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Abstract
We design a novel deep learning framework for multi-channel
speech recognition in two aspects. First, for the front-end, an
iterative mask estimation (IME) approach based on deep learn-
ing is presented to improve the beamforming approach based on
the conventional complex Gaussian mixture model (CGMM).
Second, for the back-end, deep convolutional neural network-
s (DCNNs), with augmentation of both noisy and beamformed
training data, are adopted for acoustic modeling while the for-
ward and backward long short-term memory recurrent neural
networks (LSTM-RNNs) are used for language modeling. The
proposed framework can be quite effective to multi-channel
speech recognition with random combinations of fixed micro-
phones. Testing on the CHiME-4 Challenge speech recogni-
tion task with a single set of acoustic and language models, our
approach achieves the best performance of all three tracks (1-
channel, 2-channel, and 6-channel) among submitted systems.
Index Terms: CHiME challenge, deep learning, mask estima-
tion, microphone array, robust speech recognition

1. Introduction
Automatic speech recognition (ASR) in distant-talking scenar-
ios based on the use of microphone arrays has become an im-
portant part of everyday life with the emergence of speech-
enabled applications on multi-microphone portable devices due
to its convenience and flexibility. However, the speech sig-
nals recorded by distant microphones are often corrupted by
reverberation and background noise, leading to considerable
degradation in ASR performance, particularly at low signal-to-
noise ratios (SNRs). Speech enhancement algorithms that re-
duce noise without much damaging the target speech are there-
fore desired for improving the ASR performance and robust-
ness. For multi-channel speech enhancement, representative al-
gorithms in this category include multi-channel Wiener filter-
ing [1], blind source separation [2], and beamforming [3, 4].
And beamforming is a popular approach in the CHiME-3 Chal-
lenge [5], which focuses on solving ASR problems in real-
world applications. For example, the minimum variance dis-
tortionless response (MVDR) beamformer was used extensive-
ly in a few top-performing CHiME-3 ASR systems [6, 7]. A
key to achieving a high-quality beamformer is how to construc-
t a steering vector that represents the acoustic propagation [8].
Conventionally, some a priori knowledge is used to construct
the steering vector, e.g., the geometry of the microphone array
and the direction of arrival (DOA) information. But its robust-
ness often becomes a problem in real-life environments where
the acoustic propagation information is not known and difficult

to estimate accurately. In [4], a method was developed to steer
a beamformer using the time-frequency (T-F) masks estimated
by a complex Gaussian mixture model (CGMM), which was
demonstrated to be beneficial to the top-performing CHiME-4
ASR systems [9, 10] as well.

Deep learning techniques are becoming increasingly popu-
lar in many speech research areas, notably ASR [11]. In [12,
13], deep neural networks (DNNs) were utilized for single-
channel enhancement and shown to be superior to some ear-
ly speech enhancement algorithms in improving some objec-
tive measures, such as short-time objective intelligibility (S-
TOI) [14] and segmental SNR (SSNR, in dB) [15]. Differ-
ent neural network architectures have been adopted in single-
channel speech enhancement for ASR, and they have demon-
strated a significant increase in ASR performance [16, 17, 18].
The input features of these approaches are magnitude or log-
magnitude spectra in the short-time-Fourier-transform (STFT)
domain [19]. The ideal ratio mask (IRM) [20] has also been
shown to obtain a good speech enhancement performance.

In this paper, we propose to improve multi-channel speech
recognition via a deep learning framework. First, a closed-
loop approach to beamforming by leveraging upon informa-
tion obtained via iterative neural network based IRM estima-
tion and ASR based voice activity detection (VAD) [21] has
been proposed as our front-end system, which preprocesses ran-
dom channels data to single channel beamfomed data. Due to
the introduction of data-driven approach for multi-channel en-
hancement, the proposed approach is robust to the space ge-
ometry relation of microphone array. Meanwhile, a powerful
back-end system is also designed for improving the recognition
performance. We first explore a key technique used in building
our CHiME-3 ASR system [22], namely data augmentation, in
the spirit of fusing front-end features of both processed and un-
processed multi-channel data. Next, the acoustic model in the
framework of hidden Markov model (HMM) is upgraded via
deep convolutional neural networks (DCNNs) [23] with more
layers and a smaller filter size than conventional convolution-
al neural networks (CNNs) [24]. Finally, the language models
(LMs) based on long short-term memory (LSTM) [25] are used
with a combination of forward and backward LSTMs to further
improve the ASR performance. Testing on the CHiME-4 three
tracks (1-channel, 2-channel, and 6-channel microphone array
data), our proposed framework achieves the best performance
among all submitted systems. This work is an extension of the
recently disclosed version [26], with more experiments on 2-
channel and 1-channel cases to demonstrates its robustness to
the random combination of fixed microphones.
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Figure 1: A block diagram of the proposed deep learning frame-
work, which consists of front-end beamforming and back-end
acoustic/language models.

