 19.1% with only 14.00 for
OVERALL WER. In addition, with our proposed optimized
multi-overlapping simulation dataset, modifying the causal
modules in the model to regular modules for non-streaming
inference secures first place in the MMCSG sub-track.

2) Multi-modal Streaming ASR: As illustrated in Table
II, we first investigate the effects of causal CNN, LSTM, and
ResNet18-1D IMU pre-encoders, respectively. Among them,
ResNet18-1D is adopted since it offers the best performance
with a light improvement compared to the audio-only baseline
(listed as “real data” in Table I), attributed to the fact that the
high amount of low-frequency noise in IMU data hampers the
model to extract valuable information. To this end, we applied
a high-pass filter to remove the noise from IMU data. Table
IIT shows the ASR results of implementing the high-pass filter
with different cut-off frequencies. It is evident that the cut-off
frequency of 20 Hz yields an optimal recognition performance,
achieving marked enhancements over the audio-only ASR
model baseline (listed as “real data”) across all attention con-
text sizes. Particularly, the muti-modal ASR model achieves
an improvement of the OVERALL WER 9.7% relatively:
12.3% for the SELF speaker and 7.8% for the OTHER speaker
at (70, 1) attention context size. It is noteworthy that the
improvement in WER for the SELF speaker is generally more

TABLE II
ABLATION EXPERIMENTS ON MULTI-MODAL STREAMING ASR MODEL
WITH DIFFERENT IMU PRE-ENCODERS.

MU Attention SELF OTHER OVERALL
Pre-encoder Context Size | WER [%] | WER [%] WER [%]
(70, 1) 22.6 30.1 26.35
Casual CNN (70, 6) 18.6 25.8 22.20
(70, 13) 17.5 243 20.90
(70, 1) 20.8 29.0 24.90
LSTM (70, 6) 17.7 252 21.45
(70, 13) 16.6 23.7 20.15
(70, 1) 17.9 243 21.10
ResNet18-1D (70, 6 15.1 211 18.10
(70, 13) 14.1 20.0 17.05
TABLE III

ABLATION EXPERIMENTS ON STREAMING ASR MODEL WITH VARYING
CUT-OFF FREQUENCIES USING THE RESNET18-1D PRE-ENCODER.

Cut-off Attention SELF OTHER OVERALL
Frequency | Context Size | WER [%] | WER [%] WER [%]
70, 1) 15.7 25 19.10
20 Hz (70, 6) 13.6 19.9 16.75
(70, 13) 13.0 19.1 16.05
(70, 1) 16.1 22 19.15
40 Hz (70, 6) 14.0 19.9 16.95
(70, 13) 133 19.0 16.15
(70, 1) 18.1 25 20.30
60 Hz (70, 6) 15.1 195 17.30
(70, 13) 14.1 18.6 16.35
(70, 1) 18.5 23.9 21.20
80 Hz (70, 6) 15.5 20.9 18.20
(70, 13) 14.6 19.7 17.25

pronounced than for the OTHER speaker, which aligns with
the IMU primarily capturing speech spectral cues from the
SELF speaker. Furthermore, as the cut-off frequency increases,
WER performance deteriorates, suggesting that most human
activity frequencies are below 20 Hz. Filtering out interference
below 20 Hz in the IMU data provides more relevant auxiliary
cues, whereas increasing the cut-off frequency further may
exclude speech-related signals.

IV. CONCLUSION

In this paper, we introduce a novel multi-modal stream-
ing ASR system on smart glasses, combining audio-only
and multi-modal inputs to transcribe the two participants’
speech within cross-talk scenarios in real-time. The audio-only
streaming ASR model, built upon a Fast-Conformer end-to-
end neural transducer architecture, is trained with a large-scale
augmented dataset covering varied overlap rates, enabling
improved generalization across simulated and real-world data
and achieving first place in the MMCSG sub-track. Our multi-
modal system, integrating IMU and audio data, effectively
captures the synergy and complementarity between modalities
through productive noise filtering and encoding. As the only
team to explore the integration of IMU data, we showcase its
promising potential to enhance real-time multi-modal ASR.
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