2. Proposed Deep Learning Framework
A block diagram of the proposed deep learning framework is
shown in Figure 1. The training stage consists of three parts,
i.e., IRM estimation, acoustic model and language model. For
the IRM estimation, the DNN-IRM model is trained using the
log-power spectral (LPS) features of data from channel 5 (the
main channel of microphone array in CHiME-4 task) as input
features and the IRM as output target. The LPS features of-
fering perceptually relevant parameters are adopted [15]. IR-
M is used to represent the speech presence probability at each
time-frequency point in speech separation [27]. Then, the a-
coustic models, including one DNN-HMM and four DCNN-
HMMs, are trained using beamformed data as well as data from
channels 1, 3, 4, 5, and 6. Only the input features of DNN
are concatenated from log mel-filterbank (LMFB) and feature-
space maximum likelihood regression (fMLLR) features [28].
The difference of the DCNN1-4 is the filter size (3 × 5 and
3 × 3) and input features. Finally, the forward and backward
LSTM-based language models are also constructed.

The recognition process of 2-channel and 6-channel da-
ta is divided into four successive steps, namely, beamform-
ing initialization, DNN-based signal statistics (IRM and ASR-
based VAD) estimation, beamforming, and recognition. First,
beamformed speech from the multi-channel input is initialized
and a time-frequency (T-F) mask of test speech is obtained by
CGMM-based beamforming. Then, the IRM estimated by a
well-trained DNN-IRM model and the ASR-based VAD infor-
mation are used to improve the initial mask. Next, the improved

mask is adopted to steer the beamformer, thereby obtaining the
beamformed speech for ASR. Finally, multiple acoustic model-
s are first fused at the state level, and then first-pass decoding
is performed with 3-gram to generate lattices as the hypothe-
ses, which are subsequently served for the second-pass decod-
ing with LSTM-based LMs. For the 1-channel data, the original
data is directly fed into recognizer. The details are presented in
the following subsections and the readers can also refer to [26].

3. Iterative Mask Estimation based
Beamforming

We use minimum variance distortionless response (MVDR)
beamformer which maximizes the signal-to-noise ratio (SNR)
of the beamformer output in each frequency bin k, leading to
the beamformer coefficients [29]:

w(k) =
R−1

nn(k)g(k)

gH(k)R−1
nn(k)g(k)

, (1)

where g(k) is the signal propagation vector, which is in the
same form as the so-called steering vector in the literature of
array beamforming [8]; Rxx(k) and Rnn(k) are the spatial
correlation matrix of target and noise, respectively.

The spatial correlation matrix can be estimated by the time-
frequency mask M(k, l), which represents the probability of
the T-F unit (k, l) containing the target speech signal. The key
to this approach is unsupervised and accurate estimation of the
spectral masks that indicate the presence and absence of speech
T-F units. In [4], the CGMM-based approach to estimating the
masks has been proposed.

3.1. The proposed iterative mask estimation procedure

In this section, we discuss the iterative mask estimation (IME)
with DNN-based IRM and ASR-based VAD to improve the
masks estimated by the CGMM-based approach. The proce-
dure of IME is described as follows:

Step 1: Estimate the initial mask for each T-F unit (k, l),
denoted as MCGMM(k, l), using the CGMM-based ap-
proach.

Step 2: Steer the beamformer with the estimated mask and ob-
tain the beamformed speech.

Step 3: Feed the DNN-IRM model with the beamformed
speech from Step 2 to estimate IRM, denoted as
MDNN(k, l).

Step 4: Perform the first-pass decoding with the beamformed
speech from Step 2 to get the ASR-based VAD, denoted
as MASR(k, l).

Step 5: Combine MCGMM(k, l) in Step 1 with MDNN(k, l) in
Step 3 or/and MASR(k, l) in Step 4 to generate the im-
proved mask.

Repeat Steps 2–5 for N iterations.

3.2. Improving mask estimation by DNN-based IRM

We use a DNN-IRM to predict the mask, MDNN(k, l), repre-
senting the speech presence probability at every T-F unit given
the input LPS features of enhanced speech obtained at Step 2
in Section 3.1. And the estimated MDNN(k, l) is combined with
MCGMM(k, l) to yield an improved mask M1(k, l), i.e.,

M1(k, l) =
√

MCGMM(k, l)MDNN(k, l). (2)
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This process can repeat iteratively following the Steps 2-5 in
Section 3.1.

3.3. Improving mask estimation by ASR-based VAD

The VAD information, MASR(k, l), from the segmentation re-
sults of the speech recognizer using beamformed speech at each
frame is used to further improve the mask estimation as

M2(k, l) = MCGMM(k, l)MASR(k, l). (3)

Please note that Eq. (3) only uses the ASR-based VAD infor-
mation to improve the CGMM-based mask. According to the
Step 5 in Section 3.1, if both DNN-based mask and ASR-based
mask are adopted, MCGMM(k, l) in Eq. (3) should be replaced
by M1(k, l) in Eq. (2), i.e.,

M3(k, l) = M1(k, l)MASR(k, l). (4)

Similar to M1(k, l), M2(k, l) and M3(k, l) can be iteratively
refined by repeating Steps 2-5 of Section 3.1.

4. Back-End Recognizer Design
4.1. DCNN-HMM based acoustic modeling

In our CHiME-3 system [28], the LSTM-HMM was adopted
and combined with DNN-HMM. In CHiME-4, we use DCNN-
HMM, which is found more effective. The model consists of
the input layer, 4 blocks with different sizes of feature map-
s, one fully connected (FC) layer and the softmax output lay-
er. For each block, there are six nets and a max-pooling layer.
Each net is a nonlinear transformation, and the input feature
map is processed with a conventional convolution ReLU layer
with batch normalization. We design 3×3 and 3×5 kernels to
build two DCNN models by considering the complementarity
of different kernel sizes. Moreover, it is important for speech
data to use a small kernel in DCNN due to the low resolution
of acoustic features. Unlike the DNN-HMM where LMFB and
fMLLR features are concatenated, these two feature types are
separately used to generate two sets of DCNN-HMMs. Final-
ly, four DCNN-HMMs are built, which are combined with the
DNN-HMM using the state-level model fusion [28] for better
recognition accuracy.

4.2. LSTM-based language modeling

The language model plays an important role in ASR, which in-
corporates syntactical and semantical constraints in the decod-
ing process. A powerful language model can help significantly
improve ASR performance. In this work, we use the LSTM-
based language model [30, 25] rather than the simple recurrent
neural network (SRNN) based language model officially pro-
vided [31]. First, the input word sequence is represented by the
one-hot encoding as a 4985-dimensional vector, which may re-
sult in data sparsity problem. Then, word embedding is adopt-
ed to provide a better representation to alleviate the problem
of data sparsity. One LSTM layer with 1024 memory cells is
followed by a 512-dimensional projection layer which can be
interpreted as projecting the input words to a continuous space.
The last two layers are the fully connected layer with 1024 n-
odes and the output layer with the vocabulary size of 4985. To
fully utilize the directional information of word sequences, two
LSTMs to model the text line from different directions, namely
forward LSTM and backward LSTM, are designed. It should
be emphasized that the combination of these two LSTM-based
LMs generates much better recognition results than just using
one single bi-directional LSTM-based LM.

5. Experimental Evaluation
We present the experimental evaluation of our framework in the
CHiME-4 task [31], which was designed to study real-world
ASR scenarios where a person is talking to a mobile tablet
device equipped with 6 microphones in a variety of adverse
environments. CHiME-4 offers three tasks (1-channel/1ch, 2-
channel/2ch, and 6-channel/6ch) with different testing scenar-
ios. More detailed information of CHiME-4 can refer to [5, 31].

5.1. Experiments on iterative mask estimation

In this subsection, the baseline ASR recognition system offi-
cially provided [31] is used to evaluate the different beamform-
ers on the test sets of real data. The acoustic model is DNN-
HMM discriminately trained with state-level minimum Bayes
risk (sMBR) criterion. The input of DNN-HMM is a 440-
dimensional feature vector extracted from channel 5, consisting
of 40-dimensional fMLLR with an 11-frame expansion. The
language models are 5-gram with Kneser-Ney (KN) smooth-
ing for the first-pass decoding and the SRNN-based language
model for rescoring. The DNN-IRM is trained using 7 frames
of 257-dimension LPS features of channel 5. The DNN-IRM
architecture is 1799-2048*3-257, namely 257*7 dimension for
LPS input features, 3 hidden layers with 2048 nodes for each,
and 257 nodes for the output T-F IRM. For the DNN-IRM fine-
tuning, the learning rate is set to 0.01 for 50 epochs, and the
mini-batch size is 128. In the training stage, only the simu-
lation data are adopted with the input/output pairs of channel
5 speech and the corresponding IRMs. For the CGMM-based
beamforming, the multi-channel STFT coefficients are extract-
ed from the test speech at a 16 kHz sampling frequency using
a Hanning window of length 512 and shift of 256, resulting in
257 frequency bins.

Table 1 presents the word error rate (WER) comparison a-
mong the CGMM-based beamformer and its improved version-
s by incorporating DNN-based IRM and ASR-based VAD for
the 2ch and 6ch tracks on the test sets of real data. “+DNN-
IRM” and “+ASR-VAD” denote the iterative mask estimation
in the first iteration via Eq. (2) and the second iteration vi-
a Eq. (4), respectively. First, the DNN-IRM based approach
achieves consistent and significant improvements of recogni-
tion performance over the CGMM-based method, yielding av-
erage relative WER reductions of 12.2% and 20.7% across all
test sets for 2ch and 6ch tracks, respectively. The performance
gain of 6ch track is more significant than that of 2ch for the
DNN-IRM based approach because the IRM estimation of 6ch
is more accurate than that of 2ch. Second, the ASR-based VAD
in the second iteration for iterative mask estimation achieved
significant and stable recognition performance gains across all
test sets of real data, with average relative WER reductions of
5.8% and 9.2% over DNN-IRM in the first iteration for 2ch and
6ch tracks, which demonstrates its strong complementarity with
both CGMM-based and DNN-based mask estimation. Overal-
l, the proposed IME approach generates the relative WER re-
ductions of 17.3% and 28.0% over the CGMM-based approach
for 2ch and 6ch tracks across all test sets, respectively, which
demonstrates its effectiveness and robustness to multi-channel
speech recognition with a random combination of fixed micro-
phones.

396



Table 1: WER comparison of different beamformers on the test
sets of real data for 1ch, 2ch and 6ch tracks using the official
DNN-HMM acoustic model.

Beamformer Track BUS CAF PED STR AVG
No 1ch 36.17 24.86 18.93 13.93 23.47

CGMM 2ch 20.08 12.85 9.68 9.90 13.13
6ch 13.24 8.12 6.67 6.03 8.54

+DNN-IRM 2ch 15.76 11.30 9.06 10.01 11.53
6ch 9.63 5.98 5.85 5.62 6.77

+ASR-VAD 2ch 14.88 10.74 8.58 9.25 10.86
6ch 7.80 5.75 5.42 5.64 6.15

Table 2: The settings of different DCNN-HMMs.

Acoustic Model Input Feature Kernel Size
DCNN1-HMM LMFB 3×3
DCNN2-HMM LMFB 3×5
DCNN3-HMM fMLLR 3×3
DCNN4-HMM fMLLR 3×5

5.2. Experiments on acoustic and language models

5.2.1. Training data augmentation

Different from the DNN-HMM in Section 5.1 where only
fMLLR features were used, the input feature vector for da-
ta augmentation experiments consists of 42-dimensional LMF-
B, 40-dimensional fMLLR, and 20-dimensional i-vector [22].
For both LMFB and fMLLR, the first-order and second-order
derivatives with 9-frame expansion are adopted, yielding a
2234-dimensional (2234=42*3*9+40*3*9+20) feature vector
fed to the input layer of DNN. We use 7 hidden layers with
2048 nodes for each layer and 1965 nodes for the output layer.
Other configurations follow the Kaldi setup officially provided
[31]. And the test data of 2ch and 6ch tracks are beamformed by
the proposed IME approach. The first row of Table 3 lists WER
results of data augmentation for DNN-HMM acoustic model on
the test sets of real data for three tracks. By comparison with the
results in Table 1 (the first row for 1ch, the last two rows for 2ch
and 6ch), it is clear that adding all channels of the original noisy
speech except channel 2 and beamformed speech as augmented
training data remarkably reduces the WERs over the baseline
system only trained with channel 5 data, with average relative
reductions of 37.9%, 34.3% and 29.6% for 1ch, 2ch and 6ch
tracks across all test sets, respectively.

5.2.2. The ensemble of DNN-HMM and DCNN-HMMs

For DCNN-HMMs, four models are built with different settings
of input features, kernel sizes as shown in Table 2. The learn-
ing rate of DCNN training is set to 0.002, and the batch size is
2048. Batch normalization was used to accelerate the training.
The “SRNN” LM block of Table 3 shows the WER comparison
with different acoustic models on the test sets of real data for
the three tracks. First, DCNN1-HMM with LMFB as input fea-
tures outperforms DNN-HMM with the concatenation of LMFB
and fMLLR features, e.g., with an average relative WER reduc-
tion of 10.6% for the 6ch track, demonstrating the importance
of deeper architectures with convolutional layers. Second the
ensemble of all five models (one DNN-HMM and four DCNN-
HMMs) yields the relative WER reductions of 23.7%, 24.4%,
25.6% over the DNN-HMM system for for 1ch, 2ch and 6ch
tracks, respectively.

Table 3: WER comparison of different acoustic models and lan-
guage models on the test sets of real data for 1ch, 2ch and 6ch
tracks.

LM AM Track BUS CAF PED STR AVG

SRNN

DNN
1ch 19.61 16.16 12.95 9.62 14.58
2ch 9.57 6.54 5.81 6.63 7.14
6ch 5.20 3.98 3.48 4.69 4.33

DCNN1
1ch 22.56 16.75 12.80 9.79 15.47
2ch 9.44 6.89 5.44 5.72 6.87
6ch 4.60 3.64 3.49 3.74 3.87

Ensemble
1ch 16.56 11.26 9.04 7.60 11.12
2ch 7.27 5.23 4.43 4.69 5.40
6ch 3.96 2.95 2.82 3.16 3.22

LSTM Ensemble
1ch 14.10 9.64 6.89 5.98 9.15
2ch 5.16 3.83 3.18 3.49 3.91
6ch 2.65 2.09 1.74 2.48 2.24

5.2.3. LSTM-based LMs

The “LSTM” LM block of Table 3 presents the WERs of com-
bining forward and backward LSTM-based language models
on the test sets of real data for the three tracks. “SRNN” de-
notes the simple RNN-based language model officially provid-
ed. From “SRNN” to “LSTM”, average relative WER reduc-
tions of 17.7%, 27.6% and 30.4% are achieved for 1ch, 2ch
and 6ch tracks, respectively, which implies LSTM-based LMs
can be more powerful with the better beamformer and acoustic
modeling. Overall, by the integration of the proposed beam-
forming, data augmentation, acoustic and language modeling,
the deep learning framework can achieve the average WERs of
9.15%, 3.91% and 2.24% for 1ch, 2ch and 6ch tracks on the
test sets of real data, respectively, which are the best results a-
mong all submitted systems in CHiME-4 Challenge. Based on
the above results of all three tracks, we conclude that the de-
sign of deep models in this study for both front-end and back-
end could be quite effective and robust to multi-channel speech
recognition with a random combination of fixed microphones
or even a single-microphone speech recognition in the testing
stage.

6. Conclusions
In this paper, we improve multi-channel speech recognition
with a random combination of fixed microphones via a deep
learning framework. By integrating five key techniques, i.e., (i)
iterative mask estimation (IME) based beamforming, (ii) data
augmentation with both processed and unprocessed speech, (i-
ii) detailed acoustic modeling using multiple DNN-based and
DCNN-based acoustic models, (iv) detailed language modeling
using both forward and backward LSTMs, and (v) system com-
bination , our system has achieved the lowest WERs among all
participating systems for three tracks of ASR performance eval-
uation (1-channel, 2-channel and 6-channel) on test sets of real
data in the recent CHiME-4 Challenge.
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